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0.1 Purpose

Continuing on from an introduction to functional analysis, such as the one
in [Brel0], the purpose of these notes is to delve deeper into the theory of



operators on a Hilbert space, with [Soll18] serving as the main reference.

In [Sol18], the inner product on a Hilbert space is antilinear in the first
argument and linear in the second argument. We adopt the opposite
convention in these notes — an inner product on a Hilbert space is linear in
the first argument and antilinear in the second argument. Note that [Brel(]
uses the same convention for the inner product as these notes.



Chapter 1

The spectrum of a bounded
operator

1.1 C#*-algebras

Fundamental to the theory of bounded operators over a Hilbert space H is
the concept of a C*-algebra. The definition of a C*-algebra requires a few
preliminary definitions.

Definition 1.1.1. Let A be an associative algebra over C (or R). We say
that A is a Banach algebra if A is also a Banach space. That is, A is
equipped with a norm ||—|| which makes A complete — every Cauchy
sequence in A converges with respect to the norm ||—||. Additionally, if
x,y € A, the norm must satisfy

lzyll < {lllllyll- (1.1)

Equation ([1.1]) ensures that the norm respects the algebraic structure of A,
by rendering multiplication continuous. Let m, : A — A be the operator
which sends y € A to zy. If € € Ry, choose 0 = ¢/||z|| and suppose that
lly1 — y2]] < 6. Then,

lma(y1) — ma(y2)ll = llzyr — 232
< lzlllyr — w2l
< E.

Hence, m, is a continuous operator on A for all z € A.



Definition 1.1.2. Let A be a Banach algebra over C. We say that A is a
Banach *-algebra if A is equipped with a map * : A — A which satisfies
for all z,y € A and A € C,

1. (z*)* =2 (Involution)

[\]

Azt

w

-
x4y =24yt
. (Ax)*

- (

*

4. (zy)* = y*z* (Anti-multiplicative)

The middle two properties of the map * : A — A means that * is anti-linear
(or conjugate linear).

Definition 1.1.3. Let A be a Banach *-algebra over C. We say that A is a
C*-algebra if for all x € A, ||z*z|| = ||z|*

The defining property of a C*-algebra is that the involution * : A — A is
isometric (distance preserving). The first theorem we will state gives us the
primary example of a C*-algebra.

Theorem 1.1.1. Let H be a Hilbert space over C and B(H) denote the
Banach space of bounded linear operators ¢ : H — H. Then, B(H) is a
C*-algebra.

Proof. Assume that H is a Hilbert space over C and that B(H) is the
Banach space of bounded linear operators from H to H. Let ||—||z denote

the norm on H and (—.—) denote the inner product on H. Define the map
*: H— B(H) by

*: B(H) — B(H)
h —  h*

where h* is the adjoint of h, which satisfies for all £,n € H,

(R"(€),m) = (& h(n)) (1.2)
To show: (a) B(H) is a Banach algebra.

(b) B(H) is a Banach *-algebra.

(c) B(H) is a C*-algebra.



(a) Observe that B(H) is an associative algebra over C, where scalar
multiplication and addition are defined as usual and multiplication is given
by composition of linear operators, which we will denote by o. We also
know that B(H) is a Banach space when equipped with the operator norm

Ipll = sup [[A(z)]n

[lz[l =1

To show: (aa) If f,g € B(H), then ||fog| < ||fllllgll-

(aa) Assume that f,g € B(H). Then, from the definition of the operator
norm, we have

Ifogll = sup |[f(g(x))]n

llzll m=1

< sup [|flllg()]la

llzll m=1

= [/ 1lllgll-
Therefore, B(H) is a Banach algebra.

(b) To show: (ba) The map * is an involution.
(bb) The map * is anti-linear.

(bc) The map * is anti-multiplicative.

(ba) Assume that h € B(H). By equation (1.2)), h** € B(H) must satisfy
forall &,n e H,

(h*(€),m) = (&, h*(n)) = (h(&), m).

Therefore, h**(£) = h(&) for all £ € H. So, h** = h, revealing that
*: B(H) — B(H) is an involution.

(bb) Assume that g, h € B(H). Then, for all {,7 € H, we have
(g + )" (&), m) = (& (g + h)(n))

= (&, 9(n) + (& h(n))
= ((g" +h")(&),n).

So, (g + h)* = g* + h*. Now assume that A € C. Then,
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So, (Ah)* = Ah*. This demonstrates that * is anti-linear.

(bc) We compute directly that for all £, € H,

((goh) (&), m) = (¢

= (9"
=((h

g(h(n)))
(&), h(n))
Tog)(&):m)-

Therefore, (g o h)* = h* o g*. Hence, the map * is anti-linear. So, B(H) is a
Banach *-algebra.

(c) To show: (ca) For all h € B(H), ||h* o h|| = ||h]]*.

(ca) Assume that h € B(H) and that ||h] > 0 (the statement holds when
h =0). We have already shown that ||h* o k|| < ||h*||||R]].

To show: (caa) ||h*|| = ||R]|.

(caa) Observe that

[P* o bl = sup |[A*(h(£))]|u

€N z=1

= sup sup [(B*(h(€)),n)|

lENz=1 lInllz=1

= sup [(h"(h(£)),&)]

Il =1

= sup [|A(&)]F
leln=1

= ||l

Therefore, ||h]|? < ||h*||||h] and ||| < ||h*]|. To establish the reverse
inequality, we can interchange the roles of h and h* in the above calculation
so that



o h™|| = sup [|h(h™(&))]a

€Il =1

= sup sup |[(h(h*(£)),n)]

€l z=1 lInllm=1

> sup [(h(h"(£)),&)]

€Il =1

= sup |1 ()l

€]l =1
= [|n7].
So, [[B*]* < [|h*[[[2]] and ]| < [[2]]. In tandem with [|A]] < [[h*]|, we
deduce that ||h*|| = ||A].

(ca) Recall from part (caa) that ||h||*> < ||h* o h|| and from the beginning of
part (ca) that ||h* o h|| < [[h*[[[[2]]. Since [[2*]| = [|2]l, [|A* o hl| < [|][* and
consequently, ||h||* = ||h* o h|| as required. O

Example 1.1.1. Here, we will give another example of a C*-algebra. Let
X be a compact, Hausdorff space and Cts(X,C) denote the space of
continuous functions from X to C. Then, Cts(X,C) is a C*-algebra with
scalar multiplication, addition and multiplication defined pointwise on C.
The norm on Cts(X,C) is

If[I' = sup |f(z)].
zeX

and the map * : Cts(X,C) — Cts(X,C) is defined by the equation

1.2 Properties of the spectrum

Definition 1.2.1. Let H be a Hilbert space over C and h € B(H). The
resolvent set of h is the set

p(h) ={X € C | Al — h is injective and surjective}.
Here, I : H — H is the identity operator. The spectrum of A is the set
a(h) = C\p(h).
Thus, if h € B(H) and A € p(h), then the operator (\[ —h)™': H - H

must exist. Since A\l — h is bounded and surjective, the open mapping

8



theorem tells us that A\l — h is open. So, A\l — h must be open and bijective.
This means that it is a homeomorphism and therefore, (\[ — h)~! € B(H).

We are interested in proving some topological properties of the spectrum
a(h).

Lemma 1.2.1. Let H be a Hilbert space over C and g,h € B(H). Then,

o(goh)U{0} =c(hog)U{0}.

Proof. Assume that H is a Hilbert space over C and g,h € B(H). Assume
that A € p(h o g) — {0}. We claim that
1

X(I + g\ — hg)™'h) € B(H)

is the inverse operator to A\I — gh. Here, we abuse notation by writing g o h
as gh. We now compute directly that

(AT — gh) (5. (T + g\ —hg) ™ h)) = (A — gh) + (AT — gh)g(\T — hg)~*h)
- %((AI — gh) + (Ag — ghg)(A\I — hg)~'h)
- %«M = gh) + g(\I = hg)(AT — hg)™'h)
=1

and

(S0 9O = hg) W) AT = gh) = (A = gh) + g\ — hg) A\ — gh)
= %(()\] — gh) + g(AI — hg)~"(Ah — hgh))
= %(()\[ — gh) + g(A — hg) " (M — gh)h)
=1.

Since Al — gh has an inverse as demonstrated by the computations above,
A € p(gh) —{0}. So, p(hg) — {0} C p(gh) — {0}. By reversing the roles of h
and ¢ in the above argument, we also conclude that

p(gh) —{0} € p(hg) — {0}. So, p(gh) — {0} = p(hg) — {0}. Taking the
complement of both sides then yields the desired statement. O]



The next statement gives us important topological properties about the
resolvent set and the spectrum.

Theorem 1.2.2. Let H be a Hilbert space over C and h € B(H). Then,

{A e CLIAI> [IAll} € p(h).

Proof. Assume that H is a Hilbert space over C and h € B(H). Assume
that A € C such that |A| > ||h||. We claim that the sum

1 o]
3 > Ah (1.3)
n=0

converges in B(H) and that it is equal to (Al — h)~!. To see that the sum
in equation ((1.3) converges, it suffices to show that its norm is finite. But,

1 - —-nin nypn
IS A = HZA h™|
)\nZO ’)\|
AT A"
WD ]
C

Y

where C'= > ([A|7"||h]|" € Rso. The sum > 7 |A|7"||h||" is a convergent
geometric series because |A| > ||A/|.

Hence, the sum in equation (1.3]) converges in B(H) and is consequently, a
well-defined operator in B(H). For all m € Z~, let

1 m
= =3
P2

Then,

1
S M — h) = X(I AR+ AR 4+ XTPRT)(A — h)

1
= X(()\I - h’) + (h - >\_1h2) + -4 (/\_"H‘lhm _ )\—mhm+1))
= ;()\[ _ )\*mhm+1>
— [ — \molpmtl

10



A similar calculation gives (A — h)S,, = I — A" 'h™1. Now take the
limit as m — oco. Observe that in B(H),

lim A~ tpmtl =
m—o0

because

lim (M

m+1
=0
m—00 ’)\‘)

So, in the limit as m — oo,

(M — h) (% i x”h”) - (% i x”hn> (M —h)=1.

Therefore,

(% f: NTRY) = (AL = )

and subsequently, A € p(h) and

{A e CLIAI> [IAll} € p(h).

Rewriting the conclusion of Theorem [1.2.2]in terms of the spectrum, we
find that
a(h) S{A e CIA[ < [[A]l} (1.4)

So, for all h € B(H), o(h) is a bounded set. We now want to show that
o(h) is a closed set.

Theorem 1.2.3. Let H be a Hilbert space over C, h € B(H) and
Ao € p(h). Suppose that A € C such that

1
)N P [ . —
A=l < e =T
Then,
A =h) "= " (Ao = N)"(Nol =)
n=0

and consequently, X € p(h).

11



Proof. Assume that H is a Hilbert space over C, h € B(H) and A\ € p(h).
Assume that A € C such that

1
A=l < ——n———.
I ToW ]
To see that the sum
D (o= A (Al — )"
n=0

converges in B(H), we must show that its norm is finite. We have

HZ Ao = A)" (Aol = h)™" | <ZM0-M I(Aod = h)=H|™*

n=0

1 - n — n
— T b= AP Ol —
n=0
B D
Ao — Al

for some D € R.g. Hence, the sum Y ~7 (Ao — A\)"(XoI — k)"~ converges
in B(H) and is a well-defined operator in B(H). For all m € Z-, let

Zm:AO— "Nl — h)™"
n=0

First, observe that

A — o= (AT — h)(I+ (A= Ao)(Aol — h)™H)

Then, a direct calculation yields

NE

Tpn(M — h) = (Ao — A)"(Aol — h)*’H) (Aol = R)(I + (A= Ao)(Aol — h)™1))

Il
o

NE

$
(

(o= 2" (ol = b)) (I + (A = ) (ol = B) ™)

3
I
o

(Ao — N (Aol — h)~ Z/\—A”“/\] h)~"

NE

[e=]

[ (Ao — )™ (AT — h)™™

12



Note that by a similar computation,

(M —R)T,,, =1 — (Mg — N)™ (N — )™

as well. Taking the limit as m — oo, we find that
(Ao — N)™ (NI — h)™™~1 — 0 in B(H) because its norm tends to 0 as
m — oo. Hence,

(A h(i "ol—h) ") = (f: oI —h) ") (AT—h) =

n=0 n=0
and
(Z(/\O A Ol — h)‘”‘1> — (M —h)!
n=0
which demonstrates that A € p(h). O

Theorem tells us that if h € B(H), then p(h) is an open subset of C.
In tandem with equation (1.4)), the spectrum o(h) is a closed and bounded
subset of C and is thus, compact.

Next, we will show that the spectrum of h € B(H) is always non-empty.

Theorem 1.2.4. Let H be a Hilbert space over C and h € B(H). Then,
o(h) # 0, the sequence {||h"]|*"}nez., converges in R and

hm Hh”Hn = sup ||
Xeo(h)
Proof. Assume that H is a Hilbert space over C and h € B(H). Define
a(h) = inf |lh I
We will show that the sequence {||h"||"/"},cz., converges to a(h). Assume
that € € R.y. From the definition of infimum, there exists an index
ne € Z~q such that

|B"<||7 < a(h) +e.

Take any n € Z~y and use the Euclidean algorithm to write n = gn, + r,
where ¢ € Z~g and r € {0,1,...,n. — 1}. Then,

13



IA™ ] = (A2

< [[A" il

< (a(h) + )™ [n]"
(a(h) + )" "[A]"

Taking the n'" root of both sides, we obtain the inequality

1 _r
Ih™[[7 < (a(h) + &)= |1A].
Consequently,
a(h) < hmlanh”Hn < limsup||h"||» < a(h) + .
n—oo

This demonstrates that the sequence {||h?||%} converges in R to «(h). The
next step is to show that

a(h) = sup |A| (1.5)
Aeo(h)

To show: (a) a(h) > supyc ) |Al-
(b) a(h) < supyeomylAl-

(a) Suppose for the sake of contradiction that a(h) < |A| for some A € a(h).
By the root test, the series

— 117
2 RY

n=0

in R is convergent. Therefore, the sum

i AR
n=0

converges in B(H) and is a well-defined element of B(H). By using similar
arguments to Theorem and Theorem we deduce that

Z)\ "R = 1—%)

14



So, Al — h is invertible and A € p(h). But this contradicts the fact that
A € o(h). Therefore, a(h) > supye, ) |Al-

(b) We will divide this into two cases. First, we note that if z,y € B(H),
then

ik
n

a(zy) = lim [|(zy)

: nony L
lim [|2"y" [
n—oo
: A
< lim Jo” 41y
: Al o "
= lim [z lim [y
n—oo n—oo
= a(z)a(y).
Case 1: a(h) =0.

If a(h) = 0, then h is not invertible because otherwise,

1=a(l)=alhh™) <alh)a(h™) = 0.
So, 0 € o(h) and since a(h) > supye,(p)|A| from part (a),
a(h) = sup |A| =0.
Aeo(h)

Case 2: a(h) > 0.

Assume that a(h) > 0 and a(h) > supye, () |A[- Since the spectrum o(h) is
a compact subset of C, there exists r € (0, «(h)) such that

gh) CT{AeC ||\ <}
Let D ={A € C| |\ >r}. Then, D C p(h). Let ¢ be a continuous linear
functional on B(H) and define the map
v: D — C
A= (A —=h)™

The map 1 is holomorphic due to the series expansion in Theorem [1.2.2| In
particular, when |A| > a(h),

[e.9]

P((AL=h)™1) = A" lp(h).

n=0

15



The series > 2 - A" 'h™ converges in B(H) because

D> AT < AR
n=0 n=0

and by applying the root test on Y>>/ A™"||h"||, we find that

A D)
lim = < 1.
n—oo |\l Al

Moreover, > °° A" tp(h™) € C vanishes as A — oco. To see why this is the

n—=

case, replace A by Au and take the limit as |u| — co. We obtain for |u| > 1

D) (M) < 1Y)l 1R

lell = A"
S Z|>\|n+1|ﬂ|
n=0

|
< el s> el
ul 2=
—0

as |u| — 0o. Consequently, the function f : C — C defined by

)0, if p=0,
fp) = {‘P((if_ b)Y, if 0 < [l < L.

is a holomorphic function on the set

1
B0, 1/r) ={p e C|lul < -}.
The Taylor expansion of f in the disk B(0,1/r) is
Flu) =" p"o(hm).
n=0

Furthermore, if © € B(0,1/r), then

lim p"*tto(h™) = 0.

n—oo

Now, we take \g € C such that r < |\g| < a(h). Then, /\—10 € B(0,1/r) and

16



lim A\;" tp(h™) = 0.

n—oo

Let B(H)* denote the dual space of B(H) and define for all n € Z+
pn: B(H)* — C
P A e(h)

The family {p, }nez., is a family of continuous linear functionals on B(H)*.
By the uniform boundedness principle, there exists a constant M € Ry
such that

sup [ Ao| (™) < flell sup Aol AT
nEZ>0 n€Z>0
< M.
Letting N = M/||¢l|, we have sup,,c;_, | Ao/ [|A"|| < N. For all n € Zsq,
1R[] < NJAo[™*

and from this inequality, we have

. "
a(h) = lim [[A"|[
< lim N |Ao|'ta
n—oo

ol < a(h).

This contradicts the assumption that a(h) > sup,c,(,)|A|. Therefore,
a(h) < SuPAea(h)P\‘-

Combining parts (a) and (b), we deduce that

lim |[1*]|* = a(h) = sup |A|.

n—00 Aea(h)

[l
The quantity «(h) in Theorem is the subject of the next definition.

Definition 1.2.2. Let H be a Hilbert space over C and h € B(H). Then,
the spectral radius of h, denoted by |o(h)]|, is the quantity

o(h)] = sup [A].

Aeo(h)

17



Lemma 1.2.5. Let H be a Hilbert space over C and x,y € B(H). Then,
lo(z)] < ||z||, |o(z*)] = |o(z)| and if x and y commute, then
lo(zy)| < lo(2)llo(y)]-

Proof. Assume that H is a Hilbert space over C and x,y € B(H).
To show: (a) |o(x)| < ||zl

(b) [o(z7)] = |o(z)].
(c) If x and y commute, then |o(zy)| < |o(x)||o(y)].

(a) From the definition of the spectral radius and Theorem |1.2.4] we have

lo(z)| = sup |\l
Ao (z)
= a(x)
= lim ||2"||
n—oo
< lim [|z]] = [l]]-

(b) We claim that

o(z*) ={\| X € ()}

Assume that 8 € o(x*). Then, 81 — z* is not invertible. Observe that
(BI — 2*)* = I — x and that SI — x is not invertible. Suppose for the sake

of contradiction that (BI — )" exists as an operator in B(H). Then,
(BI —x)~Y(BI — x) = I and by applying * to both sides,

(81— *)(BI — ) = 1.
A similar argument also yields ((31 — x)~")*(BI — x*) = I. This contradicts
the assumption that 5 € o(z*). Since 51 — z is not invertible, § € o(z) and

Be{r|Aeca(x)}
So, o(z*) C{N| A € o(2)}.

For the reverse inclusion, assume that v € o(z). Then, v/ — z is not
invertible. By using a similar argument to before, the adjoint
(vI —x)* =7I — x* is also not invertible. So, 7 € o(z*) and therefore,

18



o(z*) = {N | X € o(2)}.

Hence,

o(z7)| = sup [}l
Ao (z*)

= sup [\
Ao (x)

= sup [A] = [o(z)].
Ao (x)
(c) This was proven at the start of Theorem [1.2.4] part (b).
For any bounded operator h € B(H), we can consider the polynomial
p(h) = agl + anh+ -+ a,h" € B(H)

where «; € C and ask what is the spectrum of p(h)? It turns out that the
answer is particularly nice.

Theorem 1.2.6. Let H be a Hilbert space over C and h € B(H). For
A€ B(H), let

p()\) = Oéo[ + Oélh + -+ Oénhn
where a; € C and n € Z~q. Then

a(p(h)) = plo(h)) = {p(A) | A € a(h)}.

Proof. Assume that H is a Hilbert space over C and h € B(H). Assume
that p(A) is defined as above for all A € B(H).

For n = 0, we have

o(p(h)) = o(aol) = {ao} = p(o(h)).

So, assume that n € Z~.

To show: (a) p(a(h)) C o(p(h)).

(b) a(p(h)) € p(a(h)).

(a) Assume that A € o(h) so that p(\) € p(a(h)).

19



To show: (aa) The operator p(\)I — p(h) is not invertible.

(aa) By definition,
pI = p(h) =Y as(N'T = 1)
=0

= a;i(N'T 1)
i=1
n i—1
=M =h)> a; Y NI
=1 j=1
Observe that A\I —h and )" | o Z;;ll A=Ipi=! commute as operators in
B(H). So, if p(A\)I — p(h) is invertible, then AI — h is also invertible,
contradicting the assumption that A € o(h). So, p(A\)I — p(h) is not
invertible, p(\) € a(p(h)) and p(a(h)) C a(p(h)).

(b) We will prove the contrapositive of this statement. Assume that

& p(o(h)). Let A, ..., A\, be the zeros of the polynomial ;1 — p(\). We
claim that all of A\y,..., A, &€ o(h). Suppose for the sake of contradiction
that \; € o(h) for some i € {1,...,n}. Then, p — p(\;) =0 and

w € p(a(h)), contradicting the assumption that p & p(a(h)). So, A; € a(h).

Now, we factorise 1 — p(\) as

i—p\) = ’VH(&' — A

where my +--- +m, =n and v € C — {0}. So, as operators in B(H),

pl = p(h) =y [ JOuT = hy™

Since \; € o(h) for all i € {1,...,n}, \;}] — h is invertible and consequently,
ul — p(h) is an invertible operator because it is the product of invertible
operators. Therefore, u & o(p(h)) and by the contrapositive, we have
a(p(h)) € p(o(h)), which completes the proof. O

The astute reader will notice that Theorems [1.2.2] [1.2.3] |1.2.4] and |1.2.6| did
not use anything special about B(H). In fact, they can be generalised to
unital C*-algebras — C*-algebras with a multiplicative unit. We will
briefly sketch how this generalisation works.
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Definition 1.2.3. Let A be a unital C*-algebra and a € A. We say that a
is invertible if there exists b € A such that ab = ba = 1, where 1 € A is the
identity element.

The spectrum of a, denoted by o(a), is the set

o(a) = {A € C| Al — a is not invertible}.

The theorems below are for a unital C*-algebra and are proved in almost
the same manner as their specialisations to B(H ).

Theorem 1.2.7. Let A be a unital C*-algebra and a,b € A; Then,
o(ab) U {0} = o(ba) U {0}.

Theorem 1.2.8. Let A be a unital C*-algebra and a € A. For A € A, let

p(\) = agl + arh+ -+ + a,h"
where a; € C and n € Zwqg. Then

o(p(a)) = plo(a)) = {p(N) | A € a(a)}.

Theorem 1.2.9. Let A be a unital C*-algebra and a € A. Then, o(a) # 0,
the sequence {||a™||"/"},ez., converges in R and

lim [[a”||% = sup |Al.
n—00 A€o (a)
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Chapter 2

Continuous functional calculus

2.1 Normal operators

The concept of continuous functional calculus is central in the theory of
operators. The rough idea behind continuous functional calculus is that one
can apply continuous functions to bounded operators on a Hilbert space.
Continuous functional calculus applies to normal operators, the subject of
this particular section.

Definition 2.1.1. Let H be a Hilbert space over C and x € B(H). We say
that x is normal if xx* = x*z. That is, x commutes with its adjoint x*.

Before we prove various properties about normal operators, we will prove
an identity we will use later. Called the polarization formula, it expresses
the inner product of a complex Hilbert space in terms of its norm.

Theorem 2.1.1 (Polarization formula). Let H be a Hilbert space over C.
If v,y € H then

3

1 , .
() = 7 0 e+ iy
k=0

Proof. Assume that H is a Hilbert space over C and z,y € H. We compute
directly that

3
1 . . 1 . . . .
12l P = (e + oyl +ille + iyl = o = yl* —illz — iy]]*)
k=0

= ~((z,y) + (y, z) +i(z,iy) + i(iy, z))

—ro|

= 5((1‘,3;) + (y,x> + <5L‘7y> - <y,ZL‘>) = <ZL‘,y>
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Theorem [2.1.1] can be generalised to sesquilinear forms on H.

Theorem 2.1.2 (Polarization formula V2). Let H be a Hilbert space over
C and F: Hx H— C be a sesquilinear form (linear in the first argument
and congugate linear in the second argument). If x,y € H then

3

1 . . .
Flo,y) =) i'Fz+i'yz+i'%).
k=0

The proof of Theorem is almost exactly the same as Theorem [2.1.1
and thus, is omitted. Using Theorem [2.1.2] we will prove an alternative
characterisation of normal operators.

Theorem 2.1.3. Let H be a Hilbert space over C and x € B(H). Then, x
is normal if and only if for alln € H, ||lx(n)| = ||z*(n)|l-

Proof. Assume that H is a Hilbert space over C and x € B(H).
To show: (a) If x is normal, then for all n € H, ||z(n)|| = ||l=*(n)]|.
(b) If for all n € H, ||z(n)|| = ||Jz*(n)||, then z is normal.

(a) Assume that z is normal so that xza* = z*z. If n € H, then

l=(m)]* =

(m) = llz"(mI*.

(b) Assume that if n € H, then ||z(n)| = |[[z*(n)||. Define two sesquilinear
forms Fy, Fy : H x H — C by

Fi(n,€) = (n,zx™(§))  and  Fi(n,§) = (n,27x())

Since lo(n)|| = =" ()Il, Fi(1,7) = Fa(n,n). By Theorem E12, we have for
all &,ne H,
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Fi(n,€) = *Fi(n+ "¢ 0+ i)

]
(]«

k=0

Il
Rl
—~
3

" Fy(n + "¢, n +iF¢)

).

o~
| w
<)

Therefore, if n,& € H, then

(n, x2*(§)) = (n, x*x(£)).

So, rx* = x*x and x is normal. O
Self-adjoint and unitary operators are special types of normal operators.

Definition 2.1.2. Let H be a Hilbert space over C and = € B(H). We say
that x is self-adjoint if z = x*. We say that x is unitary if
xx* =x*x =1, where [ : H — H is the identity operator on H.

Lemma 2.1.4. Let H be a Hilbert space over C, x € B(H) be a normal
operator, A € C and ¢ € H such that x(1)) = Mp. Then, x*(1p) = M.

Proof. Assume that H is a Hilbert space over C and x(¢)) = A\, where

x € B(H) is a normal operator. With I € B(H) denoting the identity
operator, we claim that A\I — z is a normal operator. Observe that if n € H,
then

AT = z) ()| = (An — 2(n), An — 2(n))
= AP lnl* = Mn, z(n)) = Ma(n),n) + [lz(n)]®
= AP lnll® = M (), m) — Xn, 2*(n)) + [|l=* (n)|I?
= (M — 2™ (n), Ay — 2*(n))
= [\ = 2")()|I” = [[(M = 2)* ().

By Theorem [2.1.3, A\I — x must be a normal operator. Moreover,

I = 2) ()| = |(A = &) ()] = 0.
So, z*(1)) = M. n

For a normal operator, the eigenspaces for distinct eigenvalues are always
orthogonal.
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Lemma 2.1.5. Let H be a Hilbert space over C and v € B(H) be a normal
operator. Let A,y € o(x) be distinct eigenvalues of x. Then, the eigenspaces
of x for A and p are orthogonal to each other.

Proof. Assume that H is a Hilbert space over C, z € B(H) is a normal
operator and \, yu € o(x) are two distinct eigenvalues for x. Suppose that
©x, pu € H are elements such that z(p)) = Apy and z(p,) = pp,.

To show: (a) (¢x, pu) = 0.

(a) Observe that

O“p/\v 90#)

= (z(p2), u)

= (o2, 2" ()

= (ox: i) = 1(or: Pu)-

A@x, pu) =

In the last line, we used Lemma [2.1.4] So, (A — i)(¢x, ¢,) = 0 and since
A — o # 0, we obtain (p, ¢,) = 0 as required. O

Next, we will investigate the spectrum of normal and self-adjoint operators.

Theorem 2.1.6. Let H be a Hilbert space over C and x € B(H). If = is
normal, then the spectral radius |o(x)| = ||z|| and if x is self-adjoint, then
o(z) C R.

Proof. Assume that x € B(H). First, assume that x is a normal operator.
We first observe that for all n € Z~y, ™ is also normal. This is because x
commutes with its adjoint z*. Recalling that ||z*z| = ||zz*|| = ||z||?, we
have

2?1 = [I(2*)* (2*)]
= || (zz®) "]

= [lo"2* = ||=]".

[terating this argument, we have ||22"|| = ||z]|*" for all n € Z>0 Thus, the
S R which

sequence {||x bneze, i
converges to [|z||. So,
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. anl
o(a)| = lim o[ = Jz].
Next, let = be a self-adjoint operator and A = a + i € o(z) with «, 5 € R.
For n € Z~, define the operator
x, =2 — (a—inf)I.

Note that i(n + 1)5 € o(z,) because

in+ 1)l —z,=i(n+ DI —x+ (e —infB) = N\ — x

which is not invertible because A € o(z). Since i(n+ 1) € o(z,,), we have
the inequality

li(n +1)B]* = (n+1)*p?

< sup [AP
A€o (zn)

z — (o —inP)I)*(x — (a —inB)I)]
r— (a+inp))(x — (o —inp)I)||
r —al)? +n?B2I|

r — ol)?| +n?B%

~—~~ I~

Since (n +1)28? < ||(z — al)?|| + n?B? for all n € Z~y, 5 =0. So, A € R
and o(x) C R as required. O

2.2 Continuous functional calculus on
self-adjoint operators

Continuous functional calculus asserts that if + € B(H) is a self-adjoint
operator, there exists an “isomorphism” between Cts(o(z),C) and C*(I, z)
— the C* algebra generated by the operators I and x. This leads us to our
next formal definition.

Definition 2.2.1. Let A and B be C*-algebras with involutions x4 and *p
respectively. A *-isomorphism is a bijective map ¢ : A — B such that
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1. If a1, a9 € A, then ¢(a; + az) = ¢(a1) + ¢(az).
2. If A€ C and a € A, then ¢(\a) = Aé(a).

3. If ai, a0 € A, then ¢(a1as) = d(a1)e(as).

4. If a; € A, then (¢(ay))™® = ¢((ar)*™).

If a map v : A — B satisfies the above four properties, we say that 1 is a
*-homomorphism.

Theorem 2.2.1 (Continuous functional calculus). Let H be a Hilbert space
over C and x € B(H) be a self-adjoint operator. Then, there ezists a
unique map

A: Cts(o(zx),C) — B(H)
f = f(z)
such that if f is the polynomial function f(\) = ap+ a1 A+ -+ + a,\", then

f(z) =aol + a1z + -+ - + a,a”.
If f € Cts(o(x),C), then || f(x)|| = || fllco where

[flloe = sup)lf(/\)l

Ao (x

is the uniform norm on Cts(o(z),C). Moreover, A is a *-isomorphism
between the C*-algebras Cts(o(x),C) and C*(1,x) — the C*-algebra
generated by x and the identity map I € B(H).

Proof. Assume that © € B(H) is a self-adjoint operator. Let
P(o(z)) € Cts(o(x),C) denote the set of polynomial functions from o(z)
to C. Also define the restriction map

res: Clz] — Cts(o(z),C)
p(z) = Plo:
Informally, the map res takes a polynomial in C[z], thinks of it as a
polynomial function from C to C and then restricts it to the spectrum o(z).

If p(z) € Clz], then

Ip(2) || = lo(p(z))]

= sup |y
u€o(p(x))

= sup [p(A)| = [lres(p(2))]]o-

Ao (x)
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The first equality follows from two facts. Firstly, since z is self-adjoint, p(x)
must also be self-adjoint. Secondly, we apply Theorem [2.1.6, In the second
last inequality, we used Theorem [1.2.6|

Thus, there exists a linear map ¢ : P(o(z)) — B(H) such that

p(x) = ®(res(p(2)))

since ||p(z)|| = ||res(p(2))]|co- Additionally, ® is an isometry
(distance/length-preserving).

By the Stone-Weierstrass theorem, the space P(o(x)) of polynomial
functions is dense in Cts(o(x),C) and the image ®(P(o(x))) is therefore
dense in the C*-algebra C*(I,x). Since ® is an isometry, it must extend
uniquely to an isometry

A: Cts(o(z),C) — C*(I,x)
f = f(2)

From the construction of ®, A must satisfy:

1. If f is the polynomial function f(\) = Y1, a;A\", then

A(f(N) = f(z) = Z a;z’.

2. 1f f € Cts(o(x),C), then | f(2)]| = ||/

Tedious computations are required to check that A satisfies the properties
in Definition on elements of P(co(z)). For elements in Cts(o(x),C),
the properties in Definition [2.2.1| are also satisfied because we can
approximate each element in Cts(o(x),C) with polynomial functions.
Hence, A is an isometric *-isomorphism from Cts(o(z),C) to C*(I,z). O

Theorem [2.2.1] gives meaning to applying a continuous function to an
operator. The next few theorems are dedicated to proving various basic
properties of the continuous functional calculus.

Theorem 2.2.2. Let H be a Hilbert space over C and x,y € B(H) be
commuting, self-adjoint operators. If f € Cts(o(z),C) and

g € Cts(a(y),C), then f(x)g(y) = g(y)f(z).
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Proof. Assume that =,y € B(H) are commuting, self-adjoint operators,

f € Cts(o(x),C) and g € Cts(o(y),C). Let {f.} and {g,} be sequences of
polynomials which uniformly approximate f and g respectively. Since f,, g,
are polynomials for n € Z~y and zy = yx, we have

Fa(€)9n(y) = gn(y) fu(z)
and by taking the limit as n — oo, we obtain f(x)g(y) = g(y) f(x). O

The next theorem can be considered a generalisation of Theorem [1.2.6|

Theorem 2.2.3 (Spectral mapping theorem). Let H be a Hilbert space
over C and x € B(H) be a self-adjoint operator. If f € Cts(o(x),C), then

o(f(x)) = flo(z)) = {f(N) [ A € o(x)}.

Proof. Assume that © € B(H) is a self-adjoint operator on the complex
Hilbert space H. If u € C then pul — f(x) = (1 — f)(x). Suppose that
wéo(f(x)). Then, ul — f(z) = (u — f)(x) is an invertible operator.
Hence, p — f is an invertible element of C'ts(o(z), C) which holds if and
only if u & f(o(x)) (the zero function is not invertible!). O

As a consequence of Theorem [2.2.3] we can show that there is only one
nilpotent and self-adjoint operator.

Corollary 2.2.4. Let H be a Hilbert space over C and x € B(H) be
self-adjoint and nilpotent, with nilpotent meaning that there exists n € Zg
such that ™ = 0. Then, x = 0.

Proof. Assume that © € B(H) is self-adjoint and nilpotent so that there
exists n € Z~( such that 2™ = 0. Then,

{0} = o(2") = (o(2))" = {A" [ A € o(2)}.
by Theorem [2.2.3] So, o(z) = {0} and by Theorem [2.1.6]
lo(2)| = [|l=[| = 0.
So, xr = 0. n

The final property of the continuous functional calculus is that it respects
the composition of operators.

Theorem 2.2.5. Let H be a Hilbert space over C and x € B(H) be
self-adjoint. If g € Cts(o(x),C) is real-valued, then the operator g(x) is

self-adjoint and if f € Cts(g(o(x)),C), then f(g(x)) = (f o g)(x).
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Proof. Assume that © € B(H) is a self-adjoint operator on a complex
Hilbert space H. Assume that g € Cts(o(z),C) is real-valued. Then, g =7,

where g(A) = g(A) for all A € o(x).

By applying the *-isomorphism A : Cts(o(z),C) — C*(I,z) from Theorem
we find that

g(z) = Ag) = A(g) = (9(=))".

So, g(z) must be a self-adjoint operator.

Next, assume that f € Cts(g(o(z)),C). Consider the mapping

Q: Cts(g(o(x)),C) — B(H)
f = (fog)().

Notice that €2 is an isometry because

[flle = sup [F(N)]

reg(o (@)
= sup |f(g(p))|

peo(zx)

= |o((f o g)(x))]
= [[(f e g)(@)]l

Also note that if f is a polynomial function on g(o(x)), then £ maps
polynomial functions to polynomials in g(x) within B(H). But, by the
uniqueness of the continuous functional calculus (see Theorem [2.2.1]), Q2
must be the map f +— f(g(z)). So, (fog)(x) = f(g(x)) as operators in
B(H). O

2.3 Positive operators and their square roots

Our first application of continuous functional calculus (see [2.2.1)) is to give
meaning to taking the square root of a positive operator defined on a
complex Hilbert space. We obviously cannot do this for a general
self-adjoint operator because the square root is not defined on all R.

Definition 2.3.1. Let H be a Hilbert space over C. We say that the
operator x € B(H) is positive if x is self-adjoint and its spectrum

o(z) € Rso. We write z > 0 to denote that z is a positive operator on H.
The set of positive operators on H is denoted by B(H).

30



By applying continuous functional calculus, we can define the square root
of a positive operator.

Theorem 2.3.1. Let H be a Hilbert space over C and x € B(H) be a
positive operator. Then, there exists a unique positive operator a € B(H)
such that a®> =aoa = x.

Proof. Assume that © € B(H), is a positive operator defined on a complex
Hilbert space H. Since o(z) C Rsg, the square root function

f: o) - R
A2
is continuous on o(x). Let a = f(x). Since f(\)f(A) = A, we can apply the
*-isomorphism A from Theorem to deduce that a* = f(z)f(z) = .

To see that a € B(H ), note that from Theorem [2.2.3]
flo(2)) = o(f(z)) = o(a).
o(a) = a(f(z)) = flo(x)) = {A2 | X € o(2)} C Rsy.

It remains to show uniqueness. Suppose that b € B(H), such that 0* = z.
Then, from Theorem b= f(g(b)), where g is the function

g: R - R
A= N
So, b= f(b?) = f(x) = a. Hence, a € B(H), is the unique positive
operator satisfying a? = x. O

Theorem tells us that every positive operator on H has a unique
square root. The next theorem gives us a decomposition of self-adjoint
operators in terms of positive operators. It should remind the reader of the
Jordan decomposition theorem for a signed measure.

Theorem 2.3.2. Let H be a Hilbert space over C and x € B(H) be a
self-adjoint operator. Then, there exists a unique pair (a,b) of positive
operators on H such that x = a — b and ab = 0.

Proof. Assume that x € B(H) is a self-adjoint operator. Consider the
following two continuous complex-valued functions on the spectrum o(x):

0 = {)\, it A >0, o) = {o, if A >0,

0, otherwise. —\, otherwise.
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If A € o(z), then f(N)g(A\) =0 and A = f(A) — g(A\). By applying the
*-isomorphism A from Theorem and setting a = f(z) and b = g(x),

we deduce that © = a — b and ab = 0 as required.

It remains to show uniqueness of the decomposition. Suppose that
¢,d € B(H)4 such that = ¢ — d and ¢d = 0. Observe that ¢ and d must
commute because

de =d*c¢" = (cd)" =0 = cd.
By using Theorem we deduce that czd2 = d2cz = 0. This is because
(c2d2)? = cd = 0.

Now, (c% + d%)2 = c+d. Since ¢+ d is the square of a self-adjoint operator,
it must be positive because

olc+d) = 0((05 + d%)Q) = a(c% + d%)2 C Rso.

Also observe that (c + d)? = (¢ — d)? = 22 so that ¢ + d is a square root, of
the positive operator z2. But, from Theorem ¢+ d is the unique
square root of z2. Therefore,

1 1, 50
e=gl(c+d)+ (= d) = 3(@) +2) = f(2)
and
d= (et )~ (e~ d) = 5 ()} — o) = g(x)

]

The operators a and b in Theorem [2.3.2] are called the positive and negative
parts of the self-adjoint operator x respectively. We usually denote a by ™
and b by x~. Observe that 2,2~ € C*(z), where C*(z) is the C*-algebra
generated by the operator x.

We will now like to prove equivalent characterisations of positive operators.
For this, we need the following lemma.

Lemma 2.3.3. Let H be a Hilbert space over C and x € B(H). Then,
x =0 if and only if for all £ € H, ({,x2(£)) = 0. Also, x = x* if and only if
forallé € H, (&,2(€)) € R.
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Proof. Assume that x € B(H). For the first statement, assume that = = 0.
Then, by positive definiteness of the inner product, if £ € H then

(€, z(5)) = 0.

For the converse, assume that if £ € H then (£, 2(£)) = 0. The map

o: HxH — C
&mn) = (&)

is a sesquilinear form and from an application of Theorem [2.1.2

1 3
o€ = 7 Do +itn.E + i)
k=0

1 3
=D M E it na(E +i'n)
k=0

= 0.
So, if &,n € H then (£, z(n)) = 0. So, x = 0. This proves the first statement.

For the second statement, assume that x = x*. If £ € H, then

(€, 2(8)) = (2(£),&) = (& ()

So, (£, z(§)) € R. For the converse, assume that if £ € H then (£, z(£)) € R.
Define the sesquilinear form

W: HxH — C
&mn) = (z().n)
If £ € H then

¢(&,€) = (& x(£)) = (£, 2(8)) = (2(£),€) = (&, €).

By Theorem 2.1.2] if £, € H, then ¢(&, 1) = ¥(&,n). So,

Theorem 2.3.4. Let H be a Hilbert space over C and x € B(H). The
following statements are equivalent:

1. x 1is positive.

2. There eists a self-adjoint operator y € B(H) such that x = y°.
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3. There exists an operator z € B(H) such that x = z*z.

4. If £ € H, then (&, x(§)) > 0.

Proof. Assume that © € B(H) is a bounded operator on H.

If x is positive then there exists a unique positive operator y € B(H) such
that o = y? from Theorem [2.3.1, So, if the first statement is true, then the
second statement is true.

The third statement follows from the second statement, since a positive
operator is self-adjoint by definition.

Now suppose that there exists an operator z € B(H) such that = = z*z.
Assume that £ € H. Then,

(€ 2(8)) = (&6, 2"2(&)) = [I=(9)II* > 0.

Finally, suppose that if £ € H, then (£, z(£)) > 0. By Theorem [2.3.2]
r=x"—x, where 27,2~ € B(H), and 2"z~ = 0. With this
decomposition, we have for all £ € H,

Therefore, if £ € H, (¢, (z7)*(€)) = 0. So, (z7)* = 0. From Corollary [2.2.4]
x” =0and z =2 € B(H),. This completes the proof. ]
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We will make a brief aside into the world of quantum physics. If x € B(H)
and ¢ € H, the quantity (¢,z(§)) is called the expectation value of x in the
state determined by &. This terminology is usually applied when £ is a unit
vector. Theorem [2.3.4] states that an operator x is positive if and only if its
expectation values are positive for all states £ € H.

Based on the notion of positivity, we can define a partial order relation on
the elements of B(H).

Definition 2.3.2. Let H be a Hilbert space over C and z,y € B(H). We
say that x dominates y if x — y > 0 (alternatively, x —y € B(H),). This
is also denoted as = > y.

With the relation in Definition [2.3.2) we will prove that B(H) is a poset.
Recall the definition of a poset (partially ordered set) from [SS15, Page 7]
First, we need to establish some properties about the relation in Definition

Theorem 2.3.5. Let H be a Hilbert space over C. Define

~B(H); = {~x |« € B(H).}

1. If v € B(H); and A € R>q, then A\v € B(H)..

2. Ifz,ye€ B(H),, thenx +y € B(H),.

3. B(H): N (~B(H),) = {0}.

4. Ifv € B(H), and y € B(H), then y*xy € B(H),.

Proof. Assume that H is a Hilbert space over C.
(1) Assume that x € B(H), and A € Rsq. Then, o(z) C R>( and
o(Az) = {a € C| al — Az is not invertible}

= {\3 € C| BI — z is not invertible} C R,.
So, \x € B(H)4.
(2) Assume that x,y € B(H),. Then, from Theorem [2.3.4] if £ € H, then

(€,2(&)) > 0 and (&, y(&)) > 0. So, (&, (z+y)(&)) > 0 and consequently,
r+ye B(H),.
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(3) Assume that z € B(H), N (—B(H)+
then (¢, z(£)) = 0 and (¢, —x(¢))

therefore, z = 0.

). From Theorem , ifée H
—(&,2(€)) > 0. So, (€,z(£)) = 0 and

(4) Assume that x € B(H), and y € B(H). From Theorem [2.3.4] if { € H
then

&y zy(€)) = (&), =(y(£))) = 0.

since z is a positive operator. Hence, y*zy € B(H),. O

The fourth criterion in Theorem 2.3.7 is reminiscent of the criterion for a
matrix M, «,(R) to be positive definite. Next, we will show that B(H) with
the relation in Definition [2.3.2]is indeed a poset.

Theorem 2.3.6. Let H be a Hilbert space over C. The set B(H), together
with the relation in Definition [2.3.9, is a poset.

Proof. Assume that H is a Hilbert space over C.
To show: (a) If x € B(H) then z < z.

(b) If z,y,z € B(H), v <y and y < z then z < z.
(c)Ifz,y € B(H), x <y and y < x then z = y.

(a) Assume that © € B(H). Then, z — x = 0, whose spectrum is
cd(0) ={0} CRsy. So,z —x € B(H); and = < z.

(b) Assume that z,y,z € B(H), x <y and y < z. Using Theorem [2.3.5] we
deduce that
v—z=(x-y)+(y—=z) € B(H);
because x — y,y — z € B(H),. Therefore, x < z.
(c) Assume that z,y € B(H), x <y and y < x. Then, z —y € B(H), and

y—x € B(H);. So, v —y € B(H)y N (—B(H);) = {0}. Therefore,
T =1. O

Let us prove some more useful properties of the poset (B(H), <).
Lemma 2.3.7. Let H be a Hilbert space over C and x € B(H). Then,

r*r < ||z|*I.
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Proof. Assume that x € B(H) and £ € H. Then,

(& a2(€)) = (x(€),2(&)) < z|PIEN® = (& =11 (€)).
So, if € € H then (&, (||z]|*T — z*x)(£)) > 0. Hence, z*x < ||z|]* as
required. O]

Lemma 2.3.8. Let H be a Hilbert space over C and x € B(H) be a positive
operator. Then, x < I if and only if ||z| < 1.

Proof. Assume that x € B(H) is a positive operator.
To show: (a) If z < I, then ||z]| <1
(b) If ||z|| <1, then = < [.

(a) Assume that = < I. Since x is positive, there exists z € B(H) such that
x = z*z from Theorem If £ € H then

(€, (I = 2)(€)) = (£,§) — (&, 2(S))
= (§,&) = (£,272(9))
= [I€1* = 1=(&)I?
> [1€1% = NIl
= (1= [lzI*)llgl* > o.

Hence, ||z]|* < 1. Recall from Theorem that ||z]|? = ||z*z| = ||z||. So,
]l < 1.

(b) Assume that ||z|| < 1. If £ € H then

(& (I = 2)(&) = lIglI* — (& =(&)
> [lEl” = liElll=(E)l

> [lEl” = Nl
= (L= [l=IDlgl* = 0.

Thus, I —x € B(H), and = < I as required. O

Lemma 2.3.9. Let H be a Hilbert space over C and x,y € B(H), such
that 0 < o < y. Assume that  has inverse . Then, y is invertible and

its inverse y~! satisfies y~t < 27t
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Proof. Assume that z,y € B(H), such that 0 < z <y and z is invertible.
Since z is positive, the spectrum o(x) is a compact subset of Rq. Since z
is invertible, 0 € o(z). So, there exists § € Ry such that o(z) C [4, 00).

The continuous functional calculus tells us that z — 1 > 0. This is because
x — 01 is self-adjoint (as x and I are self-adjoint) and

o(x —dl) ={AeR| (A+0)] — z is not invertible}
={ eR|A+deco(x)}
C{AeR|A+0€[d00)}
= [0, 00).

So, x > 61 and y > 1. So, o(y) C [d,00) and y must be invertible.

Since z <y, y_%my_% < I. By Lemma , ||y_%:13y_%|| < 1. Exploiting
the fact that x and y~! are self-adjoint, we must have

a3y~ 12 = ady3)y ety 3] =y day 3 < 1
Consequently,

ly~ 23| = |[(x2y~2)*]| = o2y~ 2| < 1.
Now observe that

1 1

(v 2as)y 2er <y 2as|PI< T
From the LHS, we obtain :U%y_lw% < I. This means that the operator
1 1 1
I —z2y~'z2 € B(H),. Since 72 is self-adjoint because 7! is self-adjoint
and Theorem [2.3.4]
(z72) (I —aty'w)a™r =2~ =y~ € B(H),
by Theorem [2.3.5] Hence, 7 > y~! as required. O

We will end this section with a very interesting application of positive
operators.

Theorem 2.3.10. Let H be a Hilbert space over C and x € B(H). Then, x
1s a C-linear combination of four unitary operators.
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Proof. Assume that © € B(H). Observe that the operators x + x* and
—i(x — x*) are self-adjoint. For the second operator, we have

(—i(x —2"))" =i(z" — ) = —i(x — 2").

Now observe that x is the C-linear combination

xzé(:c—l—a: )—Z(—z(x—x ).

Now it suffices to show that any self-adjoint operator can be written as a
C-linear combination of two unitary operators. Without loss of generality,
we can assume that the self-adjoint operator has norm 1.

Assume that y € B(H) is a self-adjoint operator with ||y|| = 1. Since y is
self-adjoint, ¥ must be a positive operator from Theorem . It has
norm 42| = ly*sll = Ilyl> = 1. Therefore, y? = y*y < [lyl*] = I. Since
I —y? € B(H),, Theorem tells us that there exists a unique positive

operator (I —y?)2 such that

(T =92 =1 =y,

Now, we decompose y as

1 . 2\ L . 2y L

y=5(+ill —y)2) + (v —ill —y*)?))

Notice that the operators y + i(] — y2)2 and y — i(I — y*)2 are unitary.
This is because the functions f(A) = Az and g(A\) = (1 — A\2)2 are
continuous functions for A € o(y) and by Theorem [2.2.2]
y2(1—y2)2 = (1 — y*)2y2. Consequently,

Wy £i(l —y)2) = (=il —y>)2) @y Fi(l —y?)?)
=y’ + -y =1

N|=

(y+i(I —y?)

and

[NIES

(y£i(l —y?)2) (il —y*)?) = (y Fi(l — y*)2)(y £ i(I — y*)?)
=P+ (I -9y =1

This yields the statement we are after. O
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2.4 Projection operators

One of the basic topics of Hilbert space theory is the notion of orthogonal
projections onto closed subspaces of H. One of the fundamental theorems
associated with this topic is

Theorem 2.4.1. Let H be a Hilbert space and V' be a closed subspace of H.
Then, H =V @ V*. In other words, for allz € H, x =y + z, where y € V
is the unique point in V' which has minimal distance from x. Similarly,

2z € V14 is the unique point in V* which has minimal distance from x.

The map x + y is called a projection operator. With the goal of proving
the polar decomposition for elements in B(H ), we will discuss a few aspects
of projection operators in the next few sections.

Note that the projection operator as in Theorem is not the definition
of a projection operator that we will use. The definition we will use is
motivated by the following result.

Theorem 2.4.2. Let H be a Hilbert space and P : H — H be a bounded,
linear operator which satisfies P> = P and P* = P. Then, P is the
projection operator onto the closed subspace im(P) in the sense of Theorem
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Proof. Assume that H is a Hilbert space and P : H — H is a bounded
linear operator which satisfies P2 = P and P* = P. The first part of the
proof is to show that the image im(P) is a closed subspace of H.

To show: (a) The image im(P) is closed.

(a) Let I : H — H denote the identity operator on H. Consider the
operator I — P : H — H. We observe that I — P satisfies the same
properties as P. This is because

I-PP?*=IP*-P-P+P*=]-P-P+P=I-P
and if x,y € H then



Furthermore, im(P) = ker(I — P). To see why this is the case, suppose that
P(z) € im(P). Then, (I — P)(Pz) = Px — P?x =0. So, P(z) € ker(I — P)
for all x € H and therefore, im(P) C ker(I — P).

Conversely, suppose that y € ker(I — P). Then, (I — P)y =0 and

consequently, P(y) = y. Hence, y € im(P) and as a result,
ker(I — P) C im(P). Therefore, ker(I — P) = im(P). Since ker(/ — P) is a

closed subspace of H, im(P) must also be closed as required.

We showed in part (a) that I — P satisfies the same properties as P. Hence,
we can apply the result of part (a), but to the operator I — P. So,
im(/ — P) = ker P = (im(P))*. Now assume that x € H. Then,

r = P(z)+ (x — P(x))

where P(x) € im(P) and x — P(z) € im(I — P) = (im(P))*. Thus, P is the
projection operator onto the closed subspace im(P), which completes the
proof. O]

Due to the characterisation in Theorem [2.4.2] the definition of a projection
operator in [Sol1§] is

Definition 2.4.1. Let H be a Hilbert space and x € B(H). We say that z
is a projection if x = 2% and x = z*.

From now on, we will take Definition [2.4.1] as the definition of a projection
operator. Another characterisation of a projection operator is given by
considering its spectrum.

Theorem 2.4.3. Let H be a Hilbert space over C and x € B(H). Then, x

is a projection operator if and only if x is self-adjoint and the two
continuous functions X — A? and X\ — X, defined for \ € o(x), are equal.

Proof. Assume that © € B(H). Define the functions ¢,¢ € Cts(o(z),C) by
S(A) = A and P(\) = A2,

To show: (a) If = is a projection operator, then z is self-adjoint and ¢ =
on the spectrum o(x).

(b) If x is self-adjoint and ¢ = ) on the spectrum o(x), then x is a
projection operator.

(a) Assume that x is a projection operator. Then, x is self-adjoint and
2% = z. Applying the *-isomorphism A from Theorem on both sides of
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r? = x, we obtain 1) = ¢ on the spectrum o(z).

(b) Assume that z is a self-adjoint operator and that ¢ = v as functions in
Cts(o(z),C). Applying the inverse map A~! from Theorem [2.2.1] we find
that = 2. Hence, x is a projection operator as required. O

We note in the scenario of Theorem that ¢ = ¢ in Cts(o(z),C) if and
only if o(z) € {0,1}. First suppose that ) = ¢ and A € o(x). Then,
P(A) = ¢(\) and A> = \. So, A\ =0o0r A =1 and o(z) C {0,1}.

Conversely, suppose that o(z) C {0,1}. From Theorem m,

olx(I —2)={ =X | Xe€o(x)} = {0}.
So, z —2?=0in B(H) and ¢ (z) = ¢(z).

Definition 2.4.2. Let H be a Hilbert space over C and e1,e5 € B(H) be
projection operators. We say that e; and e, are orthogonal if e;es = 0.

The reason why we use the (admittedly loaded) term orthogonal in the
above definition lies with the following result.

Lemma 2.4.4. Let H be a Hilbert space over C and e1,es € B(H) be
projection operators. Then, ey and ey are orthogonal if and only if
im(e1) = (im(es))t.

Proof. Assume that ey, ey € B(H) are projection operators. Then, e; and
es are orthogonal if and only if for £,n € H,

0= <€1€2(f),77> = <€2(£)7 el(n»'

In turn, the above equation holds if and only if im(e;) = (im(ez))". O

Definition 2.4.3. Let H be a Hilbert space over C and x € B(H). Define
[(x) to be the projection operator onto the closure im(z) and r(z) to be the
projection operator onto the orthogonal complement (ker z)*. The operator
[(x) is called the left support of x and r(x) is called the right support of
x.

Observe that {(z)z = x because im(x) C im(x). Also, zr(x) = x because by
Theorem [2.4.1],

H =kerz @ (kerz)".
Let h = hy + hy € H where h; € kerz and hy € (kerz)*. Then,
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xzr(x)(h) = x(hg) = x(h1 + he) = x(h).

The left and right supports of a bounded operator have a useful connection
via the adjoint. We will need to prove some properties of the orthogonal
complement first. The most important property of the orthogonal
complement is that for any subspace S of a Hilbert space H, S+ is always a
closed subspace of H.

Theorem 2.4.5. Let H be a Hilbert space.

(a) If S is a subspace of H then S C (S+)*.

(b) If Sy, Sy are subspaces of H and Sy C Sy then Sy C St-.
(c) If S is a closed subspace of H then S = (S*+)*+.

(d) If S is a subspace of H, then S = (S+)*.

Proof. Assume that H is a Hilbert space.

(a) Assume that S is a subspace of H and that s € S. If t € S+ then
(s,t) = 0. So, s € (S*)* and S C (S+)*.

(b) Assume that S, Sy are subspaces of H such that S; C S;. Then,
Sy ={r € H| {(x,v) =0forvec Sy}

C{rxe H|(z,v)=0forve S}
st
(c) Assume that S is a closed subspace of H. Then, by Theorem [2.4.1}
H =S ®St. We already have S C (S*)+ by part (a). It suffices to prove
the reverse inclusion. Assume that z € (S)t. Then, z = y + 2 where
y € Sandze€ St
To show: (ca) z = 0.
(ca) Since x € (S*)* and 2z € S+, (x,2) = 0. But,

(@,2) = (y,2) + |2l = |2 = 0.
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Thus, z =0 and x = y € S. Hence, (St)* C S and S = (S+)*.

(d) Assume that S is a subspace of H. Then, S C S. Applying part (b)

twice, we deduce that (S+)+ C (?L)L. Since S is a closed subspace of H,

(gL)l = S from part (c). Thus, (S*)* C S.

Now observe that from part (a), S C (S4)* = (S*)*. The last equality
follows from the fact that (S*)* is a closed subspace of H. So, S = (S+)*
as required. O

Now we can properly prove the relation between the left and right supports.

Lemma 2.4.6. Let H be a Hilbert space over C and x € B(H). Then,
l(x) =r(z*) and r(x) = l(x").

Proof. Assume that © € B(H).

To show: (a) l(x) = r(z*).

(a) Tt suffices to show that im(x)* = ker z*. Note that if n,£ € H then

(n,2(€)) = 0if and only if (z*(), &) = 0.

This demonstrates that im(z)* = ker z*. So, I(x) is the projection onto the
closed subspace

im(z) = (im(2)")*" = (kera")*

from Theorem [2.4.5] But, this is just r(z*). So, l(z) = r(z*).

(b) Part (a) gives r(z) = r((z*)*) = l(a*). O

If x € B(H) is a self-adjoint operator then Lemma tells us that
l(xz) =r(z*) =r(x).

Definition 2.4.4. Let H be a Hilbert space and x € B(H) be self-adjoint.
The common value of [(z) and r(z) is denoted by s(x) and called the
support of x.

The support of a self-adjoint operator satisfies the following property.
Theorem 2.4.7. Let H be a Hilbert space over C and x € B(H). Then,

r(x) = s(z*x) and l(x) = s(zz*).
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Proof. Assume that © € B(H). Notice that the operators z*z and xx* are
self-adjoint. So, we are able to talk about the support of z*x and xzx*.

To show: (a) ker(z) = ker(z*x).

(a) We have ker(z) C ker(z*x). For the reverse inclusion, suppose that
¢ € ker(z*z). Then, (£, z*z(£)) = 0= ||z(9)||*. So, x(§) =0 and & € ker(x).

Now, 7(x) is the projection operator onto the closed subspace (ker(z))=.

From part (a), (ker(z))* = (ker(z*x))t. Therefore, r(z) = s(z*x).

Similarly, [(z) is the projection operator onto the closed subspace
im(z) = (kerz*)* = (ker zx*)*. So, I(x) = s(zx*). O

2.5 Partial isometries

The notion of a partial isometry is based on the following equivalent
conditions.

Theorem 2.5.1. Let H be a Hilbert space over C and x € B(H). Then,
the following conditions are equivalent:

(a) x*z is a projection operator.

(b) xx*x = x.

(c) z*zx* = x*.

(d) xz* is a projection operator.

Proof. Assume that x € B(H). For the first implication, assume that z*z is
a projection operator. Notice that if e € B(H) is a projection operator, I(e)
is a projection operator onto im(e) = im(e), as a consequence of Theorem
Hence, the support s(e) = l(e) = e.

Since z*x is a projection operator, z*zr = s(z*x) = r(z). Hence,

xx*r = xr(z) = .

Next, assume that xz*x = x. Taking the adjoint of both sides yields
rrrxt =z,
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Assume that z*xx* = x*. To see that xx* is a projection operator, note first
that by direct computation, xz* is self-adjoint. To see that xz* is
idempotent, observe that

(z2*)? = x(a*wa*) = xa*.

Thus, xz* is a projection operator.

Finally, assume that zx* is a projection operator. By Lemma [1.2.1}

o(zz*) U{0} = o(a*z) U{0}. Since zz* is a projection operator,

o(zz*) C {0, 1}. Since o(zz*) U{0} = o(z*x) U {0} is true, o(xx*) C {0,1}
if and only if o(z*x) C {0,1}. Since x*z is self-adjoint and o(z*z) C {0, 1},
x*x must be a projection operator as required. O

Definition 2.5.1. Let H be a Hilbert space over C and = € B(H). We say
that = is a partial isometry if it satisfies any of the equivalent statements
in Theorem 2.5.11

The projection operator z*x is called the initial projection, whereas the
projection operator xz* is called the final projection. Their respective
images are called the initial subspace and final subspace of z.

The following theorem explains the origin of the name partial isometry.

Theorem 2.5.2. Let H be a Hilbert space over C and x € B(H). The
operator x is a partial isometry if and only if there exists a closed subspace
S C H such that

_flen iges,
€] = {0, g

The subspace S is the initial subspace of x and xS s the final subspace of x.

Proof. Assume that © € B(H). First assume that z is a partial isometry.
Then, x*x is a projection operator and consequently, im(z*z) is a closed
subspace of H. Observe that if £ € H then

lo(2*2())I* = (za"2€, w2 x€)
= (z*x€, v xx"xf)

= (272§, " 2€) = [Ja"z¢|*.

If n € im(z*z)* then
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lanll* = (en,xn) = (n, 2"2n) = 0.
Therefore,

0, if £ € im(a*x)*.

la€] = {ng, if ¢ € im(a72),

For the converse, suppose that there exists a closed subspace S C H such
that

L ifg e s,
=€l = {0, if ¢ e 5L,

To see that x is a partial isometry, we will show that zx*x = x. By
Theorem [2.4.1, H = S @ S*. Assume that n € H and £ € S. Write
n =n, + 1y, where n; € S and 1, € S*. Then,

(n, 2" z(£)) = (m, z*2(§)) + (n2, 2" (£))
= (z(m),z(§)) + (z(m), z(£))
= (z(m), z(&)) (Theorem
= (m, &) (Theorem_
= (

1,€).
Thus, if £ € S then z*x(§) = £. This means that

rx*z(n) = zx*z(m +n2) = v(m) + 0= z(n)

Since n € H was arbitrary, xx*r = = and x*x must be a projection
operator. So, x is a partial isometry. O

How is a partial isometry related to an isometry? Theorem [2.5.2| provides a
convincing answer; if z is a partial isometry with initial subspace H then z
is an isometry.

2.6 The polar decomposition

Let us foray briefly into the world of linear algebra. Let A € M,,.,,(C).
Then, the polar decomposition states that A = UP, where U € GL,(C) is
unitary and P € M,,«,(C) is a positive semi-definite Hermitian matrix. We
will generalise this decomposition to the situation of a bounded linear
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operator x on a complex Hilbert space H, using the concepts discussed in
the previous two sections.

Theorem 2.6.1. Let H be a Hilbert space over C and x € B(H). Then
there exists a unique pair of operators v,a € B(H) such that x = va, a is
positive and v*v = s(a).

Proof. Assume that x € H. We will first prove the existence of a pair of
operators v,a € B(H) which satisfy the conditions outlined above.

First observe that @*x is a positive operator. To see why this is the case, let
a: o(z) = C be defined by a(A\) = A\ = |A\[2. Then, a € Cts(o(z),C) and
by Theorem [2.2.3],

o(z*z) = o(a(z)) = a(o(z)) = {|\" | A € o(2)} € R

Thus, x*x is a positive operator and by Theorem [2.3.1} the square root
1
(x*x)2 is also a positive operator. Define a = (z*x)2. If £ € H then

lag|l* = (a€, a&) = (€, a’¢) = (¢, a"2€) = ||=¢]*.

Define the linear map

voo :  im(a) — im(z)
n=af — €

We will show that vgg is well-defined. Suppose that n = a& = a&’ for
£,¢ € H with £ # ¢'. Then,

[ — 2€'|| = [l2(€ = &N = lla(§ = &) = 0.

Thus, the linear map vy is well-defined. By construction, it is an isometric
map (distance-preserving). Thus, it extends uniquely to an isometry
v @ im(a) — H.

Now consider the map
voé, if & € im(a
o(e) = { & e S (@)
0, if € € im(a)".

This is a partial isometry (see Theorem [2.5.2)) which satisfies va = = by
construction. Furthermore, the support s(a) = l(a) is the projection
operator onto im(a).
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The projection operator v*v projects onto the closed subspace im(v*v). But,

=
—~
4
*
4
~—
[
N
}_
—~
=
=
@
o
=
@D
B
N
e~
=

Thus, v*v = s(a), which proves existence.

In order to show uniqueness, suppose that u,b € B(H) such that x = ub,
be B(H). and u*u = s(b). Then,

r*r = (va)*va = av*va = as(a)a = a’.

But, we also have

r*r = (ub)*ub = bu*ub = bs(b)b = b*.
So, a? = b? and by the uniqueness of the square root, a = b. Since u is a
partial isometry with initial projection s(b) = s(a). The initial subspace is
im(a) and so, u(7r) = 0 for 7 € im(a)*. So, u = vy in im(a)*.

Now if n € H then

u(a(n)) = z(n) = vo(a(n))

because a = b. Thus, u = vy on im(a). Consequently, u = v, proving
uniqueness. ]

In light of the polar decomposition, we make the following definition.

Definition 2.6.1. Let H be a Hilbert space over C and =z € B(H). By
Theorem [2.6.1] # = va, where a € B(H)4 and v € B(H) satisfies

v*v = s(a). The partial isometry v is called the phase of = and the positive
operator a is called the modulus/absolute value of z. The absolute
value of z is sometimes denoted by |z|.

According to [Sol1§], the polar decomposition will play a major role in the
sections that follow. Thus, we will prove a few properties satisfied by the
polar decomposition.
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Theorem 2.6.2. Let H be a Hilbert space over C and x € B(H). Let
x = vl|z| be the polar decomposition of x.

(a) If x is self-adjoint then |x| = f(x), where f(A) = || € Cts(o(x),C).

(b) The phase v is unitary if and only if ker x = {0} and im(x) is dense in
H.

(c) x* = v*(v|x|v*) where s(v|z|v*) = vo*.

(d) If x is self-adjoint then |z| = % + 2~ and v = s(z™) — s(x™), where x™*
and x~ are the positive and negative parts of x respectively.

Proof. Assume that x = v|z| € B(H), where v|z| is the polar
decomposition of z.

(a) Assume that z is self-adjoint. Then,

v'w = (v]z])vlz| = zvvlz] = |zls(|z)|z] =[]
Let f € Ots(o(z),C) be such that f(\) = A\ = |A]2. By Theorem [2.2.1}
f(x) = |z]%. Since |z| is self-adjoint, |z|* is positive. By Theorem [2.3.1] |z|?
has a unique square root. Hence, taking the square root of both sides gives
g(x) = |z|, where g € Cts(o(x),C) is given by g(\) = |Al.

(b) In one direction, assume that the phase v is unitary. Then,
vo* = v*v = I. But, v*v = s(|z|) = I. The projection operator s(|z|)
projects onto im|z| = H. This demonstrates that im|z| is a dense subspace
of H. But, |z| = v*v|z| = v*z. Since |z| is self-adjoint, |z| = z*v. So,
im|z| C im(z*) and

im(z*) = H = (im(2*)*)* = ker(z)*.

Therefore, ker(z) = {0}. Now observe that

m(fa]) = (ker(le])" = H.

So, ker(|z|) = 0. Since z* = |z|v*,

ker(z*) = {{ € H | 2°(§)
={¢e ||zl
C{se Hlz((

0}
vi(€)) = 0}
§) = 0} = ker(|z]) = {0}.

50



So, ker(z*) = {0} and by Theorem [2.4.5]

im(z) = (im(z)Y)* = (ker(z*))* = H.

For the other direction, assume that im(z) = H and that ker(z) = {0}.
Since x = v|z|, im(z) C im(v). So, the closure im(v) = H. Recall that v is
a partial isometry by construction in Theorem [2.6.1] So, v*v and vv* are by
definition projection operators.

Since im(v) = H, we can use Theorem m to deduce that ker(v*) = {0}.
So, ker(vv*) = ker(v*) = {0}. Taking orthogonal complements and using
Theorem [2.4.5| again, we deduce that vv* projects onto the closed subspace

im(vv*) = im(vv*) = (ker(vv*))* = H.

Hence, vv* = I. Now recall from Theorem that the support
s(|z|) = v*v. But, s(|z|) is the projection operator onto the subspace
im(|z|) = ker(|z])*.

If ker(z) = {0} then

ker(lz|) = {¢ € H | [z[(¢) = 0}
C {¢ e H [u(lz|(§)) = 0} = ker(z) = {0}.

So, ker(|z|) = {0} and by taking the orthogonal complement of both sides,
im(|z|) = H. Thus, v*'v = s(|z|) = I.

(c) Using the support s(|z|), we compute directly that

o' = [ = (s([z])]z])v" = v"(v]z]o”).

Since |x| is a positive operator, v|z|v* must also be a positive operator by
Theorem [2.3.5] Since v is a partial isometry, we have from Theorem
that

(vs([z])o") (v]a|v™) = (voTvv™)(v]z]o®) = v]z|o®
because (vv*)? = vv* and vv*v = v. Also,
(vlz[o™) (vs([z[)o*) = (v]z|v") (Vo v0") = v]z|o*.

Therefore, by the uniqueness of the decomposition in Theorem [2.4.1],
s(v|z|v*) = vs(|z|)v*. But, vs(|z|)v* = vv*. Thus, the decomposition
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" = v*(v|z|v")

is the polar decomposition of the adjoint z*.

(d) Assume that x is self-adjoint. By Theorem there exists a unique

pair (z*,27) of positive operators such that z*2~ =0 and x =2t —x~.
Consider the operator s(z™)x~. Since xz~ =0, im(z~) C ker(z™). But,

the projection operator s(z™) projects onto the closed subspace (ker(x*))L.
Since H = ker(z™) & (ker(z*))*, s(xT)z~ = 0. Similarly, since z~2 = 0,

s(x7 )zt =0.

Now, we observe that

(s(xt)—s(z7))(zt+27) = s(aN)at+s(a)a” —s(z )zt —s(z7 )z =27 -2~ = .

Since ™ and x~ are both positive operators, x* + x~ is also a positive
operator by Theorem [2.3.5

Now consider the operator s(z")s(z7). The projection s(x~) projects onto
the subspace (ker(z7))*. But, (ker(z™))* C (im(z™))*. Since

H = (im(z"))* @ im(z1) because im(z*) = (im(x™)4)*, s(z)s(z™) = 0.
Similarly, s(z7)s(z™) = 0.

Since s(xt) — s(z7) is self-adjoint,

(s(2%) = s(z7))"(s(z") = s(27)) = (s(2") = s(27))* = s(a™) + s(z7).

To show: (da) The support s(zt +27) = s(z™) + s(z7).
(da) We have by direct calculation

(2" +27)(s(z") +s(z7)) = (s(zh) +s(z7))(z" +27)=a" + 2.

We also check directly that s(z™) + s(z7) is a projection operator. Thus,
due to the uniqueness of the decomposition in Theorem [2.4.1],
s(xT) +s(x™) =s(xt +27).

Consequently, we have shown that the decomposition
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r=(s(x")—s(z7))(a" +27)

is a polar decomposition of x. By invoking the uniqueness of the polar

decomposition in Theorem [2.6.1, we have v = s(az*) — s(z™) and
x| =T + 2. O

The following properties of the polar decomposition was proved in [Mur90,
Theorem 2.3.4].

Theorem 2.6.3. Let H be a Hilbert space and x € B(H). Let x = ulz| be
the polar decomposition of x. Then,

u'r = |x| and ker u = ker|z| = ker x.

Moreover, u is the unique partial isometry such that x = ul|x| and
keru = ker x.

Proof. Assume that H is a Hilbert space and = € B(H). Let © = u|z| be
the polar decomposition of x. By Theorem [2.6.1]

keru = 1m(|:1:|)L = ker|z| = ker|z|.

By Theorem [2.6.1] the projection u*u = s(|z|). So,

|z| = w*ulz| = u'x
and consequently, ker x C ker|z|. Since x = u|z| then ker|z| C ker z. So,

ker z = ker|z|.

Now suppose that w € B(H) is another partial isometry such that z = w|x|
and ker w = ker x. Then,

ker w = ker x = ker|z| = ker u.
I -
So, w = u on ker|x| = im(|z|) . Since u|x| = w|z| then u = w on im(|z]).
Thus, u = w and w is the unique partial isometry satisfying = u|z| and
ker u = ker z. O

2.7 Monotone convergence of operators in
the strong topology

The purpose of this section is to show how the partial relation on B(H), as
seen in Definition [2.3.2] interacts with the strong topology on B(H). The
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strong (operator) topology is defined by the family of seminorms {p¢}ecn
where pe(z) = ||z€|| for x € B(H).

Definition 2.7.1. Let {z;};c; be a sequence in B(H). We say that the
sequence converges to x € B(H) in the strong topology if and only if for
any £ € H, ©;6 — x§ as © — 00. In other words, the operators x; converge
to x pointwise on H.

The point here is that a uniformly bounded sequence of self-adjoint
operators in B(H) which is monotonically increasing according to the
partial relation in Definition [2.3.2) converges in the strong topology.

Theorem 2.7.1. Let H be a Hilbert space over C and {x;}ic; be a sequence
of self-adjoint operators such that if i > j, then x; > x;. Assume that there
exists C € Rwqg such that if i € I then ||z;|| < C.

Then, there exists a self-adjoint operator x € B(H) such that if i € I then
x> x; and if y € B(H) is an operator satisfying y > x; fori € I then
y > x. Moreover, {x;}ic; converges to x in the strong topology.

Proof. Assume that {z;};c; is a sequence of self-adjoint operators satisfying
the properties above. From Theorem and Lemma [2.3.3] we deduce
that if £ € H then the sequence {(£, x;(§)) }ier in R is bounded and
non-decreasing. Hence, it must converge to its supremum:

lim (&, z;(£)) = sup(&, #;(§)).

1—00 iel

Now observe that by the polarization identity (see Theorem [2.1.2)), the
sequence {(&,z;(n)) }ier in C must also converge. To see why this is the
case, write

(€ o)) = 3 D0 e + ity (€ + )

for 7 € I and then take the limit of both sides as j — oo. Since the RHS
converges in the limit, the LHS must converge as well.

Now let F(&,1) = lim; (&, z;(n)). This is a sesquilinear form which is
bounded because

F(&m)] = | Jim (¢, 2:0n))| = T (€, z:(n))] < Ol ]

For n € H, define the map
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QZS&Z H — C
n = F(n)

This is a continuous/bounded linear functional. By the Riesz
representation theorem, there exists unique 7 € H such that

FEm) = lim (€, z:(n)) = (€,7).

Consequently, there exists a unique operator z € B(H) such that

F(&n) = (& x(n)) = lim (§, 2:(n))

for £,m € H. Notice that F'(£,£) € R since it is the limit of a sequence in R.
Hence, x must be a self-adjoint operator.

To see that x > z; for ¢ € I, we use Theorem [2.3.4] and compute directly
that

J—00 jel
Now assume that y € B(H) satisfies y > z; for i € I. If £ € H then
(S
So, y > z. Finally, to see that {z;} converges to x in the strong topology,
we compute directly that for £ € H,

l2(&) — 2O = ll(z — z:)é]I*

= |l(x — z;)2(x — x,)2€*  (since z > x;)
1 1
< (@ =) 2|l (2 — @:) 2]
1
= ||z — zi||||(z — =) 2¢|)? (since & — x; is self-adjoint)

< (lall + i )| (2 — @) 2€]
< 2CH(9€—~"Q)I€H2

= 20((x — 2:)?€, (v — ;)€
=20, (x —x;)(£)) = 0

as 1 — 00. L]
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Chapter 3

Generalising the spectral
theorem

3.1 Multiplication operators

Recall the spectral theorem for finite dimensional inner product spaces.
Roughly, if m is a self-adjoint operator then

N
i=1

where {E}, ..., Enx} consists of pairwise orthogonal projections and
{A1,..., An} are the real eigenvalues of m. Also, if f is a polynomial
function then

f(m) = Z f)E:.

To see why this is the case, note that if f(A) = A" then since the E; are
pairwise orthogonal,

N N
fm) = NE) =Y N'E;.

i=1 i=1
We extend this to the rest of the polynomial functions by linearity. The
ultimate goal of this chapter is to extend the spectral theorem to the case
of Hilbert spaces. In our formulation of the spectral theorem, we will
replace the linear combination with an appropriate integral. On the way to
this goal, we will extend the class of functions for which functional calculus
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can be defined on.

Since we are working with integrals, measure theory will feature
significantly in this chapter. We will begin with some definitions from
measure theory.

Definition 3.1.1. Let (X, u,.A) be a measure space, consisting of a set X
a o-algebra A C P(X) and a measure p: A — [—00,00]. We say that

(X, u, A) is semifinite if for all measurable sets B C X with u(B) > 0,
there exists a measurable set C' C B such that 0 < u(C) < oo.

In line with [Sollg|, we will denote a measure space by its set and its
measure.

Definition 3.1.2. Let (X, 1) be a measure space. A function f: X — C is
essentially bounded if there exists M € R such that the set

{ze X ||f(2)|>M}=(f| - M)((0,00))

is a null set. The vector space of essentially bounded functions on X is
denoted by L*(X, ).

The vector space L™ (X, 1) has the norm given by the essential supremum:

1l = inf{A € R (|| = M)~ ((0,00)) is null}.

Essentially bounded functions can be thought of as functions which are
bounded almost everywhere — bounded everywhere except for a subset of
X with measure zero. An equivalent formulation of the essential supremum
is

| fllo = 1nf{M € Roo | |f(x)] < M for almost all z € X}. (3.1)

Equation (3.1) is the definition of the essential supremum used in [Sol1§].
Now we will prove another equivalent characterisation of the essential
supremum.

Lemma 3.1.1. Let (X, p) be a measure space and f € L®(X, p). Let

C={Y CX|uX\Y)=0}
denote the set of all conull sets in X. Then,

= inf .
I = fnf, suplf (o)
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Proof. Assume that (X, ) is a measure space and f € L>®(X, ). Assume
that C is the set of all conull sets in X. Define

5 = {supl ()] | ¥ € C)

and

E={MecR.o||f(x)] <M for almost all z € X}.
To show: (a) inf S > inf F.

(b) inf £ > inf S.

(a) Assume that s € S. Then, there exists a conull set D C X such that
s = sup,epl|f(z)| (and p(X\D) =0). So, |f| < s on the set D, which has
measure (D) = pu(X) #0. So, s € E, S C E and consequently,

inf S >infE.

(b) Assume that ¢t € E. Then, there exists a null set 7' C X such that

| f] <t on the conull set X\T'. So, sup,ey\7[f(x)| <t. Thus, we have
demonstrates that if ¢ € E then there exists s € S such that s <¢.
Therefore, inf £ > inf S. O]

The following fact about L*°(X, u) is important in the discussion which
follows:

Theorem 3.1.2. Let (X, p) be a measure space and L*>(X, i) be the
normed vector space of essentially bounded functions with norm given by the
essential supremum in . Then, L>*(X, pn) is a C*-algebra with
inwolution given by f — f, where f(z) = f(x).

An important fact used in the proof of Theorem is that
I £llse = || fllc- Arguing in a similar manner to Theorem |1.1.1], we then

obtain ||ff]lee = |If]|%-

An alternative way of thinking about essentially bounded functions is as
multiplication operators on the Banach space L?(X, i) of square-integrable
complex-valued functions.

Definition 3.1.3. Let (X, 1) be a semifinite measure space and
f € L*(X, ). The multiplication operator by f, denoted by My, is
defined by
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Mp: LA(X,p) — L*(X,p)
b(x) = fla)y(a).

Notice that My is a bounded operator on the Hilbert space L*(X, u). To
see why this is the case, we compute directly that

[Myl| = sup |[M;(¢)]]2

ll¥]l2=1

- IISﬁil (/X|Mf(¢)|2 dﬂ)%

= s ([ If@) du(:v))

S / @2 diu(e))* = 1.

l¥]l2=

Definitions [3.1.3| and [3.1.2] are intimately related by the following theorem.

Theorem 3.1.3. Let (X, u) be a semifinite measure space and
feL>(X,pu). Let B(L3(X,u)) denote the C*-algebra of bounded linear
operators on the Hilbert space L*(X, i) (see Theorem m Then, the map

M: L>*(X,n) — B(L*X,u))
f > My

is an isometric *-isomorphism onto its image.

Proof. Assume that (X, p) is a semifinite measure space and f € L>(X, u).
Assume that M : L=(X, u) — B(L*(X, p)) is the map defined as above. It
is easy to check that if f,g € L>°(X, ) and A € C then
M(f +g) = Mf + Mg, Mfg = MfMg and M)\f = /\Mf

To see that M preserves involutions, observe that if f € L*(X, ) and
wl,wg c L2<X, ;L) then

<Mf(¢1)’¢2> f¢17w2>

= ([ rotaan)’
- ( / T d)

= (U, M5(1hs)).
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So, M(f) = M7 = (M;)* which shows that M preserves involutions. Thus,
M is a *-homomorphism. Directly from the definition, we find that M is
injective and surjective onto its image. It remains to show that M is
isometric.

To show: (a) [[My| < [|floo-

(b) [1fllee < [1M]l-

(a) Assume that ¢ € L*(X,u). If ¢ > || f||s then from equation (3.1)),
|f(z)] < ¢ for almost all z € X. So,

17l = / PRI du < o2
X
So,

IMy|* = sup [Mp(y)]z < sup [[vl; = c*.
l[¥]l2=1 lI9ll2=1
Since ||M/|| < ¢, we can take the infimum over all ¢ satisfying |f(z)| < ¢
almost everywhere on both sides to deduce that || M|| < || f]-

(b) Assume that ¢ < || f||s- Then, the set

Y =(Ifl = 0)7'([0,00)) = {z € X [ |f(2)] > c}

has non-zero measure and is conull. Since the measure space (X, p) is
semifinite, there exists a measurable set A C Y such that 0 < u(A) < co.
The key idea behind this step is that p(Y') could be +oo, but p(A) is
guaranteed to be non-zero and finite. Since A C Y, |f| > ¢ on A.
Define

1
¢ =————=XxA

p(A)
where y, is the characteristic function on A. Then, ¢ € L?(X, ), whose
norm is

1 2 1 3
lolla = ([ |-l du)” = [ ) =1
( x /(A > p(A) ( A )

Now,
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Ifol3 =

2 2 _L 2 2
e ied =5 [ 17 dn = c

since |f| > ¢ on A. Hence, ||M;|| > ¢ and by taking the infimum over over
all ¢ satisfying |f(z)| < ¢ almost everywhere, we obtain ||[My|| > || f||-

So, M : L*>(X, u) — B(L*(X,u)) is an isometric *-isomorphism. O

As with any bounded operator on a Hilbert space, we want to determine
the spectrum of a multiplication operator.

Definition 3.1.4. Let (X, ;1) be a measure space and f: X — C be a
measurable function. The essential range of f is defined by

Vess(f) = {\ € C | If U is an open neighbourhood of A then pu(f~'(U)) > 0}.

Let us highlight a few properties of the essential range before describing the
spectrum of a multiplication operator.

Lemma 3.1.4. Let (X, p) be a measure space and f,g: X — C be
measurable functions. Suppose that f(x) = g(z) for almost all x € X.
Th@’ﬂ, %ss(f) - ‘/ess(g)-

Proof. Assume that (X, ) is a measure space and f,g: X — C are
measurable functions. Assume that f(z) = g(z) for almost all z € X.
Then, there exists a measurable set Y such that f = ¢ on Y and
u(X\Y) =0 (Y is conull).

Note that if A C C is a Borel subset then

p(fHA)NY) +u(fH(A) NYe)

pu(fH(A)) = u(
(f(A4)NY)
(
(

{reY | [f(z) € A})
{zeY |g(x) € A}) = u(g~'(4)).

From Definition [3.1.4) we obtain V.ss(f) = Vess(g). O

!
!
Ju

Lemma 3.1.5. Let (X, pu) be a measure space and f: X — C be a
measurable function. Then, the essential range Voss(f) is a closed subset of

C.
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Proof. Assume that (X, ) is a measure space and f: X — C is a
measurable function.

To show: (a) Vess(f) € Vess(f).

(a) Assume that 7 € Vo (f). If € € Ry then B(7,€) N Vgs(f) # 0, where
B(1,¢€) is the open ball centred at 7 with radius e. If we take

A € B(7,€) N Ves(f) then B(7,€) is an open neighbourhood of A and
consequently, u(f~1(B(r,€))) > 0. Since the open balls form a basis for the
metric topology on C, we find that any open neighbourhood U of 7 satisfies

UNVes(f) # 0 and subsequently, u(f~1(U)) > 0. So, Vees(f) € Vees(f) and
Vess(f) is a closed subset of C. O

It turns out that the essential range completely characterises the spectrum
of a multiplication operator.

Theorem 3.1.6. Let (X, u) be a semifinite measure space and
f € L>®(X,u). Then, the spectrum of the multiplication operator
M; € B(L*(X, p)) is

U(Mf> = ‘/ess(f)

Proof. Assume that (X, ) is a semifinite measure space and f € L>(X, u).
To show: (a) o(My) C Vess(f).
(b) ‘/ess(f) C O—(Mf)'

(a) We will prove the contrapositive of this statement. Assume that
A € C\V.ss(f). Then, there exists r € Ry such that the set

BN ={zeX [N f)] <r}

has measure zero. This means that |\ — f(z)| > r for almost all x € X.
Define the function g : X — C by

1
g(z) = )\——f(x)

Then, |g(z)| < £ for almost all z € X. This means that g € L>(X, y1) and
since g is the inverse of A — f, the operator M, is the inverse of A\ — My in
B(L*(X, ). So, A & o(My).
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(b) Assume that A € Vg(f). If n € Z-( then the set

_ 1 1
7B ) ={r e X []A = f@)] < —}
has positive measure. Since (X, p) is semifinite, there exists a measurable
set X,, with finite and non-zero measure such that X,, C f~*(B(X, 1)). So,
A= fz)| < & for z € X,,.

Now define v, = Then,

— XX
V(Xn)
1
¢n = / d:u:
ol = U,

and for all n € Z~y and x € X,

A= F@)ul@)] < ()]

So, (AT — M)y, |ls < £. Now suppose for the sake of contradiction that
y € B(L*(X,u)) is the inverse of \I — M. If n € Z~q then

L= [[nll2
= [lyA = M)l
< [IYl[I[(AL = M)ebnll

gM—m
n

as n — o0o. This is a contradiction. So, AI — My is not invertible and

A S O'(Mf).

By combining parts (a) and (b), we deduce that o(My) = Vess(f) as
required. O

As a consequence of Theorem [3.1.6], Theorem and the fact that the

multiplication operator M is normal,

[ My[| = [o(My)| = sup{|A| | A € Vess(f)}-
In the next result, we give conditions for which A € C is an eigenvalue of a

multiplication operator.

Lemma 3.1.7. Let (X, ) be a semifinite measure space and f € L®(X, ).
Then, A € C is an eigenvalue of the operator My € B(L*(X, p)) if and only
if there exists a measurable set Y C X such that (YY) > 0 and f(x) = X for
almost all xz € Y.
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Proof. Assume that (X, ) is a semifinite measure space and f € L>(X, u).

To show: (a) If there exists a measurable set Y C X such that pu(Y) >0
and f(z) = X for almost all € Y then A € C is an eigenvalue of M;.

(b) If A € C is an eigenvalue of M then there exists a measurable set
Y C X such that p(Y) > 0 and f(z) = X for almost all z € Y.

(a) Assume that Y C X is a measurable set such that (YY) > 0 and
f(z) = A for almost all x € Y. Since (X, p1) is a semifinite measure space,
there exists a measurable set Y’ such that Y/ CY and 0 < p(Y”') < 0.
Define

1
Y= Xy € L*(X, ).
p(Y’)
Similarly to Theorem [3.1.6] ||| = 1 and
Myt = ——— My () = ——— [y = A xys = At}
v = F\Xyr) = Xy’ = Xy: =
u(Y’) p(Y”) p(Y”)

because f(x) = A for almost all z € Y.

(b) Now assume that there exists a non-zero ¢ € L?(X, u) such that
M) = M. Then, fip = A almost everywhere. Define

Y ={xeX|[¢)#0}.

Since f1) = A\ almost everywhere, f(z) = A for almost all x € Y. Finally,
notice that since ¢ # 0, u(Y) > 0. O

In a similar vein to Theorem [2.2.5] if the multiplication operator Mj is
self-adjoint and g € Cts(o(My), C) then the map g — M. s satisfies the
conditions of Theorem [2.2.1] By uniqueness of the continuous functional
calculus, we must have g(My) = Myos.

The next theorem gives us yet another decomposition of a bounded
self-adjoint operator on a Hilbert space H. Its proof is very involved. In it,
we use the following characterisation of a unitary operator.

Theorem 3.1.8. Let H be a Hilbert space over C and uw € B(H). Then, u
is a unitary operator if and only if u is a surjective isometry.
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Proof. Assume that v € B(H).
To show: (a) If u is unitary then u is a surjective isometry.
(b) If w is a surjective isometry then w is a unitary operator.

(a) Assume that u € B(H) is unitary. Then, uvu* = u*u = I, where
I € B(H) is the identity operator on H. To see that u is surjective, assume
that h € H. Then, h = u(u*h). Hence, u is surjective. Observe that

lu(r)I* = (u(h), u(h)) = (h,w"u(h)) = (h, h) = ||h|
So, u is an isometry.
(b) Assume that u is a surjective isometry. If h € H then ||u(h)[]* = ||h|?
and by using the inner product on H,
(u(h),u(h)) = (b, u"u(h)) = (R, h).

So, u*u = I. To see that uu* = I, we first use the fact that u is surjective
to deduce the existence of g € B(H) such that u(g) = h. Since u is an
isometry, g = u*u(g) = v*(h) and uu*(h) = u(g) = h. Since h € H was
arbitrary, uu* = I. Hence, u is unitary. O

Theorem 3.1.9. Let H be a Hilbert space over C and x € B(H) be
self-adjoint. There exists a semifinite measure space (X, u), an essentially
bounded measurable real-valued function F € L*(X, u) and a unitary
operator u : L*(X,u) — H such that

T =uMpru®.

Proof. Assume that © € B(H). Define

A={f(x)]| f € Cts(o(x),C)} CC.
If £ € H then we also define

AL ={f(x)¢ | f € Cts(o(x),C)} C H.
Next, define
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We define a partial order on R by insisting that {& }icr < {§;};es if and
only if A&, C AE; as subspaces of H for all € I and j € J.

Since R is a partially ordered set, we can apply Zorn’s lemma to obtain a
maximal element {&;},c; of R.

To show: (a) The subspace span({J,c; A;) is dense in H.

(a) Suppose for the sake of contradiction that span(lJ;c; AE;) is not dense
in H. Then, there exists a non-zero vector £ € H such that

¢ € span(|J icd Afj)L. Without loss of generality, we can assume that £ is a
unit vector. If f,g € Cts(o(z),C) and j € J then

(f(2)€, 9(2)&) = (& f(2)"9(2)&) = (&, (f9)(2)¢;) = 0.

This calculation shows that the family {&;},c; U {{} is an element of R
which contains {¢;},c;. However, this contradicts the fact that {£;};e, is

the maximal element of R. So, span(|J e Aéj)L = 0 and consequently,
span(J;c; AS;) is a dense subspace of H.

Next, we will start building our semifinite measure space. Let
X = J x o(x), where J has the discrete topology. Let A be the family of
subsets Y C X such that for each j € J,

Y, = {A€olx) | (j,N) € Y}

is a Borel subset of o(z).

To show: (b) The set A is a o-algebra.

(b) To show: (ba) If A € A then A° € A.

(bb) If A; € A for i € Z>g then ;e Ai € A.
(ba) Assume that A € A. Then, for each j € J,

Aj={reoa(x)| (G, € A}

is a Borel subset of o(z). So, the complement

A= {Neo(x) | (j,)) € A%}

66



must be a Borel subset of o(x) for every j € J. Therefore, A° € A.

(bb) Assume that A; € A for ¢ € Z~y. Then, for each j € J

(A); ={rea(@) ]| (4,A) € Ai}
is a Borel subset of o(z). Since the Borel o-algebra on o(x) is closed under
countable unions, we deduce that if j € J then the set

U (A, ={reox e J ar=Cl 4,

1€Z>0 1€Z>0 1€Z>0

is a Borel subset of o(z). Thus, | A; € A by the definition of A.

1€ZL>0

(b) By combining parts (ba) and (bb), we deduce that A is a o-algebra on
X =J xo(x).

Recall that the spectrum o(z) is a non-empty compact subset of C. Hence,
with the subspace topology from C, it must be a LCH space. Since we have
put the discrete topology on J, it must also be a LCH space. This is
because if j € J then j is contained in the open set {j}. But, {j} is also
compact in J. Thus, j € {j} € {j} and J must be a LCH space.
Subsequently, the product J x o(z) is a LCH space.

For j € J, define the map
¢;: Cts(o(x),C) — C
f = (f(2)&, &)
Observe that ¢; is a positive linear functional. To see why this is the case,

suppose that f € Cts(o(x),C) such that f(\) € Ry for all A € o(x). By
Theorem [2.2.3]

o(f(x)) = flo(x)) = {f(N) | A € o(2)} S Rxo.
So, f(x) € B(H)4 is a positive operator. By Theorem [2.3.4]
gb](f) (f(2)&;,&) > 0. So, ¢; must be a positive linear functional.
By the Riesz-Markov-Kakutani theorem (sometimes called the Riesz

representation theorem), there exists a unique positive Radon measure 1;
on o(x) such that

(f(@)&, &) = /( )f dp;.
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Next, we define the measure p : X — [0, 0o by

p(Y) =" pi(Y5).
jed
To see that this is a semifinite measure, notice that if j € J then p; is a

finite measure. The function h : o(x) — C which maps A to 1 is a
continuous function from o(z) to C. Hence,

(&5, h(2)€;) = / O () = / ) = o) <

Consequently, u is a semifinite measure and (X, p) is a semifinite measure
space.

It remains to define the operator u € B(L*(X, ), H). We will take
advantage of the fact that the space C.(X) of complex-valued continuous
functions on X with compact support is dense in L?*(X, u). Define the
operator

u: CoX) — H
f = Zjle(j7x)£j

Since f is compactly supported, the sum is finite. If f € C.(X) then we
compute directly that

laf 1> = 1) £, 2)&11°

e

= <; FG, )&, ;f@,w)@

= iu*uy )&, (i, 2)&)

= wi?f(j, )&, f(7.2)&)  ({&1}jes is a family of orthogonal vectors)
jeJ

= ;@, £ )" f G 2)8)

= 12J<sj, PG, 2)8)

— 2',)\dj)\: 2d: 3
> [ MGN dus) = [V do= 151
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Since C.(X) is dense in L?(X, i), the above calculation shows that u
extends to an isometry from L?(X, ) to H. Furthermore, the range of u
contains the set | J icd AE;, which is dense in H. Hence, u is surjective,
preserves inner products and is thus, unitary by Theorem [3.1.8|

Now define F' : X — C by F(j, A\) = . This is a bounded and continuous
function (and subsequently, a measurable function). It is also real-valued
because z is self-adjoint and o(z) C R. Observe that if f € C.(X) then

w(Mpf) = u(Ff)
= (Ff)(G,2)¢

jeJ
=D _2f(,2)¢ =x)  f(j,2)¢ = vuf.
jeJ JjedJ

Since x and u are bounded/continuous operator and f is a continuous
function, we have uMpty = zut) for ¢ € L*(X, u). Thus, uMpu* = x as
required. O

In light of Theorem [3.1.9, we make the following definition.

Definition 3.1.5. Let H; and Hy be Hilbert spaces over C, x € B(H;) and
y € B(H,). We say that x and y are unitarily equivalent if there exists a
unitary operator u € B(Hs, Hy) such that x = uyu*.

Theorem tells us that any self-adjoint operator x € B(H) is unitarily
equivalent to a multiplication operator defined on an appropriate semifinite
measure space. The main draw of unitarily equivalent operators is
demonstrated by the following theorem:

Theorem 3.1.10. Let Hy and Hy be Hilbert spaces over C, x € B(H;) and
y € B(H,). Suppose that x and y are unitarily equivalent. Then,
o(z) =o(y) and if f € Cts(o(x),C) then f(z) = uf(y)u*.

Proof. Assume that © € B(H;) and y € B(H;) are unitarily equivalent

operators. Then, there exists u € B(Hy, Hy) such that x = uyu*. Observe
that if A € C then

M —x = duu” — uyu™ = u(A —y)u”.
So, Al — z is invertible if and only if AI — y is invertible, revealing that
o(z) = a(y).
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Now assume that f € Cts(o(x),C). Consider the map

¢: Cts(o(x),C) =Cts(o(y),C) — B(H)
f = uf(y)u”
Note that ¢ is an isometry because by Theorem [3.1.8]

I£1% = 17 )P
= sup [/

= sup (f(y)(2), f(¥)(2))

l[=l=1

= sup ((f(y)u")(2), (f(y)u)(2)) (since u* is unitary and hence, surjective)
l[zll=1

= ”S;ng((Uf ()u")(2), (uf(y)u")(2)) (since u is unitary)

= [Juf (y)u"||*.

Furthermore, if f(A) = Y"1, a;\" is a polynomial function on o(z) then

uf(y)u* = Zai(uyiu*) = Zaiwi = f(z)
i=0 i=0

By the uniqueness of the continuous functional calculus (see Theorem

2.2.1), ¢ must be the map f +— f(z). Thus, f(z) = uf(y)u*. O

3.2 Borel functional calculus

With Theorem [3.1.9] we will extend the continuous functional calculus (see
Theorem to bounded Borel functions on the spectrum of a bounded
operator on a Hilbert space. Recall the definition of a Borel (measurable)
function.

Definition 3.2.1. Let X and Y be topological spaces and f: X — Y be a
function. Let ox and oy be the o-algebras generated by the open sets of X
and the open sets of Y respectively. We say that f is a Borel function if

for V € oy, the preimage f~1(V) € oy.

In the proof of the Borel functional calculus, we will use Dynkin’s theorem,
a well-known result in measure theory, which we will now set up and prove,
following the exposition in [Soll8| Section A.2].
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Definition 3.2.2. Let X be a set and F C P(X). We say that F is a
m-system if F is closed under finite intersections.

Definition 3.2.3. Let X be a set and G C P(X). We say that G is a
A-system if X € G, G is closed under complements and if {A, },ez., is a
sequence of pairwise disjoint elements in G then Ufle A, €4G.

Before we prove Dynkin’s theorem, we will connect 7-systems and
A-systems to o-algebras.

Lemma 3.2.1. Let X be a set and F C P(X) be a A-system. Then, F is a
o-algebra if and only if F is a mw-system.

Proof. Assume that X is a set and F C P(X) is a A-system.
To show: (a) If F is a o-algebra then F is a mw-system.
(b) If F is a m-system then F is a o-algebra.

(a) Assume that F is a o-algebra. Then, F is closed under countable
intersections and hence, finite intersections. So, F is a m-system.

(b) Assume that F is a m-system so that it is closed under finite
intersections. Since F is also a A-system, it is closed under countable
pairwise disjoint unions. Assume that {A,},ez., is a sequence of sets in F.
If n € Z~( then the set

n—1 n—1
Ap=2NJA)=Aa.n([A)eF
=1 i=1

Since F is closed under countable pairwise disjoint unions,

GA%' = GAZ- e F.
=1 =1

Hence, F is closed under countable unions and is thus, a o-algebra. O]
Now we will state and prove Dynkin’s theorem.

Theorem 3.2.2 (Dynkin). Let X be a set, P C P(X) be a w-system and
L CP(X) be a N\-system, with P C L. Then, the o-algebra generated by P
s contained in L.
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Proof. Assume that X is a set, P is a m-system and L is a A-system.
Assume that P C L.

Let A(P) be the smallest A-system containing P and o(P) the smallest
o-algebra containing P. Since L is a A-system containing P, A(P) C L by
definition.

To show: (a) A(P) = o(P).

(a) Since every c-algebra is a A-system, A(P) C o(P). It remains to show

that o(P) C A(P).
To show: (aa) A(P) is a m-system.
(aa) Assume that A € A(P) and define

La={Y CX|YNAeANP)}

We will show that LA is a A-system. First, we have X € LA because
XNA=Ae\P).

Assume that A € L so that ANA € A(P). We compute directly that
ANA=(AUA)NA

=(ANA)NA
=((ANA)UA%) € A\(P)

because A(P) is closed under disjoint unions and complements.

Let {A;}icz., be a sequence of pairwise disjoint elements in L. Then,

(G A)NA = G(Ai NA) € A(P)

i=1 i=1
since A(P) is closed under countable disjoint unions and A; N A is disjoint
from A; N A whenever i # j.
Thus, LA is a A-system.

To show: (ab) If I' € P then P C Lr.
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(ab) Assume that I' € P. If A € P then ANT € P C A(P) since P is
closed under finite intersections. Hence, P C Lr.

(aa) Since Lr is a A-system containing P, A(P) C Lr, which tells us that if
® € A\(P) and I" € P then ® N T" € A(P). Therefore, P C L.

Now since Lg is a A-system containing P, A(P) C L¢. Since this holds for
any ® € A\(P), we deduce that A(P) is closed under finite intersections and
is thus, a 7-system.

Now since A(P) is both a A-system and a 7-system, it must be a o-algebra
which contains P by Lemma [3.2.1l So, o(P) C A(P), thereby showing that
a(P) = A(P). Since the A-system L contains P,

A key ingredient we will need in the proof of Borel functional calculus is
concept of a contraction mapping.

Definition 3.2.4. Let (V4,||—||1) and (V%, |[—||2 be normed vector spaces.
We say that ® : V} — V5 is a contraction if for all v; € V7,

[@(v1)l2 < [onlfs.

Lemma 3.2.3. Let H be a Hilbert space over C and B be a C*-algebra with
unit 1. Let & : B — B(H) be a unital *~homomorphism (unital means
that ®(1g) = I, where I € B(H) is the identity operator). Then, ® is a
contraction.

Proof. Assume that H is a Hilbert space over C and B is a C*-algebra with
unit 15. Assume that ® : B — B(H) is a unital *-homomorphism.

Let b € B and A € C such that A1 — b is invertible in B. By applying &,
we deduce that A1 — ®(b) is an invertible operator in B(H). By replacing
b with b*b, we find that

o(®(b*b)) C{A € C| Al — b"b is not invertible in B}

We need to prove an intermediate result before continuing. Let

S =sup{|\| | A1z — b"b is not invertible in B}
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To show: (a) S < [|b*b]].
(a) Suppose for the sake of contradiction that there exists

A€ {|A\| | A\lg — b"b is not invertible in B}
such that |A| > ||b*b||. Consider the following series in B:

i AT (brD)™
n=0

It converges because

s L
— Al Al
which holds because % < 1 for n € Z~o. Furthermore, a direct

computation reveals that

(Mp—b")"" =D A" (D)™
n=0

But this contradicts the assumption that A1z — b*b is not invertible. So,
|A] < ||b*b]| and by taking the supremum, we deduce that S < ||b*b|].

Now we argue that for b € B,
12(B)[1* = [|(b) @ (b)]|
— | @(b*b)]l = |o(@(55))|  (Theorem E1.0)
< 8 < [b'b]) = o]

Think of the inequality |o(®(b*b))| < S as taking the spectral radii of both
sides of the inclusion

a(®(b*b)) C{A € C| Al — b"b is not invertible in B}
Hence, ||®(b)|| < ||b]| and so, ® is a contraction. O

The main point here is that if X is a compact Hausdorff space then the
space of bounded Borel functions Bor(X,C) is a C*-algebra in the same
way as Cts(X, C), referring back to Example [1.1.1| Here is the statement of
Borel functional calculus.
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Theorem 3.2.4 (Borel functional calculus). Let H be a Hilbert space over
C and x € B(H) be a self-adjoint operator. Let Bor(o(x),C) denote the
C*-algebra of bounded Borel functions on o(x) (recall that o(x) is a
compact subset of C). Then, there exists a unique unital *-homomorphism

Ap: Bor(o(z),C) — B(H)
f = f(z)
such that

1. If for all X € o(x), f(N) = X then f(z) = x.

2. If {futnez-, is a uniformly bounded sequence in Bor(o(x),C)
converging pointwise to f : o(x) — C then f,(x) = f(x) asn — oo in
the strong topology.

3. The restriction A|cis(o(z),c) = A, where A is the isomorphism in

Theorem [2.21].

Proof. Assume that H is a Hilbert space over C and x € B(H) is a
self-adjoint operator. By Theorem [3.1.9] there exists a semifinite measure
space (X, p), F € L=(X, p) and a unitary operator u : L*(X, u) — H such
that x = uMpu*. Notice that F' is a Borel/measurable function on the
measure space (X, u).

By construction in Theorem [3.1.9] the range of F is o(z). If
f € Bor(o(z),C) then the composite f o F' is a bounded Borel /measurable
function (with respect to the Borel og-algebra on X). It is bounded because

If o Il < [IfINIF]
< IfIF sup [F(5,A)]

(JNeX
= [If[l sup [A]
Aeo(z)
= [[flllo@@)] < I fllllz] < oo
Thus, we define
f(x) = uMopu™.
We also define Ag by

Ap: Bor(o(x),C) — B(H)
f = f(x) = uMppu*
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It is straightforward to verify that Ap is a unital *~homomorphism. If
f(A) =Aforall A € o(z) and £ € H then

f(@)(€) = uMpopu™(§) = u((f o F)u"(§)) = u(Fu™(§)) = uMpu*(§)
So, f(z) = =.

Assume that {f, }nez., is a uniformly bounded sequence in Bor(o(z), C)
which converges pointwise to f. Again, let £ € H and set
b= u(€) € LA(X, ). Then,

Ifa(2)§ = f(@)E1* = llubis, - propu’e]?
= [[uMs,—por|*
= || M, —port||*  (since u is isometric)

- /X Fu(F(w)) — F(F @) P(w)]? du(w)
— 0

In the last step, we applied the dominated convergence theorem to the
sequence of bounded Borel functions { f, }nez.,- So, {fn(z)} must converge
to f(x) in the strong topology.

Note that Ap is also a contraction because

1f @)1 = [lubyosu”]
= [ Myor|
=||foF|lx (Theorem 3.1.3)
= intsupl(f e F)(y)l

<] = .
< géfcztelg\f(y)l [/ lloo

Here, C is the set of conull sets in X and we used Lemma [3.1.1] Since Ap is
a contractive unital *~homomorphism which maps the identity function to x
and Cts(o(z),C) C Bor(o(z),C), we can use the uniqueness of the
continuous functional calculus (see Theorem to deduce that
ABlotso()c) = A O

The uniqueness of the Borel functional calculus is established in a separate
proof.
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Theorem 3.2.5 (Uniqueness of Borel functional calculus). The unital
*-homomorphism Ag : Bor(o(x),C) — B(H) is unique.

Proof. Suppose that ® : Bor(o(x),C) — B(H) is another unital
*_homomorphism which satisfies the conditions of Theorem Then, by
Lemma [3.2.3] ® must be contractive. By exploiting the uniqueness of the
continuous functional calculus, we find that ®|cio(2),c) = A, where A is the
isomorphism in Theorem [2.2.1]

Let A C o(x) be an open subset of o(z) and xa be its characteristic
function. Choose a bounded sequence of continuous functions {f, }nez,
such that f,, converges pointwise to xa. Recall that ya is a simple function
and hence, a Borel function from o(z) to C. If £ € H then

Xa(@)E = lim ()€ = lim B(f,)€ = B(xa)é

since f,(z) = ®(f,) converges to ya(x) = ®(xa) in the strong topology.
Let B,(;) denote the Borel o-algebra on o(z). Now define

L={A€ Ba(x) | ®(xa) = xal2)}

Notice that from the previous calculation, if A is an open set contained in
o(z) then A € L. The key observation here is that £ is a A-system.

To show: (a) L is a A-system.

(a) Since o(z) is an open subset of o(xz) with respect to the subspace
topology on o(z), we must have o(z) € L.

Now assume that I' € £. Then,

O (xre) = (D(Xo(:p) —Xr) = (I)(ido(w)> —®(xr) =1 — xr(z) = xre().

So, I'“ € L.

Finally assume that {A,} is a sequence of pairwise disjoint element of L.
Define D = J;2; A,,. Then,

oo N
XD =) Xa, = ]\}i_I}{l)oZXAn-
n=1 n=1

Taking the sequence {32, xa, }nez., of functions in Bor(a(z), C), we
have for £ € H
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N N
P(xp)¢ = lim. Z D(xa, )¢ = lim Z Xa. ()€ = Xp(2)E.
So, ®(xp) = xp(z) and D € L. Hence, L is a A-system.

Since the family of all open subsets of o(x) is a w-system, we can apply
Dynkin’s theorem (see Theorem [3.2.2) to deduce that B,) C £. Therefore,
if I' € By(y) then ®(xr) = xr(z).

Recall that the simple functions from o(x) to C are finite C-linear
combinations of characteristic functions on Borel subsets of o(z). Since
Bsz) € L and @ is linear,

d(s) = s(x)
where s : o(x) — C is a simple function. The simple functions form a dense
subset of Bor(o(x),C). Let G € Bor(o(z),C). Then, there exists a

bounded sequence of simple functions {¢, }nez., such that ¢,, converges to
G pointwise. Therefore, if £ € H then

B(G)E = @(lim 6,
= lim ®(6,)¢

n—oo

= Tim 6,(2)6 = G(a) = Ap(G)E.
So, ® = A as required. O

To top off this section, we will observe that the Borel functional calculus
satisfies similar results to the continuous functional calculus. One of the
most useful aspects of the continuous functional calculus is the spectral
mapping theorem (see Theorem . In order to prove a similar
statement for Borel functional calculus, we require the following lemma:

Lemma 3.2.6. Let H be a Hilbert space over C and x € B(H) be a
self-adjoint operator. Let f € Bor(o(x),C). Then, o(f(x)) = Vess(f).

Proof. Assume that H is a Hilbert space over C and x € B(H) be a
self-adjoint operator. Assume that f € Bor(o(z),C).

By Theorem and Theorem [3.1.9] there exists a semifinite measure
space (X, p), FF € L=(X, p) and a unitary operator u : L*(X, u) — H such
that
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r = uMpu* and f(x) = uMpopu®.
By Theorem [3.1.10, o(f(z)) = o(Mfor) which by Theorem is

Vess(foF) = {\ € C | If U is an open neighbourhood of A then pu((foF) ' (U)) > 0}.

But, this is equal to

Voss(f) = {\ € C | If U is an open neighbourhood of A then m(f~*(U)) > 0}

where m denotes the Lebesgue measure on o(x). This is because the
preimage of measurable sets under the Borel functions f and F' must be
measurable themselves. Hence, o(f(x)) = Vess(f)- O

Here is the analogue of the spectral mapping theorem (see Theorem [2.2.3))
for the Borel functional calculus.

Theorem 3.2.7. Let H be a Hilbert space over C and x € B(H) be a
self-adjoint operator. Let f € Bor(o(x),C). Then,

o(f(x)) € flo(z)).

Proof. Assume that H is a Hilbert space over C and x € B(H) be a
self-adjoint operator. Assume that f € Bor(o(x),C).

To show: (a) o(f(x)) C f(o(x)).

(a) We will prove the contrapositive of this statement. Assume that
A & f(o(x)). Then, there exists € € Ry such that the ball

Bhe)={zeC||z—\ <el.

has empty intersection with f(o(x)). This means that the
f(o(z)) € B(\, €)°. Taking the preimage with respect to f, we deduce that
the spectrum o(z) is contained in

FHBN ) ={yea(@) [If(v) — Al > e}
Since o(z) C f~YB(A, €)°), the set

o(@)\f (B ) ={yeoa@) ||f(v) = A <€}
must be a null set because it is empty. This demonstrates that

A& Vioo(f) = o(f(x)) by Lemma [3.2.6, Therefore, o(f(z)) C f(o(z)). O
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We will also prove an analogue of Theorem for Borel functional
calculus.

Theorem 3.2.8. Let H be a Hilbert space over C and x € B(H) be
self-adjoint. If g € Bor(o(x),C) is real-valued, then the operator g(x) is

self-adjoint and if f € Bor(g(o(x)),C), then f(g(z)) = (f o g)(z).

Proof. Assume that H is a Hilbert space over C and x € B(H) is a
self-adjoint operator. Assume that g € Bor(o(z),C). Then, we repeat the
argument in Theorem to deduce that the operator g(z) is self-adjoint.

Assume that f € Bor(g(o(z)),C) and define

Qp: Bor(g(c(x)),C) —  B(H)
f = (fog)().
We must show that (g satisfies the properties of Theorem [3.2.4]

Firstly, the restriction of Qg to Cts(o(x),C) is the map € in Theorem
which we know is the *-isomorphism defining continuous functional
calculus by Theorem [2.2.5| Hence, g restricts to the continuous functional
calculus on continuous functions.

Assume that h € Bor(g(o(z)),C) such that h(A) = X for A € g(o(z)).
Then, (ho g)(z) = g(x) by definition of Qp.

Now assume that {f,,}nez., is a uniformly bounded sequence in
Bor(g(o(x)),C), which converges pointwise to f. We will show that

(fnog)(z) = (f og)(x) in the strong topology.
By Theorem [3.1.9, there exists a semifinite measure space (X, i),

F € L*>(X, ) and a unitary operator u : L*(X, u) — H such that
r = uMpu* so that by Theorem [3.2.4]

(fnog)(x) =uM,oqoru”  and  (fog)(z) = uM(fogporu”
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If ¢ € H and ¢ = u*(€§) € L*(X, p) then

1(fn 0 9)(@)E = (f 0 9)(@)EIP = [[uMf,0900ru™E — UM fogroru*E|)?
= [[uMj,o(goryu*€ — uMjo(goryu €|
= [[luM(s,~ pro(goryu*é]l”
= [[uM(s,~ pro(gor) V||
= | Mg - protgom ¥ II*

_ /X | Fal(g 0 F)(w)) = f((g 0 F)(w))*v(w)[* du(w)
— 0

as n — oo because {f,} converges pointwise to f. Therefore, f,(z) = f(x)
in the strong topology.

Since ()p satisfies all three properties in Theorem [3.2.4] we can invoke the
uniqueness of the Borel functional calculus to deduce that Qp = ®p, where
®p is the unital *~homomorphism

&g : Bor(g(o(z)),C) — B(H)
f = flg(z)).
Thus, we conclude that (f o g)(z) = f(g(x)) as required. O

3.3 Spectral measures

In order to generalise the spectral theorem to the scenario of Hilbert spaces,
we want to replace the finite linear combinations which appear in the
original spectral theorem for finite dimensional vector spaces with an
appropriate integer. This leads to the concept of a spectral measure.

Definition 3.3.1. Let X be a set and A be a g-algebra on X. Let H be a
Hilbert space over C and Proj(B(H)) denote the set of all projection

operators in B(H). A spectral measure on X is a map
E : A— Proj(B(H)) such that

1. E(0) =0 and F(X) = I, where [ is the identity operator on H.

2. If Al, AQ € A then E(Al N Ag) = E(Al)E(AQ)

3. If {A;}iez., is a family of pairwise disjoint sets in A then
E(UnZi An) = 2220 E(A).
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Here is one particular consequence of the first two properties of a spectral
measure in Definition [3.3.1] Suppose that A, Ay € A are disjoint. Then,

E(A)E(As) = E(A N Ay) = E(0) = 0.

So, the projection operators E(A;) and E(As) are orthogonal to each
other. More generally, the projection operators associated to disjoint sets in
A must be orthogonal to each other. Because of this, the sum Y >, E(A;)
in the third property is still a projection operator.

We also note that the sum > .2 E(A;) is the limit of the finite sums, taken
with respect to the strong topology (recall Definition [2.7.1)). In other words,
if £ € H then

1im (3" BA))(€) = (3 EA)E©):

Example 3.3.1. Let x € B(H) be a self-adjoint operator. Let X = o(x)
and A be the Borel o-algebra on o(z). The map

E,: A — Proj(B(H))
A — xXal(z).

is a spectral measure, where ya € Bor(o(z),C) denotes the characteristic
function on the set A.

How do we know that the operator xa(z) is a projection operator? From
Theorem [3.2.7],

o(xa()) € xalo(z)) = {0,1} = {0, 1}.
By Theorem [3.2.8] since xa is real-valued, xa(x) is a self-adjoint operator.
So, by Theorem [2.4.3| we deduce that ya(x) is a projection operator on H.

By considering the spectrums o(xg(x)) C {0} and o(xx(z)) C {1},
E.(0) = xp(z) =0 and E.(X) = xx(z) = 1.

Next, assume that Ay, Ay € A. By Theorem [3.2.4] we compute directly that

Ex(Al N A2) = XAiNnA, (il?)
= XA, (XAz (l‘))
= (Xa, ° Xa2)(2)
= E.(A1)E.(Ag).
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Finally, assume that {A;};ez., is a family of pairwise disjoint sets in A.
Then,

E.(|J A = xuz, an (@)
n=1

= ka0 = Y E(A)

where the second last equality follows from the fact that the A; N A; = ()
whenever i # j. Therefore, E, does indeed define a spectral measure on
X =o(z).

Let E be a spectral measure on X, which has o-algebra A. If £ € H then
the map

(E|ES): A — R
A = (E(A)E)

is a finite positive measure on X. To see that (£|E¢) is a finite positive
measure, note that since E(A) is a projection operator, o(E(A)) C {0,1}.
So, E(A) is a positive operator and by Theorem [2.3.4]

(E(A)E€) = (€ B(A)E) > 0 for all € € H.

To see that (¢|E¢) defines a measure, observe that

(€| EE)(O) = (EM)E, &) = 0

because E(() is the zero operator by the definition of spectral measure.
Furthermore, if {A4;}icz., is a collection of pairwise disjoint sets in A then

<§|E§><U A;) = <E<U AJ)E,€)
= <Z E(A)E,€)

(E(A:)¢,€)

I
™

.
Il
—

(€1EE)(A:).

-
I

I
gk



Hence, (£|E€) is a finite positive measure on X.

The integral of a function f with respect to the measure ({|E¢) is written as

Lfﬂﬂ&) or /f A(¢|Ew)).

Recall the notion of the total variation of a measure.

Definition 3.3.2. Let (X, ) be a measure space with o-algebra A. The
total variation of the measure p is the quantity

N
sup (A
n=1

where the supremum is taken over all finite partitions {Aq,..., Ay} of X
into pairwise disjoint measurable sets.

By using the polarization formula (see Theorem [2.1.1]), we define for
§ne

E|En): A — C
A = (E(A)n,E)

By the polarization formula, (¢|En) is a complex-valued measure. We also
claim that ({|En) has finite total variation. Suppose that {Aq,...,A,} is a

partition of X into pairwise disjoint measurable sets. For i € {1,2,...,n},
define
E Az )
\ - BB .
[(E(A)n, §)]

Then, |\;| =1 and

ZI(fIEn |—Z| )1, €) I—E:A = (t(n), )

where ¢t = > " | AE(A;). Now we compute the norm of ¢ as
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I£]* = il

= | Z)\E Z

= IIZ Z NN E(A)E(A)]|

- HZWIQE(A
—HZE )l = |EX)| = |1I]| = 1.

Hence, by the Cauchy-Schwarz inequality,

ZI(SIEW(AZ-)I (t(n), &) < lIElIlHinll = Nl nll-

This demonstrates that the measure (£|En) has finite total variation. Now,
if f is a bounded measurable/Borel function on X then the quantity

F(e,n) = /f a(g B (w)n)

is a sesquilinear form with respect to the variables £ and 7. It is also
bounded by ||€|[||7]/|| f|lc- By the Riesz representation theorem, we can
define a bounded operator x; € B(H) such that

(7m,€) = /f 4(E| B (w)n).

The main theorem of this section concerns the operator z;.

Theorem 3.3.1. Let H be a Hilbert space over C and (X, u) be a measure
space. Define the map

Y : Bor(X,C) — B(H)
f — Ty

Then, ¢ is a *~homomorphism from Bor(X,C) to B(H). If {fu}nez-, is a
uniformly bounded sequence in Bor(X,C) converging pointwise to f then
Xy, — Tf asn — oo in the strong topology.
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Proof. Assume that H is a Hilbert space over C and (X, ) be a measure
space. Assume that 1 is the map defined as above. We claim that ¢ is a
well-defined map into B(H).

To show: (a) If f € Bor(X,C) then ||z¢| < || f]co-

(a) Assume that f € Bor(X,C). By the definition of 1) and the Riesz

representation theorem, we have

[zl = sup ||z ,&]l

lEl=1

= sup sup |(zs€, )] (Riesz representation theorem)
lInll=1 [l]=1

= sup sup | [ f(w) d(n|E(w)E)]
Inll=1llgll=1

< sup sup sup|f(w II/ (nlE(w
Inll=1 lgll=1 weX

< sup sup (sup|f(w))[[ENlnll = [I.f]lo-
Imll=1 [l =1 weX

Since || f|l < 00, we deduce that z; € B(H) and the map 1 is well-defined.
Next, we will show that 1 is a *~homomorphism.

To show: (b) If f,¢g € Bor(X,C) then xfx, = .
(¢) If f € Bor(X,C) then x5 = x7.

(b) Since the set of simple functions are dense in Bor(X,C), we can assume
that f and g are simple functions on X. Write

N M
f=) anxa, and  g=> Buxa.
n=1 m=1

where o, B, € C and A, A,,, € A where A is the o-algebra of (X, u). If
¢,m € H then
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—Zo‘n/ d{€|E(w ZO‘" €)
- ;an

So, we compute directly that

M
Tfry = Zan n Z BmE(Am))
m=1
= Z B E(An N Ay) = 24y,

m,n

Since the simple functions are dense in Bor(X,C), we deduce that
ry, = xyry if f,g € Bor(X,C).

(c) By similar reasoning to part (b), we can assume that f = Z 1 QXA -
We compute directly that

N
n=1

N

Since the simple functions are dense in Bor(X, C), this result must also
hold for all f € Bor(X,C).
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The definition of x as an inner product also reveals that 1 respects
addition and scalar multiplication. Hence, v is a *-homomorphism.

Now assume that {f,}nez., is a uniformly bounded sequence of functions
which converge pointwise to f € Bor(X,C).

To show: (d) The sequence {zy,} in B(H) converges to xs in the strong
topology.

(d) Assume that £ € H. Then,

25,6 = 2 pElI* = (g, — 25)E, (25, — 27)E)
= (s, 1§ Tp—fE)
xfn fxfn 7§ §> (@112, €)

/ Falw) — F(w) 2 d(E|E(w)E) — 0

as n — oo. Here, we have used the dominated convergence theorem (this is
allowed because {f,,} is uniformly bounded). So, the sequence {xy, }
converges to z in the strong topology on B(H). O]

Theorem bears a striking resemblance to Theorem hinting that
the Borel functional calculus can be constructing by using an appropriate
spectral measure. The following theorem makes this remark precise. To
simplify the notation, we will denote the operator zy by

vy = | fw) abtw)

Theorem 3.3.2. Let H be a Hilbert space over C and x € B(H) be a
self-adjoint operator. Let A be the Borel o-algebra on the spectrum o(x)
and define the spectral measure E, : A — Proj(B(H)) by

E.: A — Proj(B(H))
A — xal(z).

Let Ap be the *-homomorphism from Theorem[3.2.4), which sends
f € Bor(o(z),C) to f(z) € B(H) and xy € B(H) such that if n,§ € H then

(7m,€) = /f A(E| B (w)).
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Let ¢ : Bor(o(x),C) — B(H) denote the map f > xy. Then, 1 = Ap and
E, 1s the unique spectral measure such that

x:/‘AdEAM.
o(x)

Proof. Assume that © € B(H) is a self-adjoint operator.
To show: (a) If f:o(z) — C is a simple function then ¥(f) = Ag(f).

(a) Assume that f = Zivzl AnXa, 18 a simple function, where A, € C and
A, € A. Then,

The last equality in the above working is established via the same
calculation done at the start of part (b) in Theorem [3.3.1] Hence, ¢ and
Ap agree on simple functions.

However, the set of simple functions is dense in Bor(o(x),C). Hence,
Ap =1 on Bor(o(x),C). This means that if f € Bor(o(x),C) then

F)= | FO)dEL(N).
@)= [ o am)
By Theorem [3.2.4] if f(A) = X for all X € o(z) then f(z) = 2 and

x:/'AdEAm.
o(x)

Assume that E is another spectral measure such that z = fa(x) AdE(N).
To show: (b) E, = E.
(b) Consider the map

f € Bor(o(x),C) — f(A) dE(X) € B(H).

o(x)
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By Theorem [3.3.1] the above map satisfies all of the conditions defining the
Borel functional calculus in Theorem [3.2.4] By uniqueness, we have for
f € Bor(o(x),C),

( )f(A) dEQX) = f(z) = ( )f(A) dE4(A).

Now fix A € A and take f = xa in the above equation. Then,

E(A) = / dE(N) = / dE,(\) = E.(A).
A A
Therefore, £ = E, as required. O

3.4 Holomorphic functional calculus

So far, we have defined the continuous and Borel functional calculus on
B(H). Recall that if 2 € B(H) then o(z) is a non-empty compact subset of
C. Thus, we can exploit the extra structure afforded by C (when compared
to R) and consider holomorphic functions from o(x) to C. The goal of this
section is to construct the holomorphic functional calculus on B(H).

Let x € B(H) be an arbitrary operator. We do not assume x to be
self-adjoint, unlike the situations for the continuous and Borel functional
calculus. Let Hol(o(x),C) denote the algebra of functions which are
holomorphic on an open neighbourhood containing o(x). Let

f € Hol(o(z),C) and I" be a anticlockwise oriented closed curve which
contains o(z) and is contained in the domain of holomorphy of f. Define

f(z) = 2% f{ FOYA = 2)7 d. (3.2)

The function we are integrating over takes values in the Banach space
B(H). That is, we define f(z) with a Banach space-valued integral. This
concept is formalised by the Bochner integral, which is developed and
studied in [Cohl3, Appendix EJ. It can be shown that the value of the
integral is independent of the choice of curve T'.

Furthermore, f(x) commutes with = because x € B(H) does not depend on
A and thus, passes through the integral. Another remark we will make is
that the curve I' cannot intersect the spectrum o(x). Otherwise, the
operator (Al — x)~! may not be well-defined.

90



For the proof of holomorphic functional calculus, we require the well-known
resolvent identity.

Lemma 3.4.1 (Resolvent identity). Let H be a Hilbert space over C and
x € B(H). Let A\, € p(x). Then,

M —2)7 = (ul —2)™ = (u = NN —2) " (pl — )7

Proof. Assume that © € B(H). Observe that the resolvent identity is
satisfied trivially when A\ = p. So, assume that A\, u € p(z) are distinct.
Then, we compute directly that

= A(M—g; — (ul — )7 (I — )N — )
== A(Af—g; (ul —x) — I)(AI — )

M_A(Al—x (ul = A+ M —z) = I)(M — )
ulx(” MM —2)'+ I —I)(M —z) =1L

and

(I = 2)(M = 2)—— (M = 2) " = (u] — ) 7")

A
= (=)o (I = (M = 2)(ul = 2)7)

_ (M]—x)“i/\(l—(A]+MI—M1—$)<MI—$)_1)
=(ul—ﬁ)uiA(I—H(#—A)W—:’f)_l) =1

Hence, -25((A] —2)~! — (uf — 2)7") is the inverse operator of
(ul — x)(A — x). So,
1

— W=
which gives the resolvent identity. O]

(M =) (ul = 2) ) = (M = 2) (a2

Theorem 3.4.2 (Holomorphic functional calculus). Let H be a Hilbert
space over C and x € B(H). Define the map

Ag: Hol(o(x),C) — B(H)
f = f(z) = 55 561“ (M)A —x)~tdA
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Then, Ay is a unital algebra homomorphism and if
fA) =ao+ a1 A+ -+ a,\" then
f(x) = apl + a1z + -+ - + apa”.

Proof. Assume that H is a Hilbert space over C and x € B(H). Assume
that Ay is the map defined as above. First assume that f(A) = A\™ for
A € o(x) and m € Zsg. Let T" be a circle around 0 with radius r > ||z||,
traversed in the anticlockwise direction. Recalling equation (1.4])

o(x) S {A e C A < [l=l}},
we find that ' No(z) = 0. If A € T then X € p(x) and

o0

M —z) ! = Z AT

n=0

as in Theorem [1.2.2] Using equation (3.2)), we have

1
= — I — )t
@) = 3= § FNOT =)
1 (o]
S ATATRIgm gy
omi ﬁ; v
. . 1 m—n—1 n __ 1 ]' m __ .m
_Z(%éx dA)x—(Qm,jg)\d)\)x — 2™,
n=0

By linearity of the integral, we deduce that Ay is linear and that if
FA) =Y @\ for X € o(z) then

f(z) = Zaif()\i) = Zaixi € B(H).

This also shows that Ay is unital because Ay (idy () = idy()(x) = x, where
idy(z) is the identity map on o(x). Now let f,g € Hol(o(x),C).

To show: (a) Ag(f)Au(9) = Au(f9g).

(a) Let Uy and U, be the domains of holomorphy of f and g respectively.
Let I and I be curves around o(x) contained in Uy N U, with I" lying
outside of I'. By the resolvent identity in Lemma[3.4.1] we compute directly
that
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flalate) = (G ( § SO =) ) ( f gl =) di)
= (5 P TN =) =) dp

- i)? 44 W((M — @)t = (ul = )Y) du A

22 %f JM —2 t%u—
—Sg)fﬂ (%j_l
- <2im.>2 oo ol )A an)
-

= (f9)(@).

27” j{f YN —

To understand the second last equality, observe that p € IV and T lies
inside I, due to how we set up the contours originally. Hence, the function

f)

= A
is holomorphic in the region bounded by I' and by Cauchy’s theorem, the
integral

M — )\
Hence, Ay is a unital algebra homomorphism as required. O

Just like its continuous and Borel counterparts, holomorphic functional
calculus has a bevy of nice properties, which we will now prove, starting
with an analogue of the spectral mapping theorem (see Theorem [2.2.3]).

Theorem 3.4.3 (Spectral mapping for holomorphic functional calculus).
Let H be a Hilbert space over C and v € B(H). Let f € Hol(o(x),C).

Then, o(f(z)) = f(o(z)).
Similarly to Theorem |3.4.2 = is not assumed to be self-adjoint.
Proof. Assume that x € B(H) and pr € C — f(o(x)). Define the function



Then, h, € Hol(o(z),C) and by the holomorphic functional calculus,

hu(z)(pl = f(x)) = (ud = f(z))hu(z) = 1.
Then, pu & o(f(x)). Therefore, o(f(x)) C f(o(x)).

Now assume that p € f(o(x)). Then, there exists Ay € o(z) such that
p=f(Xo). If X\ € o(x) then

f(o) = f(A)

= fA) = f(A) = f(A) = (Ao —A) N — )

where

= (Ao = A)g(X)

g(A) =

FQo)—f(N) i\ £ )\
{ r=x o EAE A0 o), 0).

f'(Xo), if A= X

Using the holomorphic functional calculus (see Theorem [3.4.2)), we now
apply the function A — p — f(\) to the operator z to obtain

pl = f(x) = (Aol = z)g(2).

Suppose for the sake of contradiction that p/ — f(z) is invertible. Then,
Aol — z must also be invertible because since \g — A and g(\) commute in
C, Mol — z and g(z) must commute in B(H). This contradicts the
assumption that A\g € o(z). Hence, ul — f(x) is not invertible and

we a(f(z)). So, f(o(x)) Co(f(x)) and f(o(x)) = o(f(x)) as required. [

Holomorphic functional calculus behaves well with composition of functions.

Theorem 3.4.4. Let H be a Hilbert space over C and x € B(H). Let
g € Hol(o(x),C) and f € Hol(o(g(x)),C). Then,

flg(z)) = (fog)(x).

Proof. Assume that € B(H), g € Hol(o(z),C) and f € Hol(c(g(z)),C).
Let Uy and U, be the domains of holomorphy of f and g respectively. Let I
be a curve oriented anticlockwise in U, surrounding o(z) and I be a curve
oriented anticlockwise in Uy surrounding o(g(z)).

For € T" and X € o(x), let h,(A\) = (. — g(\))~". Then,

h, € Hol(o(x),C) because p & o(g(x)) = g(o(z)). From the holomorphic
functional calculus (see Theorem [3.4.2)), hy,(x) = (I — g(z))~* and
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fg(x)) = 27” b flu )l = g(x)) " dp
= 55 . FG0h ) dy

1 1 1 1
=5 F/f(#)(%ﬁﬂ_—g()\)()\]—x) d) dp

_ g S R
- 27ri]{~(2m' W i— g\ Ap) AT = )™ d

- QLM }é Flg))A —z)~"dX = (f o g)(x).

Now let D C C be an open set and

D={z|z¢€ D}.
Let f € Hol(D,C). Define f: D — C by f(z) = f(Z). Then,
f € Hol(D,C). The point of this function is
Theorem 3.4.5. Let H be a Hilbert space over C and x € B(H). Let
f € Hol(o(x),C). Then, f(x)* = f(z*).

Proof. Assume that © € B(H). Let I" be a simple closed curve with
anticlockwise orientation surrounding o(z) such that I' is contained in the
domain of holomorphy of f. Let T be the image of I' under complex
conjugation, with clockwise orientation and T be the curve T with
anticlockwise orientation. Then,

f@Yz(lfffMKU—xYHMy

21

ff YOI —2*)~ 1 dX
o
=——.]{fﬁu1—x )t du

__ff T — 2

Fu)(pl =)™ dp = f(z*).

2m T
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So far, we have discussed holomorphic functional calculus for an arbitrary
operator x € B(H). Once we specialise to the case where x € B(H) is
self-adjoint, we recover the continuous functional calculus.

Theorem 3.4.6 (CFC from HFC). Let H be a Hilbert space over C and
x € B(H) be self-adjoint. Then, the *-homomorphism Ay in Theorem[3.4.4

is the restriction A|poi(o(z),c), where A is the isomorphism from Theorem

[2.2.1

Proof. Assume that x € B(H) is self-adjoint. Assume that
f € Hol(o(z),C). The image Ay (f) € B(H) is normal. To see why this is
the case, we compute using Theorem that

So,

A (NI = lo(Au(F)] = sup [f(A)].

Therefore, Ay extends uniquely to an isometry from Cts(o(z),C) to B(H).
By Theorem [3.4.2] Ay maps any polynomial p to p(z) € B(H). By
uniqueness of Theorem [2.2.T] this isometry must coincide with A from
Theorem 2.2.71

Therefore, Ay = Al moi(o(2),0)- O

3.5 The exponential of an operator

One major application of the holomorphic functional calculus (Theorem

is to define the exponential of an operator. As usual, let H be a
Hilbert space over C and « € B(H). The function exp : C — C is entire.
So, its restriction to the spectrum o(z) is holomorphic. By applying the
map Ay from Theorem [3.4.2| and using the infinite series expansion of exp,
we deduce that
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1
exp(z) = %J(Igexp()\)()\[ — )"t d\
1 [N
= — (A —z)"tadx
2mi 75; 7! ( z)
=y — %\—(AI —z)"td\
— 2711 Jp i
=0
Al
=0

An important property of the exponential is that if z,y € B(H) commute
then exp(x) exp(y) = exp(x + y). This follows from the computation

expla+y) =3 LY

7
=0

Y () e

7,0]0

—ZZ i

Z_
ZO]O ]

DRI

/l/_
JOZJ ]

Jqt—J

— exp(a) exp(y).

In the case where z,y € B(H) do not commute, there is a well-known
formula which deals with this particular case. It is sometimes called the
Lie-Trotter formula.

Theorem 3.5.1 (Lie-Trotter). Let H be a Hilbert space over C and
x,y € B(H). Then,

exp(z +y) = lim (exp(~) exp(2))"

Proof. Assume that H is a Hilbert space over C and z,y € B(H). For
n € Ly, let
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Sp = exp( ! (x +vy)) and  t,= exp(x) exp(y).

n n

We are able to bound ||s,|| above as follows:

sl = llexp— (2 + )

n

e (@)
- 1%
= |I(z + )|
< -
_; ni!
— lz+yl" = (]l + [yl
<2 SX
1=0 =0
x|+ ||y
IREEN
Similarly for ||¢,]|, we have
xz Y
tull = llexp(=) exp(Z
Il = lexp( 5 exp(2) )
x y
< bl L4
< Jlexp(E)l o2
[kl ]| ]| + [yl
< exp(220 LLEZ IR " I (1A
< exp(= =) exp(==) = exp(—————)
Next, we write the quantity ||s, — t,| as:
lsn = tull = llexp(= (& + 1)) — exp(Z) exp(L)]
n n n
_ (z +y) — 7\~ Y
i= 7=0 k=0
— (z+y) Ty e
s+ EH 2 >
: ni! n .
=2 7j=1
B (x+y) S = yk
) ST IG JERTL SRRy
=2 7j=1 k=1
1 (x +y) S T
EHZ ni—24 _<an71j!)(znk71k|)“
i— j=1 k=1



Critically, ||s, — t,|| = C/n?, where C' € R is some constant. Now, we
have the identity

n—1

sp—tr = sh(sy — ta)th .
r=0

Using the identity, we bound the norm |[|s} — ¢?|| from above:

n—1
[sn — tall < Z”S;(‘Sn —to)tn |
r=0
n—1
< lsilllsn = tallllen ™"
r=0

C n—1 L
= =D lsallien =
r=0

C =, el -+l e
SEZ(GXP(T)) '

r=0
O n—1 2l + y .

r=0

C
= —exp([lz]| +lyl)-

The key finding here is that ||s!' — ¢7'[| — 0 as n — oco. This means that
lim,, o0 S = lim,, o t7 as operators in B(H). Assembling all of the
previous results together, we obtain

lim (exp(z) exp(y))" = lim ¢

n—oo n n n—o0

— i n
= lim s
n—o0

= lim exp(x +y) = exp(z + y).

]

One notable property of the exponential map is that if x € B(H) is skew
self-adjoint then exp(x) is unitary. We will dedicate the rest of the section
to proving this statement.

Definition 3.5.1. Let H be a Hilbert space over C and € B(H). The
operator x € B(H) is said to be skew self-adjoint if 2* = —z.
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Theorem 3.5.2 (Spectrum of a skew self-adjoint operator). Let H be a
Hilbert space over C and x € B(H) be a skew self-adjoint operator. Then,
o(x) C iR, where

iR = {i\| A € R}.

Proof. Assume that H is a Hilbert space over C and = € B(H) be a skew
self-adjoint operator. Observe that the operator iz € B(H) is self-adjoint.
Indeed,

(iz)" = —i(—x) = ix.

Let f: o(iz) — C be defined by f(\) = —iA. Then, f € Cts(o(iz),C) and
by the spectral mapping theorem (see Theorem [2.2.3)),

f(o(iz)) = {~iX | X € o(ix)}
— o(f(iz)) = o(a).

But, since iz is self-adjoint, o(ix) C R. Therefore, o(z) C iR as
required. ]

Unitary operators also have a neatly characterised spectrum. The proof
requires the fact that the continuous functional calculus extends to normal
operators. We will assume this for now and prove this assertion in a later
section.

Theorem 3.5.3 (Spectrum of a unitary operator). Let H be a Hilbert
space over C and x € B(H). Then, x is a unitary operator if and only if x
is a normal operator and o(x) C 0B(0, 1), where

0B(0,1) ={z € C| |2| = 1}.

Proof. Assume that H is a Hilbert space over C and x € B(H).
To show: (a) If x is unitary then x is normal and o(x) C 9B(0,1).
(b) If x is a normal operator and o(x) C 0B(0,1) then z is unitary.

(a) Assume that z is unitary. Then, zz* = z*z = I and x is normal.
Observe that

lel® = (2,2) = (I,a"2) = 1.
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So, ||z]| = 1. Similarly, ||z*|| = 1. This gives the inclusion

o(z) C{z € C|lz| < [lz]| = 1} = B(0,1).
We also have o(z*) C B(0,1). However,

o) =o(a)™)
= {511 €0}

C{%l)\eB(O,l)}
_(heC| A >1)

Note that the second equality holds in the above working because z* is
invertible and consequently, 0 ¢ o(z*). Combining the two inclusions of
o(z), we find that o(x) C 0B(0,1) as required.

(b) Assume that x is a normal operator and o(z) C 0B(0,1). Let

id : o(z) — C denote the identity map and id denote the identity map
composed with complex conjugation. Then, id,id € Cts(o(z),C). Notice
that because o(z) C 0B(0,1), id()) id(A) = 1 for all XA € o(x). By the
continuous functional calculus (Theorem (for normal operators), we
have

By a similar argument, we also have z*x = I. Hence, x is unitary.

With Theorem and Theorem [3.5.3] we can now prove the following
theorem:

Theorem 3.5.4. Let H be a Hilbert space over C and x € B(H) be skew
self-adjoint. Then, the operator exp(x) € B(H) is unitary.

Proof. Assume that H is a Hilbert space over C and x € B(H). Assume
that z is skew self-adjoint. By Theorem [3.5.2] o(z) C R.
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Since exp : o(x) — C is continuous (actually holomorphic), the spectral
mapping theorem (see Theorem [2.2.3)) tells us that

o(exp(z)) = exp(o(x)) C exp(iR) = dB(0, 1).

Since x is skew self-adjoint, x* = —z. So, x and z* commute and
consequently,

exp(z)(exp(x))" = exp(z) exp(z”) = exp(a”) exp(z) = (exp(x))" exp().

So, exp(z) is a normal operator. By Theorem [3.5.3 we therefore find that
exp(x) is a unitary operator. O

3.6 Fuglede’s theorem and Putnam’s
theorem

Let z,y € B(H) and suppose that = and y commute. When does y
commute with the adjoint *? Fuglede’s theorem answers this question in
the affirmative, provided that x is normal.

Theorem 3.6.1 (Fuglede’s theorem). Let H be a Hilbert space over C and
x,y € B(H) such that x and y commute (zy = yx). Assume that x is
normal. Then, yx* = x*y.

Proof. Assume that x and y are commuting elements of B(H). Assume
that x is a normal operator. Let A € C and define

Ty = A" — v € B(H).

A quick computation reveals that x) is skew self-adjoint. By Theorem
the operator exp(x)) must be unitary for A € C.

Next, observe that if A\, u € C then z z, = x,2,. Therefore,

exp(xy) exp(z,) = exp(zy + z,,).

Moreover, exp(zg) = I by definition and because x is normal,

exp(zy) = exp(Az*) exp(—Az) = exp(—Az) exp(Az*).

Since x commutes with y, we compute that

102



Consider the function
h: C — B(H)
A = exp(—Ax*)yexp(Az*).
Then, h is a holomorphic function on all of C (entire). It is also bounded

because

[P = llexp(z-x)y exp(zr) || < lyll

because exp(z_,) and exp(z,) are unitary operators and thus, have norm 1.
By Liouville’s theorem, h must be constant. If A € C then

h(\) = exp(—Az")y exp(Az™) = h(0) = y.

Rewrite the above equation as yexp(Azx*) = exp(Az*)y and expand both
sides as convergent power series:

> Ay =3 Xy
n=0 n=0

The coefficients of both sides are equal. Looking at the coefficient where
n = 1, we obtain yx* = x*y as required. O]

One remark about Theorem [3.6.1]is that if £ = y then Theorem [3.6.1] says
that z is normal. If x is not normal then Theorem [3.6.1] fails even for the
case where z = y.

The proof of Putnam’s theorem relies on a corollary of Theorem |3.6.1}

Lemma 3.6.2. Let H be a Hilbert space over C and x1,x2,y € B(H).
Assume that x1 and xo are normal and yx1 = x2y. Then, yx| = x3y.

Proof. Assume that 1,25,y € B(H) are the operators defined as above.
The idea is to identify operators on the Hilbert space H & H with the space
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Msyo(B(H)) of 2 x 2 matrices whose elements are operators in B(H). The
identification is given by the following map

Q: B(H®H) — Mxo(B(H))

;e (Z2 24)
where z(hy, ha) = (z1(h1) + 22(h2), z3(h1) + z4(hs)).

Now consider the operators ,y € B(H & H), defined by

. [z O - (0 0
x—(o 91:2) and —(y 0)‘

It is straightforward to check that z is a normal operator and Ty = y2. By
Theorem [3.6.1], we deduce that 2*y = yz*. This means that

0o 0y (0 O

xyy 0)  \yzi O
and subsequently, x5y = yz7. O
Before we state and prove Putnam’s theorem, we need to define the notion

of similar operators. Fortunately, the definition should be familiar from
linear algebra.

Definition 3.6.1. Let H be a Hilbert space over C and x,z5 € B(H). We
say that xy and x, are similar if there exists an invertible operator
y € B(H) such that yz,;y~' = xs.

Theorem 3.6.3 (Putnam’s theorem). Let H be a Hilbert space over C and
x1,x9 € B(H) be normal operators. If x1 and xs are similar then they are
unitarily equivalent. That is, o(x1) = o(xs).

Proof. Assume that z; and x5 are normal operators which are similar.
Then, there exists an invertible y € B(H) such that yz;y~! = z,. So,

Yyry = x2y.

By Lemma [3.6.2] we must have yx] = x5y. Take the adjoint of both sides
to obtain

* *
Yy =Y Ta.

Now multiply both sides on the right by y to obtain
11y"y =y (22y) = ¥ (ya1).
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This means that y*y commutes with x;. The key here is that y*y is

.. 1 .
self-adjoint. Therefore, the operator |y| = (y*y)2 must also commute with
xI.

Let y = uly| be the polar decomposition of y (see Theorem [2.6.1)). Since y
and |y| are both invertible, u is an invertible partial isometry.

From Theorem [3.1.8, v must be unitary and consequently,
uru” = ulylly| " o fyllyl T = gy T = .

So, x1 and xy are unitarily equivalent.
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Chapter 4

Compact operators

4.1 Definition and properties of compact
operators

In this chapter, we will shift gears and discuss compact operators on a
Hilbert space. Following [Sol18, Chapter 5], we will define a compact
operator as a “norm limit of finite dimensional operators”. Note that in
[Brel0] and [RS80], a different definition of a compact operator is usually
used and is mainstream because it also allows us to define a compact
operator between two different Banach spaces. Nonetheless, we will show
that we can recover the mainstream definition of a compact operator from
the one we will give.

Definition 4.1.1. Let H be a Hilbert space over C. We say that an
operator © € B(H) is finite dimensional if its range im « is a finite
dimensional vector subspace of H.

We say that an operator x € B(H) is compact if there exists a sequence
{Z }nez., of finite dimensional operators such that

lim ||z, — x| = 0.
n—oo

The set of finite dimensional operators and the set of compact operators
will be denoted by F(H) and By(H) respectively.

On the surface, F(H) and By(H) are subsets of B(H). In fact, they are
ideals of B(H). The definition of an ideal is quite similar to the one we are
used to in ring theory.
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Definition 4.1.2. Let H be a Hilbert space over C and S C B(H). We say
that S is an ideal in B(H) if S is a vector subspace of B(H) and if z € S
and y € B(H) then zy,yz € S.

If x € F(H) then im x is a finite dimensional vector subspace of H.
Therefore, we can find a basis {¢1,...,1¥y} for im z. So for £ € H, the
operator x takes the form

N
26 =Y an(&)tn
n=1
where a4, ..., a, are continuous linear functionals on H. By the Riesz

representation theorem, a;(§) = (£, ;) for some ¢1,..., ¢, € H. So,

Let us briefly recall bra-ket notation. If £ € H then

r§ = Z |¢n><90n|§ = Z |¢n><§7¢n> = Z<§790n>¢n = Zan(f)wn

With bra-ket notation, we can also write the adjoint of x as

N
Tt = Z |90n><¢n|

So, x* € F(H) and hence F(H) is closed under the involution operation on
B(H) (which is just the adjoint). Consequently, the ideal By(H) is also
closed under involution.

To see why this is the case, assume that y € Bo(H). Then, there exists a
sequence {y,} in F(H) such that y, — y as n — oo. This means that

y* = lim (y,)".

n—oo

So, y* € Byo(H) as required.

The next theorem provides the equivalence between Definition and the
usual definition of a compact operator present in [Brel(] and [RS80].
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Theorem 4.1.1. Let H be a Hilbert space over C and x € B(H). Then, x
is compact if and only if for any bounded set S C H, the image x(S) is
pre-compact.

Proof. Assume that H is a Hilbert space over C and x € B(H). Let

Hy={¢e HI[¢] <1}

It suffices to prove that z is compact if and only if the image x(H;) is a
pre-compact subset of H.

To show: (a) If x is compact then z(H;) is a pre-compact subset of H.
(b) If x(H,) is a pre-compact subset of H then x is compact.

(a) Assume that x € B(H) is compact and € € R-y. Then, there exists a
sequence {z,} in F(H) such that x,, — x as n — oo. In particular, there
exists k € Zo such that ||z — x| < 5.

Observe that since H; is bounded and z;, € B(H), the image x4 (H;) is a
bounded subset of H. Since zy is finite dimensional, z;(H;) is contained in

the finite dimensional subspace x(H7). Therefore, x4 (H;) is a pre-compact
subset of H.

Subsequently, ;(H;) has a finite $-net {ny,...,ny}. We claim that this is
also an e-net for z(Hy).

If¢ e Hand ¢ € {1,2,..., N} then

[2€ = ne|| < (|8 — @ill| + leng — mel]-
By our construction of zy, ||z€ — zx£[| < §. Since 24§ € x(H,), there exists
lo € {1,2,...,n} such that ||z — 14| < 5. Therefore,
€
2
So, {m,...,nn} is an e-net for x(H;). Hence, x(H;) is pre-compact.

€
178 = |l < l|2€ = widll + laxd =l < 5 + 5 =€

(b) Assume that x € B(H) such that if € € Ry there exists a finite e-net
{ns, ..., 05} for x(H;). Define p, to be the projection operator onto the
finite dimensional subspace

span{ni, ..., My }-
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Let z. = pex. Then, x. € F(H) and if £ € H; then there exists
ke {1,2,...,N} such that ||z€ — nf| < e. So,

2§ =zl = |(1 = pe)ad]|
< I = pe) (@€ — i)l + (I — pe)mi|
= (I = pe)(x& — i)
< = pellllag —mill <e
To obtain the third equality, we used the fact that p.(n;) = n;. To obtain
the final inequality, we used the fact that I — p. is a projection operator

onto the orthogonal complement of span{ns,...,n5} and consequently,
that ||] _peH <1

Hence, if € € Ry, then there exists a finite dimensional operator x, such
that [|2€ — z.&|| < e. Thus, z € By(H). O

An important consequence of Theorem [4.1.1]is that the eigenspace of a
compact operator must be finite dimensional.

Lemma 4.1.2. Let H be a Hilbert space over C and x € By(H). Let
A € o(x) be a non-zero eigenvalue. Then, the eigenspace

K ={¢€H|z{=A¢}
s a finite dimensional subspace of H.

Proof. Assume that x € By(H) and X € o(z) is a non-zero eigenvalue of .

Suppose for the sake of contradiction that the eigenspace K is not finite
dimensional. Define the bounded subset

Ky ={{e K|igll <1}

Then, z(K;) = {{ € K | ||£]| < |A|}. But, since K is not finite dimensional,
x(K) cannot be pre-compact, despite being bounded. This contradicts
Theorem 4.1.1} So, K must be finite dimensional. O

A consequence of Lemma is that the identity operator [ is not
compact. Otherwise, the eigenspace of the eigenvalue 1 must be finite
dimensional. However, the eigenspace in question is H — {0}, which is not
finite dimensional. Nonetheless, there exists a sequence of finite
dimensional operators converging to I in the strong topology, as the next
theorem demonstrates.
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Theorem 4.1.3. Let H be a Hilbert space over C. Then, there exists a net
of finite dimensional projection operators which converge to the identity
operator I in the strong topology.

Proof. Assume that {1y }rex is an orthonormal basis for H. Let Fj, denote
the set of finite subsets of K. This is a poset when equipped with the
relation of inclusion. Let J € F}, and define the projection operator

by = Z [i) (il.

icJ
This is the projection onto span{v; | j € J}. Now observe that if J € F
then p; € F(H) and

lpsg — €17 = > 1€, wa) .
i€K\J
We see that the quantity 3, ;1(, ¥i)|? — 0 as J grows larger (as we add
more terms from K to J). Hence, {ps} ecr, is a sequence of projection
operators in F(H) which converge to the identity operator I. O

4.2 Fredholm alternative and the
Hilbert-Schmidt theorem

Roughly speaking, the Fredholm alternative tells us that operators of the
form I — 2z where x € By(H) is compact, behave like linear transformations
on a finite dimensional vector space. In [Sol18§] and [RS80], the Fredholm
alternative is proved as a corollary of the analytic Fredholm theorem (see
[RS80, Theorem VI.4]).

Theorem 4.2.1 (Analytic Fredholm theorem). Let D be an open,
connected subset of C. Let f: D — B(H) be a holomorphic function such
that if z € D then f(2) is a compact operator. Then, there are two
situations which can occur:

1. If z € D then I — f(z) is not an invertible operator.

2. The operator I — f(z) is invertible for z € D — S, where S is a
discrete subset of D without an accumulation point in D.

Proof. Assume that D is an open connected subset of C. Assume that
f: D — B(H) is the holomorphic function defined as above. It is enough

110



to prove that the statement holds for a neighbourhood of any given z; € D.
Fix zp € D and let r € Ry so that the set

D, ={ze€C||z— 2| <r}.

is contained in D and z € D, implies that || f(z) — f(z0)|| < 5. Since f(z) is
a compact operator, we can take a finite rank operator y € F(H) which
satisfies || f(z0) — y|| < 3.

If z € D, then the triangle inequality yields

1/ (2) =yl < [ (2) = f(zo)ll + [/ (z0) — yll < 1.
Consequently, the operator I — f(z) + y is invertible and the function

z€ D, (I—f(z)+y)!

is holomorphic.

Now write the operator y as

Y= Z|wn><90n‘

for some vectors @1, ..., N, U1,...,0n € H, where the set {¢1,... 9N} is
linearly independent. For z € D, and n € {1,2,...,n}, define

pu(2) = (I = f(2) +9) ™) ¢n

and

g(2) =yl = f(z) +y)7".
We expand the definition of ¢g(z) as

9(2) = S ) ol (1 = F(2) + )"
= S = £(2) +y) ) el

- Z|¢n><pn(z)|
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The primary consequence of this calculation is that g(z)H C yH.

Now we have

(I=g()U = f)+y)=1-f2)+y—y=1-[(2)
and since [ — f(z) + y is invertible for z € D,, I — f(z) is invertible if and
only if I — g(z) is invertible. Also, I — f(z) is injective if and only if
I — g(2) is injective.

Thus, it suffices to prove the analytic Fredholm theorem for I — g(z). First,
suppose that there exists ¢ € H — {0} such that ¢ = g(2)¢. Then,
v € g(2)H C yH. By definition of v,

N
= Butm
m=1

and by definition of g(z), we compute directly that

N

> Butom = ¢

m=1

z)p

¢n><pn(z)|90

I
Q
—

Djz

3
Il
—_

WE

[¥n) (@, pn(2))

3
Il
—

NE

(@5 pu(2))¥n

i
I

By comparing coefficients, we find that if n € {1,2,..., N} then

N N
B = (2. 0(2)) = (3 Btins pa(2)) = 3 Wy u(2)) B
m=1 m=1
The key idea is that due to the above equation, the quantity
1 <¢1,p1(2)> <77Z)N7p1(2)>
d(z):det( - : : >:0.

1] \@wnon(@) . (W, on(2))
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Note that the function d is a holomorphic function on D,. So, we have
proved that if the equation ¢ = g(z)¢ has a non-zero solution then d(z) =0
for z € D,.

We will now prove the converse of the above statement. Assume that if
z € D, then d(z) = 0. Then, there exists non-zero fi,..., Sy € C such that

1 (U1, p1(2)) o (Wn,pi(2)) b1

(e

1) \wn@) - w2 \ By

Consequently, 3, = Zgzl(wm, pn(2))Bm and ¢ = 22:1 Bmm 18 a non-zero
solution to the equation ¢ = g(z)ep.

=0.

Before we proceed, we note that since d is holomorphic on D,., its zeros
must be isolated. This means that

S, ={>eD,|dz) =0}

is either a discrete set with no accumulation points in D, or S, = D,.

It remains to deal with the situation where d(z) # 0. Suppose that
@, & € H satisfy the equation (I — g(2))p = €. Let ¢’ = ¢ — . Substitute
v = ¢ 4 ¢ into the equation (I — g(2))¢ = . We obtain

P+ E—g(2)¢ —g(2)§ = ¢
Rearranging gives ¢’ — g(2)¢’ = g(z)€. Thus, ¢ satisfies the equation
(I —g(2))p = & if and only if ¢ satisfies (I — g(z))¢’ = g(2)€. If we vary &
over H, g(z)¢ varies over all of the image g(z)H. Therefore, we can solve
(I —g(2))p =& for any £ € H if and only if d(z) # 0.

We have established two different situations:

1. d(z) = 0 if and only if there exists p € H — {0} such that ¢ = g(2)¢

2. d(z) # 0 if and only if for any £ € H, there exists ¢ such that
(I —g(2))p =¢.

In the first scenario, we deduce that I — g(z) is not invertible for any
z € D,. In the second scenario, we find that I — ¢g(z) is invertible on the set

D\S, = {z € D, | d(=) # 0}
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where we recall that the zero set S, is discrete. This completes the
proof. O

The Fredholm alternative is now a special case of Theorem [£.2.1]

Theorem 4.2.2 (Fredholm alternative). Let H be a Hilbert space and
x € Byo(H) be a compact operator. Then, either I — x is invertible or there
exists a non-zero ¢ € H — {0} such that 1 = x1).

Proof. Assume that H is a Hilbert space and = € By(H) is a compact
operator on H. Let D = C and define the map f by

f: C — B(H)

zZ ZX.

Then, f is holomorphic on C. By the analytic Fredholm theorem (see
Theorem [4.2.1)), either I — f(z) is not invertible for any z € C or I — f(2) is
invertible on C — S, where S C C is a discrete set.

If we take 2z = 1 then we find that either I — z is invertible or there exists
€ H — {0} such that ) = x). O

Here, we highlight that the Fredholm alternative is equivalent to the
statement that I — x is invertible if and only if I — z is injective. We will
give a standalone proof of this equivalent formulation of Theorem [4.2.2
which does not use Theorem £.2.1]

Alternative proof of Theorem[{.2.9 Assume that H is a Hilbert space and
xr € B(H) is a compact operator. Let F' € B(H) be an operator of finite

rank such that ||z — F|| < € for some € € R.(. In particular, we can choose
e small enough such that I — (z — F) is invertible (see Theorem [1.2.3]). We
compute directly that

I—a=1-(x—-F)-F=(I-FI—(z-F) "I - (z-F))
Notice that F/(I — (x — F))~! is a finite rank operator. Observe that since
(I — (x — F)) is invertible, I — z is injective if and only if
(I — F(I — (z—F))™") is injective. Hence, it suffices to prove the Fredholm

alternative for finite rank operators. To see why this is the case, suppose
that the Fredholm alternative is satisfied for F'(I — (x — F'))~!. Then,

I — x is invertible if and only if I — F(I — (x — F))™! is invertible
if and only if I — F(I — (x — F))~! is injective

if and only if I — z is injective.
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So, suppose that G € B(H) is a finite rank operator. Then, im G is a finite
dimensional subspace of H and is thus, closed. Therefore,

H=im G & (im G)*.
Let V =1im G. The key observation here is that the restriction (I — G)|y is
an operator from V to V.
To show: (a) I — G is injective if and only if (I — G)|y is injective.

(b) I — G is surjective if and only if (I — G)|y is surjective.

(a) Assume that (I — G)|y is not injective. Then, there exists v € V' — {0}
such that (I — G)(v) =0. Since V C H, I — G is not injective.

Now assume that I — G is not injective. Then, there exists h € H — {0}
such that (I — G)(h) = 0. Since H =V & V+, h = hy + hy, where hy € V
and hy € V*. Consequently,

(I —G)(h)=(I—G)(hy+ hg)
= hy + ho — Ghy — Ghy
= (h1 — G(h1 + h2)) + hy
= (h1 = G(h)) 4+ hy = 0.

Notice that hy — G(h) € V and hy € V*. By uniqueness of Theorem [2.4.1]
hy =0 and hy = G(h) = G(hy + hy). This means that

where h; € V — {0}. Hence, (I — G)|y is not injective.
(b) Assume that (I — G)|y is surjective. Assume that y € H. Since
H=V @V, write y = y; + yo, where y; € V and y, € V.

The idea is that we want to solve the equation

(I = G)(x1+22) = y1 + v
for ;1 € V and 25 € V+. Rearranging yields

x1— Gy +22) — Y1 = —2 + Yo
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The LHS is an element of V, whereas the RHS is an element of V. Thus,
both sides must be equal to zero. This suggests that we take xo = 3o and
x1 = G(x1 + z2) + y1. Subsequently,

(I = G)(z1) = G(z2) + 11 = G(ya2) + v1.
Therefore, if 27 = G(y2) + y1 and x5 = yo then

(I =G)(x1+22) = G(12) + 31 + 12 — G(12) = ¥.

With this computation in mind, we can now complete the proof. Since
G(y2) +y1 € im G =V, by surjectivity of (I — G)|y, there exists x; € V
such that (I — G)(z1) = G(y2) + y1. So, x1 + y» € H satisfies

(I — G)(x1 + y2) =y as required. Hence, I — G is surjective.

Now assume that I — G is surjective. Assume that z € V. Then, there
exists ¥ € H such that (I — G)(z) = z. Since H =V & V*, write
x = 1, + Ty, where 21 € V and 25 € V*+. So,

T+ 29— G(z1) — G(ag) = 2

and

r1— Gy +19) — 2= —19

The LHS is an element of V and the RHS is an element of V*. So, both
expressions must be equal to zero. Consequently, o = 0 and
(I — G)(x1) = z. Therefore, (I — G)|y is surjective.

To see why parts (a) and (b) yields the Fredholm alternative for G, note
that because (I — G)|y : V — V is a linear transformation on the finite
dimensional vector space V, it is invertible if and only if it is injective.
Hence,

I — G is invertible if and only if (I — G)|y is invertible
if and only if (I — G)|v is injective

if and only if I — (G is injective.

The first line follows from both parts (a) and (b). The second line follows
from the most recent observation about (I — G)|y. The final line follows
from part (a). Thus, the proof is complete. ]
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The Fredholm alternative leads us to the spectral theorem for compact
self-adjoint operators. First, the Riesz-Schauder theorem provides us with
valuable information about the spectrum of a compact operator. The
non-zero elements of the spectrum are all eigenvalues of the operator which
accumulate at the origin.

Theorem 4.2.3 (Riesz-Schauder). Let H be a Hilbert space and T € B(H)
be a compact operator. Then, o(T) is a discrete subset of C, whose only
accumulation point is at 0. Furthermore, any non-zero A € o(T) is a
eigenvalue of finite multiplicity. That is, if X € o(T) then

0 <dimker A\ — T < o0.

Proof. Assume that H is a Hilbert space and T' € B(H) be a compact
operator. Assume that A € C — {0} and write
1

N =T =1 —<T).

The map z — 27" is holomorphic on the open connected set C — {0}, where
z= % By the analytic Fredholm theorem (see Theorem @, either

I — 2T is not invertible on C — {0} or I — 2T is invertible on the
complement of a discrete subset D of C — {0}.

We wish to rule out the first possibility. Recall from equation (1.4]) that

o(T) S {AeCIA <[]}
and {\ € C| [A| > ||T||} C p(T). If X € C satisfies A > ||T|| (or 2 < 73r)

leall
then Al — T is invertible and consequently, I — 27" is invertible. This rules

out the first possibility.

Therefore, (I — 2T)~" exists on (C — {0})\D. Notice that

o(T)={X € C| A\ — T is not invertible}

={Ae C-{0}| I—%T is not invertible}
1 -
:{)\EC—{O}|z:XeD}

which is a discrete set with an accumulation point at A = 0.

Now assume that A € o(T") — {0}. By the Fredholm alternative (see
Theorem , I — 2T is not invertible if and only if A\ — 7" is not
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injective if and only if A\l — T is not injective. This means that there exists
W € H — {0} such that Ty = \i). So, A is an eigenvalue and
0 < dimker(\ —T).

Suppose for the sake of contradiction that dimker(Al —T') = oo. Since
ker(A — T) is a closed subspace of H, we can take {(;}3°, to be an
orthonormal basis of ker(A — T"). Then, the sequence {p;}32; is bounded,
but {Tp;}32, = {A\p;}52, does not have a convergent subsequence because
for distinct 2, 5 € Z-o,

IT: = Tosll = V2IA.

This contradicts the fact that T is compact. Therefore,
0 < dimker(A —T) < oo and A is a eigenvalue of 7" with finite
multiplicity. O

Now we are ready to prove the spectral theorem for compact self-adjoint
operators.

Theorem 4.2.4 (Hilbert-Schmidt). Let H be a Hilbert space and

A € B(H) be a compact, self-adjoint operator. Then, there exists an
orthonormal basis {p,}22, of H consisting of eigenfunctions satisfying
A, = Ao for Ay € R, Moreover, A\, — 0 as n — o0.

Proof. Assume that H is a Hilbert space and A € B(H) is a compact
self-adjoint operator. By Theorem , d(A) C R and by the Riesz
Schauder theorem (see Theorem [1.2.3)), o(A) is a discrete subset of C with
an accumulation point 0 € C. This means that if A\;, Ao, ... are the
eigenvalues of A then lim, _,., A\, = 0. Also, the eigenspaces of A all have
finite non-zero multiplicity.

For each eigenvalue \; of A, choose an orthonormal basis for the set of
eigenvectors with eigenvalue \;. Let {¢;}$2, be the collection of all of these
orthonormal bases. Then, {¢;}3°, is an orthonormal set because
eigenvectors corresponding to distinct eigenvalues must be orthogonal. Let

M = span{p:}i2,.

Let A= Ao be the restriction of A to the closed subspace M+. Then, A
is compact and self-adjoint because it is the restriction of a compact
self-adjoint operator.
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This means that we can apply Theorem m to deduce that if 1 € o(A)
then 1 is an eigenvalue for A and hence, an eigenvalue for A. In particular,
any eigenvector 1) € M+ of A must be an eigenvector of A and
consequently, 1 € M.

Since ¢p € M N M*, ) = 0. Thus, o(A) cannot contain any non-zero
eigenvalues and the spectral radius is therefore,

lo(A)] = sup |A| = 0.
A€o (A)

Since A is self-adjoint, ||A|| = |o(A)| = 0. So, A = 0.

Now suppose for the sake of contradiction that z € M L with x # 0. Then,
Ar =Ar =0. Since H=M o M*, z € M. Sincexr e MNM*+, 2=0
which contradicts the assumption that x # 0.

Therefore, M+ = {0} and M = M = H as required. O

An important corollary of Theorem {4.2.4]is that we can write a compact
operator in a particular form.

Theorem 4.2.5. Let H be a Hilbert space and x € Bo(H) be a compact
operator. Then, there exists a finite or countably infinite set N and
orthonormal sets {tn}nen and {@ntnen in H and a sequence {\, }nen in
R<o such that

T=> Aalon)(¥nl.
neN

Proof. Assume that H is a Hilbert space and x € By(H) is a compact
operator on H. By using Theorem [2.6.1} we decompose x as

x = vlz| = v(a*z)?.

The key observation is that in the above polar decomposition, |z| = (z*z)2
is a compact, positive operator. By the spectral theorem (see Theorem
4.2.4)), we obtain an orthonormal basis of H consisting of eigenvectors of |z|.

Let {¢,}nen be a subset of the orthonormal basis, consisting of

eigenvectors of |z| corresponding to non-zero eigenvalues. Then, {1, },en is
an orthonormal basis for the orthogonal complement (ker|z|)*.
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Let A\, € Ry, be the eigenvalue corresponding to ¢, for n € N. We claim
that

|$| = Z )‘n|¢n><¢n|

nenN

The sum on the RHS is well-defined because if F C N is a finite subset of
N then

Z /\n|¢n><¢n| = fF('xD

nekl

where fr is defined as the continuous function

fr: o(jz])) —» C
AEF — A
ANF — 0

Now observe that fr converges uniformly to the identity function id on
o(|z|) as F grows larger as a subset of N. Hence, fr(|z|) converges
uniformly to |z| and consequently, || = > -\ An|¥n) (¥n].

Recall from Theorem that the partial isometry v maps the subspace
(ker|z|)* isometrically onto the closure im z. By setting ¢,, = vi), for
n € N, we obtain another orthonormal set {¢, }n,en and subsequently,

r =) Aaltn) (Wl = Y Aalon) (Wnl.

neN neN

Before we end this section, we will give an example of Theorem [4.2.4]
Example 4.2.1. Define the following operator on L?([0, 27]):

T: L*[0,27]) — L3([0, 27])
fa) = s (U Fw de— [ £ de)

We will show that 7" is a compact, self-adjoint operator. To see that T is
self-adjoint, observe that if f,g € L?([0,27]) then
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o [T

/ / dt—/ 7(t) dt)g

:/ —%(/ ) dt — f(t)dt)g(a:)da:
" [

/ /

) dt dz + - / / F()g(z) dt dw

da:—/ ()dx)f()dt

So, T' must be self-adjoint. Note that we are working with integrable
functions and thus, allowed to use Fubini’s theorem in the second last line.

To see that T is compact, assume that {f,} is a bounded sequence in
L*(]0,27]). We will apply the Arzela-Ascoli theorem to obtain a
subsequence {f,, } such that {T'f, } converges.

We will first show that the operator T is bounded. First, we compute for
f € L?([0,27]) that

! (/jf(t) dt :ﬂf(t) ),
[ swaniy [ a
1 2

Arolde+ 5 [ 1) a

Tf ()] =

IA IN

N~ N~ N~

ﬁc\

[F@)] dt

2 1

isra) ([ 1)

= ) s =2

Hence, the operator norm of T is

IN

S—
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ITI* = sup [ITf]7
I£]2=1

= [T a

[fllL2=1J0

27r7_r
< s [ 2N ds
Il 2=1J0
2

=7
So, ||T|| < .
To show: (a) {T'f,} is uniformly bounded.

(b) {T'f.} is equicontinuous.

(a) Since {f.} is bounded, there exists C' € R such that || f,| 2 < C. If
n € Z~qg then

HTfn||L2 < HT||an||L2 < nC.
So, {T'f,} is a uniformly bounded sequence in L%([0, 27]).

(b) We compute that if z,y € [0, 27| then

@ - wnwl=[5( [ s a- [Toa)-5([r0a- [ o)

:’%/mf(t) dt+%/xf(t) dt‘
< [ 1w

< (/02W|f(t)|2dt>%(/jldt);

1
= [Ifll2l =yl

Y

Assume that € € Ryg. Set § = €2/C?. If |z — y| < § then
€

(TF) @) = (T < | fallizlz —yl? < O

= €.
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Since n € Z~o was arbitrary, we deduce that {T'f,,} is an equicontinuous
family of functions as required.

From parts (a) and (b), the conditions of the Arzela-Ascoli theorem are
satisfied. Therefore, there exists a convergent subsequence {7'f,, } of
{Tf.}. Consequently, T is a compact operator as required.

We will now use Theorem £.2.4] on T in order to find an orthonormal basis
for L?([0,27]). Suppose that A € C — {0} and f € L?([0,27]) such that

@ =5( [ a0 a- [ 50 @) = s

T

We want to use the fundamental theorem of calculus. Let F' be a function
such that F'(z) = f(x). Then,

1
2
and if we differentiate both sides with respect to x, we find that

(2F(z) = F(0) = F(2m)) = Af(x)

F'a) ~ 5 f@) =0.

So, f(z) = Ce™*, where C' € Ry. Let us substitute this expression for
f(x) back into the equation (7'f)(x) = Af(x). After some computation, we
obtain

Ch _ . . :
7(26%/)\ 11— 6271'@/)\) _ )\CBW/A.

Therefore, 1 + ¢*™/* =0 and

-
T in(1 4 2k)
A
for k € Z. So,
2
M\ = .
P 142k

and fi(z) = Ce@**+Viz/2 To determine the value of C, we must have
| fell2 = 1 for k € Z~ in order for { fi }rez to be an orthonormal basis for
L3([0, 27]). So,

2m
1= / | fe(z)|? dov = 27 C™.
0
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Therefore, C' = \/LTW and by the spectral theorem, { fx}rez is an orthonormal
basis for L*([0,27]), where

fk<x> _ e(2k+1)ix/2.
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Chapter 5

The trace of an operator

5.1 Definition and properties

In this section, we will investigate a generalisation of the trace in linear
algebra to certain operators on a Hilbert space.

Definition 5.1.1. Let H be a Hilbert space and {;},c; be an orthonormal
basis of H. Let t € B(H), be a positive operator. The trace of t, denoted
by Trie,y,e,(t), is defined by

Tr{fj}je.l(t) = Z<t§j7§j> € [07 OO]

jedJ

We use slightly different notation from the definition of the trace in [Sol18|
Section 6.1]. This is because the definition above depends on the choice of
the orthonormal basis {{;};es. Later, we will see that the trace is
independent of the choice of orthonormal basis, which matches the fact that
the trace of a square matrix is independent of the choice of bases.

Lemma 5.1.1. Let H be a Hilbert space and x € B(H). Let {{;}jcs be an
orthonormal basis. Then,

T’f’{gj}jej(l’*l‘> = Trye, (xx™).

Recall from Theorem [2.3.4] that x*x and xx* are positive operators and so,
we can take the trace of these operators.

Yies

Proof. Assume that H is a Hilbert space and {;};e; is an orthonormal
basis for H. Assume that x € B(H). For i € J, we compute directly that
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D (g Gk, &) = ) (&, &) (@i, &)

j€J JjeJ

= <Z<935u &)&j, 2&i)
jeJ

= (&, 7€) = (2"0&;, &)

So, the trace of z*x is

Trigy,e, (") = Z r*xé;, &) = ZZ 2*Ej, §i) (€3, &)

i€J ieJ jed

Since

(@765, &) (28, &) = (&, wEa) (2, &) = @€, &) = 0,

we can safely change the order of summation in the series expression for
Tre;),e,(x"x). Thus, we obtain

Trey,e, (@e) =Y ) ('€, &) (a6, &)

ieJ jeJ

= Z Z<x*§j7 §l> <x§la €]>
JjeJ ieJ

= Z Z(xfl,f]><x*§]afz>
jeJ ieJ

= Trig;y e, (w7).

Similarly to the trace in linear algebra, we expect the trace of a positive
operator to be invariant under similarity transformations.

Lemma 5.1.2. Let H be a Hilbert space and u,t € B(H) with u unitary
and t positive. Let {£;}jes be an orthonormal basis for H. Then,

Tr{gj}jEJ(U'tu ) TT{'E]}]GJ( )

Proof. Assume that H is a Hilbert space and u,t € B(H) with « unitary
and t positive. Assume that {{;},c; is an orthonormal basis for H.

Define 2 = ut2 € B(H). We compute directly that
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1 1 11
Tir =t2utut? =t and zx* = ut2t2u’ = utu”.

By Lemma |5.1.1] we have

Tr{ﬁj}jeJ(t) = Tr{ﬁj}jeJ(x*x) - Tr{ij}jeJ(xx*) - Tr{ﬁj}jeJ(Utu*)'

With Lemma [5.1.2] we can prove that the trace of a positive operator is
independent of the choice of orthonormal basis.

Theorem 5.1.3. Let H be a Hilbert space and {;};es and {1;}jcs be two
different orthonormal bases for H. If t € B(H), is a positive operator then

Tr{ij Yier <t> = Tr{ﬂ’j}jEJ (t)

Proof. Assume that H is a Hilbert space and {;},c; and {t;},c; are two
different orthonormal bases for H. Assume that ¢t € B(H ), is a positive
operator. Then, there exists a unitary operator u € B(H) such that

wp; = &; for j € J. Consequently,

TT{%‘ Yies (t) = Z <t¢j> ¢J>

jeJ

=) (turg,utg)
jeJ

= (utu§;, &)
JjeJ

= Tr{ﬁj}jef (Utu*> = Tr{§j}jEJ<t)
where in the last equality, we used Lemma [5.1.2] O

In light of Theorem [5.1.3, we can drop the notation established in the
original definition of the trace. We will now simply write Tr to denote the
trace of a positive operator.

Next, we will establish a few more familiar properties of the trace.

Lemma 5.1.4. Let H be a Hilbert space, A € Ryg and t,r € B(H)y be
positive operators. Then,

1. Tr(\) = ATr(t)
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2. Ift > r then Tr(t) > Tr(r)
3. Tr(t+r)="Tr(t)+ Tr(r)

Proof. Assume that H is a Hilbert space, A € Ry and t,r € B(H),. Let
{&;};es be an orthonormal basis for H. We compute directly that

Tr(xt) =Y (M&,.&) =AY (t6;,6) = XTr(t).
jeJ jeJ
Next, assume that ¢ > r so that t —r € B(H);. Then,

Trit—r) =) ((t=7)&&) = Y _{t€:.&) — > (1. &) € (0,00
jed jed jeJ
Hence, T'r(t) > Tr(r). Finally, we have for arbitrary t,r € B(H),,

Tr(t+r)= Z«t +7)&5,&5) = Z(tﬁjjfﬁ + Z(Tfj’fﬁ = Tr(t) + Tr(r).

]

The final property of the trace we will prove in this section is that it is
bounded below by the norm.

Theorem 5.1.5. Let H be a Hilbert space and t € B(H), be a positive
operator. Then, Tr(t) > ||t

Proof. Assume that H is a Hilbert space and t € B(H ), is a positive
operator. By Theorem [2.3.4] there exists a self-adjoint operator r = ¢'/2
such that r? = ¢ and ||t]| = ||r*r|| = ||r]|*.

Assume that € € Roo. Let ¢» € H be such that |4 = 1 and

[r]] > Irll —e.
The existence of 1 is just from the definition of the operator norm on 7.
Now we compute that

{tg, ) = (r'ry, )
= (r'rip, )
= (r¢,r¢) = [|ry|?
> (lIrll - €)”
= lI7lI* — 27|l + €

= ||t]| — 2¢1t]|Z + €.
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Now we can choose an orthonormal basis {¢;};ec; of H such that ¢ = ¢; for
some ¢ € J. We can do this by using Gram-Schmidt orthogonalisation for
instance. Consequently,

Tr(t) = Y (t;,65) > (€, &) > ||t — 2e]it]7 + €.

jed

Since € € Ry was arbitrary, we obtain Tr(t) > ||¢|. O

5.2 Trace class and Hilbert-Schmidt
operators

The trace gives rise to two important classes of operators.

Definition 5.2.1. Let H be a Hilbert spaces. The set of trace class
operators, denoted by B;(H), is defined by

By(H) = span{x € B(H)+ | Tr(z) < oco}.

Definition 5.2.2. Let H be a Hilbert spaces. The set of
Hilbert-Schmidt operators, denoted by By(H), is defined by

By(H) ={x € B(H) | Tr(z*x) < co}.

Our first task with regards to trace class and Hilbert-Schmidt operators is
to determine the inclusions amongst the sets F(H ), B1(H ), Bo(H) and
By(H). We require a few lemmas to do this.

Lemma 5.2.1. Let H be a Hilbert space and a,b € B(H). Then, the
composite

3
1 & % &
ab:Z 'E_Oz (b+i"I)*a(b+i"I)

where I € B(H) is the identity operator.

Proof. The formula follows by expanding the expression
2 S22 i (b +*T)*a(b+4*T) and then simplifying, which is a somewhat
tedious process similar to Theorem [2.1.1] and Theorem O

The next lemma we require gives an interesting criterion for an operator to
be compact.
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Lemma 5.2.2. Let H be a Hilbert space and v € B(H) be such that
Tr(|zP) < oo for some p € Rsg. Then, x € By(H) is compact.

Proof. Assume that H is a Hilbert space and = € B(H) such that
Tr(|z|P) < oo for some p € Rxy.

Let {1;};es be an orthonormal basis for H and ¢ € R-(. Then, there exists
a finite subset J. C J such that

D Az ) <e.

J&Je
Let pe be the projection operator onto span{vy; | j € J.}. We claim that the
sequence of finite dimensional operators

{l2pc} ek
converges to |z|% in the norm topology. Indeed, by Theorem we have

P p p
]2 = [l 2pell® = [ll=]= (1 — po)l?

= [I(J2|2 (1 = po)) || (1 = po)|
= [[( = po) (I = po)l

< Tr((I = po)|e"(I = pe))

=D ey, uy) <e

JéJe

So, |z|% is the norm limit of a sequence of finite dimensional operators.
Hence, |z|? is a compact operator. Now, |z| = f(|z|%) where f()\) = Ar for
A € o(|z|2). Note that we can use the continuous functional calculus
because |z|2 is self-adjoint. Consequently, |z| is a compact operator and
since By(H) is an ideal, we can use the polar decomposition of x (see

Theorem [2.6.1)) to find that

x = ulz| € By(H).

Here is the first theorem pertaining to our new classes of operators.

Theorem 5.2.3. Let H be a Hilbert space. Then, we have the following
chain of inclusions
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F(H) C B1(H) C By(H) C Byo(H).

Moreover, each of the above subsets is an ideal in B(H) which is
self-adjoint (invariant under the adjoint). We also have

Bi(H)={x € B(H) | Tr(|z|) < oo}.
Proof. Assume that H is a Hilbert space. It is easy to check that the sets
F(H),Bi(H),By(H) and By(H) are invariant under the adjoint. For
instance, this means that if € By(H) then z* € By(H). We already know
that F(H) and By(H) are ideals of B(H).
To show: (a) Bi(H) is an ideal.
(b) By(H) is an ideal.

(a) We claim that B;(H) is a right ideal in B(H). Assume that a € B(H)
such that Tr(a) < co and that b € B(H).

To show: (aa) ab € By(H).

(aa) We know from Lemma that

3
1 -k, x
ab = — E 1" avy
4
k=0

where v, = b+ i*I. For k € {0,1,2,3}, we have

By linearity of the trace, Tr(ab) < oo and ab € B1(H). So, By(H) is a right
ideal of B(H).

(a) Since By(H) is a right ideal which is invariant under the adjoint, it
must also be a left ideal. If x € B1(H) and y € B(H) then
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yr = (z*y*)* € B1(H). So, B1(H) is an ideal of B(H).

(b) We will show that By(H) is a left ideal. Assume that t € By(H) and
s € B(H).

To show: (ba) st € By(H).

(ba) Since t € By(H), Tr(t*t) < oo. Observe that (st)*st = t*s*st < ||s||*t*t
as positive operators. Consequently,

Is||PTr(t*t) = Tr(||s||*t*t) > Tr((st)*st)
and T'r((st)*st) < co. So, st € Ba(H).
(b) Part (ba) tells us that By(H) is a left ideal which is invariant under the
adjoint. By similar reasoning to part (a), we deduce that By(H) is also a
right ideal and hence, an ideal in B(H).

Next, we will prove that

By(H)={x € B(H) | Tr(|z|) < oo}.
To show: (¢) {z € B(H) | Tr(|z|) < oo} C By(H).
(d) Bi(H) C{z € B(H) | Tr(|z|) < oco}.
(c¢) Assume that z € B(H) such that Tr(|z|) < oco. Then, |x| € B;(H) and
by Theorem [2.6.1, we have x = u|z|. By part (a), B;(H) is an ideal of
B(H). So, x € By(H) and {x € B(H) | Tr(|z]) < oo} C By(H).
(d) Now assume that y € By(H). Using the polar decomposition (see

Theorem [2.6.1)), write y = v|y|. Since By(H) is an ideal, |y| = v*y € By(H).
By definition of B, (H),

ly| = Z a;d;
i=1

where oy, ..., o, € Cand dy,...,d, € B(H); satisfying Tr(d;) < oo for
i€{l1,2,...,n}. As positive operators, we have

lyl < Z’%”di-
i=1
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So,

Tyl < 3 JoulTr(d,) < o
and By(H) C {z € B(H) | Tr{Ja]) < o0},
Finally, we will prove the inclusions F(H) C Bi(H) C Bay(H) C Bo(H).
To show: (¢) F(H) C By(H).
(f) B1(H) C By(H).
(8) BalH) C Bo(H)

(e) Assume that z € F(H). Since F is an ideal, |z| is a finite dimensional
positive operator. So, |z| must have finite trace, |z| € By(H) and since

By(H) is an ideal, x € B;(H) and F(H) C By(H).
(f) Assume that y € By(H). Then,

vy = lul® = 12 (1y12) (g )lyl> < llllyl
In the first equality, we used a result in Theorem [2.6.2] By taking the trace,
we deduce that Tr(y*y) < ||y||Tr(|ly|]) < oco. So, y € Bs(H) and
Bi(H) C Bs(H).

(g) Assume that t € By(H) so that Tr(t*t) < co. By using the polar
decomposition, we write t = ult| so that t*t = [t|* (see Theorem [2.6.2). So,
Tr(|t]*) < oo and by Lemmal[5.2.2] t € By(H) and By(H) C Bo(H). This
completes the proof. O

5.3 The Hilbert space By(H)

Theorem tells us that By (H) and By(H) are ideals of B(H). However,
they actually possess more structure than that.

Theorem 5.3.1. Let H be a complex Hilbert space. Then, By(H) is a
C-vector space.

Proof. Assume that H is a complex Hilbert space. Assume that
x,y € Bo(H) and A € C.
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To show: (a) Az € By(H)
(b) x +y € Bs(H).
(a) To see that \x € By(H), we compute directly that

Tr((Az)*Ax) = Tr(|\*2*z) = |\*Tr(z*z) < co.
So, \x € By(H).

(b) Consider the expression (z + y)*(z + y) + (z — y)*(z — y). Expanding,
we obtain

(z+y)' (@ +y) + (@ —y) (= —y) = 22"z + 29"y,
This means that as positive operators, (x + y)*(x + y) < 2z*x + 2y*y. So,

Tr((z+y)*(x +vy)) < Tr2z*z + 2y*y) = 2(Tr(x*z) + Tr(y*y)) < oo.
Hence, z +y € By(H). So, Ba(H) is a C-vector space. O

Here is an important observation about Bo(H). If x,y € By(H) then one
can verify that

3
> i@+ ify) (@ + ify).
k=0

| =

yr =

Since By(H) is a vector space, = + i*y € By(H). By taking traces of both
sides, we find that

Tr(y*x) = ! Tr((z + i*y)*(z +i*y)) < oco.

-

k=0

So, y*x € By(H). This is crucial to the following theorem.

Theorem 5.3.2. Let H be a Hilbert space. Then, By(H) is a Hilbert space
with inner product

(z,y)rr = Tr(y ).

Proof. Assume that H is a Hilbert space. If x,y € By(H) then
y*x € By(H) and so, the trace (x,y)r, = Tr(y*x) is well-defined.
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We will now show that (—, —)z, is an inner product on By(H). Assume
that xq, 29,11 € Ba(H). We compute directly that

r((y1)"(z1 + 22))
((y1) 1 + (1) 2)
((y1)"@1) +Tr((y1)"22)
= (x1,y1)7r + (T2, Y1) 77

(T1 + T2, y1)1r =

T
Tr
Tr

Now assume that A € C and {,};c; is an orthonormal basis for H. Then,

(Az1, y1)rr = Tr((y1)" Az1)
= ZO\(?Jl)*xlﬁj,fﬂ
=2 () g.8)
jeJ
= MNr((y1) 1) = M1, Y1) 70

We also have

<x17y1>Tr = TT’((yl)*Il)
= () ®&, &)
jeJ
=Y (& yi(e)E)
jeJ
= Z(yl(%)*fg‘a&‘)

= Tr(yi(m)") = {or, a)ar

Finally, we have the inequality

(17, = (@, 27 = Tr(a"z) > [lo"2[| = [|z]* > 0
for x € By(H). Also, ||z||r, = 0 if and only if ||z|| = 0 if and only if x = 0.
Hence, (—, —)7, is an inner product on By(H).

Now suppose that {2, }rez., is a Cauchy sequence in By(H). Since
lyllrr > |ly|| for y € Bo(H), {x,} is a Cauchy sequence in B(H) (equipped
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with the operator norm). Hence, {x,} must converge to some x € B(H).

Let {&;};es be an orthonormal basis of H. Since x,, — = in the norm
topology, the sequence {x,} must also converge to = in the strong topology.
For a finite subset Jy C J, we have

D @ —a)gl* = lim Y [l — )&

j€Jdo JEJo

<MWZH )& |2

m—00

= lim sup Z — xp)" = z0)&5,&5)

m—oo Loy

= limsup Tr((xmy, — )" (zm — x,))

m—ro0

= lim SUPHfEm - an%r'
m—0oQ

Therefore,

lz —zalF, = sup D ll(x — )6l < lmsuplla, — a7,

JoCJ, ‘Jo|<OOJEJ0 m—0o0

Hence, x € By(H) and z,, — = in By(H). Hence, By(H) is complete and
By(H) is a Hilbert space. O

The norm ||—||7 on By(H) is referred to as the Hilbert-Schmidt norm.

The next theorem tells us how to construct an orthnormal basis for By(H).

Theorem 5.3.3. Let H be a Hilbert space and {1;};c; be an orthonormal
basis for H. Then, the set {|1;)(1;|}ijer is an orthonormal basis for the
Hilbert space Bo(H).

Proof. Assume that H is a Hilbert space with orthonormal basis {t; }e;.
To see that {|¢;)(1;|}ijer is an orthonormal basis for By(H), we compute
directly that
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() 5], 1) (Wl ) = Tr () ()13 (5]
= (v (gl i) (3| Wor, o)

kel

= S (W] s ) (a0 )

kel

= S 1) (e ). o) e )

kel

= G Og (i p) = 810

kel

So, {|1:)(¥]}ijer is an orthonormal basis for By(H). O

5.4 The Banach algebra B;(H)

Now we turn our attention to the trace class operators Bi(H). We require a
few lemmas for this purpose.

Lemma 5.4.1. Let H be a Hilbert space.
1. If v,y € By(H) then Tr(zy) = Tr(yz).
2. Ifx € Bi(H) and y € B(H) then Tr(zy) = Tr(yz).

Proof. Assume that H is a Hilbert space. First, assume that x,y € Bo(H).
Then, we compute directly that
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Tr(a'y) =+ S Tr((y + )"y + )

1

= > I Tr((y + o)y +ita))

3
= DTy — ')y — i)
k=0

= ST ) (i )

1 3

= > FTr((ify 4 27) Py + 2))
k=0

1 3

=1 > FTr((a + ity (@t + ifyT)) = Tr(ya”).
k=0

Since x € By(H), z* € By(H). By replacing x with z* in the above
computation, we deduce that Tr(xy) = Tr(yx) as required.

Now assume that = € By(H) and y € B(H). Then, x can be written as a
linear combination of positive operators with finite trace. Assume that z is
a positive operator with finite trace. Then, z%, z%y and yz% are all elements
of Bo(H) and by the previous result, we have

= Tr((z2y)22)

= Tr(22(yz7)) = Tr(yz).
By linearity of the trace, Tr(xy) = Tr(yx). O
Lemma 5.4.2. Let H be a Hilbert space, x € B1(H) and y € B(H). Then,

Tr(yz)| < [lyl[Tr(|=]).
Proof. Assume that H is a Hilbert space, z € By(H) and y € B(H).
Decompose = as x = ulx| via the polar decomposition (see Theorem [2.6.1)).
Recall that
By(H)={x € B(H) | Tr(|z|) < oo}.
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So, Tr(|z|) < 0o and |z|2 € By(H). Using the Cauchy-Schwarz inequality,
we obtain

11
| Tr(ya)l” = |Tr(yulz|2|2]2)*
1 1w«
= [l=]7, |2]2u"y ")z |
1 1
< ||lz|z||3 ||z 2wy |5, (Cauchy Schwarz Inequality)
1 l X ok
= Tr(|e)Tr((yulx|?)(lz|>u"y"))
1 1
=Tr(Jz))Tr((|z]2u*y")(yu|z|2)) (see Lemma [5.4.1))
< Tr(lyull*|z[2|z|2)Tr(|=])
< |lylPTr(|2l)*.

O

Now, we are ready to prove that By(H) is a Banach algebra with the trace
norm

]l = Tr(]z]).

Lemma 5.4.3. Let H be a Hilbert space. Then, the trace norm ||—||1
defined as above is a norm on By(H).

Proof. Assume that H is a Hilbert space. First, assume that o € C and
x € Bi(H). Then,

1
laz| = ((az)*az)? = (jafa*z)? = |a||z]

and

laczlly = Tr(laz]) = ol Tr(le]) = [afl|z].

Next, if © € By(H) then

)y = Tr(lz]) = [ll«]]} = llz]| = 0.

Also, ||z|l; = 0 if and only if ||z|| = 0 if and only if z = 0.

Finally, assume that z,y € Bi(H). Let x + y = v|x 4 y| be the polar
decomposition of z + y. By a direct computation, we obtain
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[+ ylly = Tr(jz + yl)
=Tr(v"(z +y))
=Trw*z) + Tr(v'y)
= |Tr(v*z)+ Tr(v'y)|
< |Tr(v'z)| + [Tr(v*y)|
< v [(Tr(l2)) + Tr(lyl)
< 2/l + llylls-

In the last inequality, we used the fact that ||v*]] < 1 as v* is a partial
isometry. Therefore, the trace norm ||—||; is a norm on By (H). O

Our first task is to show that By (H) is complete with respect to the norm
||—|l:- The idea is to show that B;(H) is isomorphic to the dual space
By(H)* via an extension of the trace to By(H). Hence, we have to
demonstrate how to extend the trace from B(H), to Bi(H).

First, we need the following lemma.
Lemma 5.4.4. Let H be a Hilbert space. Then,
Bi(H)NB(H); ={te B(H); | Tr(t) < co}.
Proof. Assume that H is a Hilbert space. We know by definition that

By(H) = span{x € B(H) | Tr(z) < oco}.
So,

{reB(H); |Tr(z) <o} C Bi(H)NB(H);.
Conversely, assume that y € B1(H) N B(H). Then, y = |y| (see Theorem

and

ye{r e B(H)|Tr(Jz|) < oo} = By(H).

The last equality in the above equation follows from Theorem [5.2.3|
Therefore, Tr(y) = Tr(|y|) < oo,

ye{r e B(H); |Tr(z) < oo}

and
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Bi(H)NB(H); ={te€e B(H), | Tr(t) < co}.
O
Now, we can extend the trace map defined on By(H) N B(H); to By(H).
Theorem 5.4.5. Let H be a Hilbert space. Then, the trace map

Tr: Bl(H)mB(H)+ — R>0
x —  Tr(zr)

extends uniquely to a linear functional on By(H).

Proof. Assume that H is a Hilbert space. We know that
By(H) = span(B1(H) N B(H)4). So, it suffices to prove that an extension
of the trace to By (H) exists (linearity is for free).

Let © € By(H). By definition of By(H), we can write x = ZZ]\LI a,;;, where
a; € Cand x; € B(H); N By(H). Define

Tr: Bl<H) — C
SN s = SN ().
It is easy to see that restriction to B(H ), N By(H) provides the original

trace. To see that the trace above on By(H) is the extension we are after, it
suffices to check that if 2, a;z; = 0 then YN | o Tr(x;) = 0.

To show: (a) If 32V a;x; = 0 then S, Re(oy)Tr(x;) = 0.
(b) It SN ayar; = 0 then SN | I'm(a;)Tr(z;) = 0.
(a) Define

A={ie{l,2,...,N}| Re(e;) > 0}

and

B={ie{l,2,...,N}| Re(a;) <0}
Then, AU B = {1,2,..., N} and since sz\il a;x; =0,

Z Re(a;)x; = Z(—Re(ai))xi.

i€A i€B
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Note that both expressions above are linear combinations of positive
operators with positive coefficients. Using linearity of the trace, we deduce
that

> Re(ai)Tr(x;) = Y (—Re(o))Tr(x;)

€A i€B

and 32, Re(o,)Tr(x;) = 0.

(b) This follows from exactly the same argument as in part (a). ]

Now that we have extended the trace Tr to B;(H), we ask ourselves what
is a formula for computing the trace of x € By(H)?

Theorem 5.4.6. Let H be a Hilbert space, x € B1(H) and {& }icr be an
orthonormal basis of H. Then, the sum Y, (x&;,&) is absolutely
convergent and its sum is independent of the choice of basis {&; }ier.

Proof. Assume that z € By(H) and {§;}ies is an orthonormal basis for H.
Using the polar decomposition of z, we write z = u|z|2|z|2. The point here
is that

%2, |z|Zu € By(H).
By the Cauchy-Schwarz inequality, we have for ¢ €

(@€, &)l = [(ul]2|2]2&;, &) = [([x[2&, [ 7u&) [ < [lla]zu &l ]2 &l
Since |z|2, |z|2u € By(H),
1
Y llalz2&lf* = Tr(|a]) < oo
iel
and

> lelFurgl? = Tr(ujaju’) < oo
=y
By Holder’s inequality,

> g &)l < D lllelzwréillllel2&)

1€l el
1 1
1 2 1 2
< (Slettwel?)” (Slleel?)
el el
< Q.
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Therefore, the series )., (x&;,&;) is absolutely convergent. Now write

T = Zszl apxy, where aq,...,ay € C and the operators
x1,...,on € B(H); N By(H). So,

Z(SC&‘, &) = Z<Z i, &)

el i€l k=1

= Z Z ap{Tréi, &)

i€l k=1

N
=D o) (méin &)
k=1

iel

and by Theorem , the sum YN | ay Y ierl@réi, &) is independent of the
choice of orthonormal basis.

Finally, we note that if z € B;(H) then the map z +— Y. (z§;,§) is a
linear functional equal to the trace on By(H) N B(H),. So,

Tr(x) =3 ,c,(x&, &) for any « € By(H) and any orthonormal basis {&;}icr
of H. O

So, the same formula for the trace on By(H) N B(H ) works for the trace
on Bi(H). From here, the trace Tr as written generally refers to the trace
on Bl<H)

Now we can show that B;(H) is complete with respect to the norm ||—||;.
Theorem 5.4.7. Let H be a Hilbert space and x € By(H). Define the map
w1 Bo(H) — C
y o Tray)

Then, @, € Bo(H)* and the map x — @, is a bijective isometry from
B1(H) with the norm ||—||1 to Bo(H)* with the operator norm.

Proof. Assume that H is a Hilbert space, © € By(H) and ¢, is the map
defined as above. By linearity of the trace (see Lemma|5.1.4)), ¢, is a linear
map. To see that ¢, is bounded, assume that y € By(H). Then,

o ()| = [Tr(zy)| = [Tr(yz)| <yl Tr(z]) = llyll[lz] < oco.

This uses Lemma and Lemma [5.4.2] Therefore, if z € By(H) then
. € Bo(H)*.
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To show: (a) If ¢ € Bo(H)* then there exists x € By(H) such that ¢ = ¢,.
(b) ¢, is an isometry.
(a) Assume that ¢ € By(H)*. If s € Bo(H) C By(H) then

()l < llellllsll < llelllisllze

Consequently, ¢ is a bounded linear functional on the Hilbert space By(H ).
By the Riesz representation theorem, there exists x € By(H) such that

p(s) = (8,27 )rr.

Now let = u|z| be the polar decomposition of = (see Theorem [2.6.1)). Let
{1 },es be an orthonormal basis for H and Jy C J be a finite subset of J.
Let po be the projection onto the closed subpsace span{y; | j € Jo}.

By Theorem [5.2.3} x,py € B2(H). So,

Sy, ) = | 3 als, )

Jj€Jo j€Jo

= |3 okl vs)
jed

= |Tr(poll)
= |Tr((po")a)
— |Tr(w(pou"))] = I{pou’, ")
= lp(pou”)
< lelllpow]) < el

Taking the supremum over finite subsets Jy C J, we deduce that © € By (H)
(because Tr(|z]) < [ll| < o0) and [z[ly < |-

Thus, if s € By(H) then

0u(s) =Tr(xs) = (s,2")rr = p(s).
Since By(H) is a dense subspace of By(H), we deduce that ¢ = ¢, on
Bo(H).

(b) We compute directly that
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lpall = sup [@a(y)] < sup flyllllz]ly = llz[1.
lyll=1 lyll=1

From part (a), we have ||z||; < ||¢z]]. So, ||z]|1 = ||¢z] and ¢, is an
isometry.

Combining parts (a) and (b), we deduce that the map x — ¢, is a bijective
isometry from By(H) to By(H)*. O

Theorem can be thought of as a “non-commutative analogue” of the
well-known isomorphism ¢ 2 ¢'. We will now use Theorem to prove
the main result of this section.

Theorem 5.4.8. Let H be a Hilbert space. Then, the ideal By(H) C B(H)
1s a Banach algebra with the trace norm

[zlly = Tr(]z]).
Proof. Assume that H is a Hilbert space. From Lemma [5.4.3] we know that
II—1]1 is a norm on B;(H).
To show: (a) Bi(H) is complete with respect to the trace norm.

(b) If 2,y € By(H) then [zy[ly < [lz]l1[lyll:.

(a) We know that By(H) is isometrically isomorphic to the dual space
By(H)*, as a consequence of Theorem [5.4.7} Since By(H) is a closed
subspace of B(H), By(H) is a Banach space and hence, By(H)* is also a
Banach space. So, By(H) is complete with respect to the trace norm.

(b) Assume that z,y € Bi(H). Let xy = u|xy| be the polar decomposition
of xy. We compute directly that

|zylly = Tr(|zyl)
=Tr(u'zy) = |Tr(u*zy)|
< |Ju*z||Tr(ly]) (Lemma [5.4.2)
< ||z Tr(|yl)

< [lzli Tr(lyl) = Nyl

By combining parts (a) and (b), we deduce that B;(H) is a Banach algebra
with the trace norm ||—||;. O
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To finish this section, we note that there is a non-commutative analogue of
the isometric isomorphism (¢')* = (>,

Theorem 5.4.9. Let H be a Hilbert space. Fory € B(H), define
v, Bi(H) — C
r = Tr(yx).

Then, ¢, € B1(H)* and the map y — v, is a bijective isometry from B(H)
to Bl (H)*

Proof. Assume that H is a Hilbert space, y € B(H) and 1), is the map
defined as above. By linearity of the trace, it is easy to check that v, is a
linear map. To see that 1, is bounded, we argue similarly to Theorem

If x € Bi(H) then

[y ()] = [Tr(yx)] < [yl Tr(z]) = [[yllllzl < oo
So, 1, € Bi1(H)* and the above inequality shows us that ||, | < [|y]|.

Now, we will show that 1, is invertible. Assume that i) € B;(H)*. Define
the sesquilinear form F' by

F: HxH — C
(n.6) = w(mEl).
In order for F' to be well-defined, we must first show that if ,£ € H then
Im (&l € Bi(H).

To show: (a) If n,& € H then |n)(¢| € B1(H).

(a) If n = 0 then |n)(¢{| =0 € By(H). So, assume that n,& € H with n # 0.
Then,

() (&11* = (Imd(€D)™ (I &l) = 1&)mlim) el = InllPIe) el = InllPl€lPIC) <]

where ¢ = &/||¢]|. Since () (C]]¢)(¢| = [¢)(¢] (because ||C]| = 1),
Im (&l = lInllllElNO (<] and

[ &lll, = Tr([lmel]) = InllENTrA 6l = lnlllgl
Therefore, |n)(¢] € B1(H) and consequently, F is well-defined.

Next, we show that F'is bounded. We compute directly that
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[F(n, &) = (I} D] < Il Imyelll, = Il limllligl-

Hence, F'is a bounded sesquilinear form on H. For ¢ € H, we define the
bounded linear functional

}¥ - H — (:
n = F(n%).

By the Riesz representation theorem, there exists y € B(H) such that

Fe(n) = (yn, ).

Now let x € By(H) so that the polar decomposition of z is u|z|. Since
B(H) C By(H), = is a compact operator. From Theorem we can write

T = Zﬂn|90n><¢n|
n=1

and

x| = Zﬂn|¢N><¢n|
n=1

where {¢, }nez., and {¢, }nez., are orthonormal sets and {u,} is a
sequence in Ryg. By extending {1, } to an orthonormal basis for H, we can
use the above equation to deduce that

Tr(lz]) = Z:un = Z'Nn| < 0.
n=1 n=1

The quantity >~ | i, is finite because = € By(H). So, the sequence of
partial sums of "> | i, |¢n) (¥,| must also converge with respect to the
trace norm because

1n) @alll, = llenlllldnll = 1.
Consequently,
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o0

Tr(yz) =Y (yain, n)

n= 1

- Zﬂ’n y90n7¢n>
- Zﬂn (s ) = 3 () (¥
n=1

We find that ¢ = 1, on all of B;(H). Therefore, the map y +— 1, is a
bijection.

We finally show that ||| > ||y|| so that the map y — 1, is an isometry.

Assume that € € R.. Then, there exists 5 € H such that ||3]| = 1 and
llyBll > |ly|| — €. Define

=T8T BH 1Bl

Extend the orthonormal set {¢} to an orthonormal basis {¢,};es of H.
Now set z = |3){(¢|. Then,

[zl = IB[llloll = 1

and

¥y (2)| = [Tr(yz)|

= > (yre;, ¢))]

jeJ
> [(yxo, ¢)]

= (yB, ¢) = Ty 5”<y5 ,y)
= |lyBll > |lyll — e

Since € € R was arbitrary, we find that ||1,|| > |ly||. Therefore,

llyll = ||y ]| and the map y — 1, defines an bijective isometry from B(H)
to By (H)*. O

148



5.5 Hilbert-Schmidt operators on L>

Let (X, u)be a o-finite measure space such that the space L?(X, u1) is
separable. Let k(x,y) € L*(X x X, u x p). By Fubini’s theorem (see
[Cohl13l Theorem 5.2.2]), the function y — k(z,y) is square-integrable with
respect to the variable y. By subsequently integrating over x, we obtain

/X </X|’f<x7y>l2 dpy)) dp(x) = |[k]2: < oo,

Using the inner product on L?(X, ), we find that if ¢ € L*(X, ) then

/X k(x,y)(y) duly)

is well-defined for almost all z € X and a quick computation reveals that

[ [F i) aut) auta) < [ k)P dutw e duto
= kI )32 < oo

Now define the map

th: LA(X,p) — LQ(X ,u)
v = ()(x) = [y k( y) du(y)

Then, t; is a linear map, due to hnearlty of the 1ntegral. It is also bounded
because

[txll = sup [te()]l> < NIEllz2 ()2 = (K] >

¢ |L2:1
The bounded linear operator t; is called an integral operator and the
function k(x,y) is the integral kernel of the operator .

The next theorem demonstrates the connection of integral operators to
Hilbert-Schmidt operators.

Theorem 5.5.1. Let (X, u) be a o-finite measure space. Define the map

©: LHX x X,uxpu) — B(L*X,p))

Then, im ® = By(L*(X, 1)) and as an operator from L*(X x X, X p) to
By(L*(X, 1)), @ is a unitary map.
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Proof. Assume that (X, ) is a o-finite measure space and ® is the map
defined as above. Assume that k € L2(X x X, u x p).

To show: (a) @ is a isometry from L*(X x X, u x p) to Bo(L*(X, p)).

(a) Let {4 }ier be an orthonormal basis for L?(X, u). Then, {¢; ® ©;}ijer
is an orthonormal basis for

L*(X, 1) @ L(X, 1) = LX(X x X, p X pa).
For ¢,5 € I, there exists o, ; € C such that
k=) i 0i®%;
ijel
Let Z denote the family of finite subsets of I. For A € Z, define
ka= Z Q5 P @ Pj.
i,jeA
If ¢ € L*(X, ) and z € X then
(ra)@) = Y iy [ @@p)vly) duty)
ijeA X
With bra-ket notation, the above equation can be simplified as
te, = Y cujloa(e;]-
1,jEA
So, ty, € F(L*(X, u)) C Ba(L*(X, ) and
[tk = tiall = llt—rall < [k = Eallzz =0
as the cardinality of A tends to infinity. Since tj is the norm limit of finite

dimensional operators, ; must be a compact operator.

To see that t;, € By(L*(X, 1)), we must compute the quantity Tr(tty). If
s € I then
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— i
L s Alen% L, Qs

— }AIEH% Z C(i,j|801><90j‘90s

i,jEA
=lim D aisleawide
i,jEA
= LIEH% Z Qi sPi = Z QG sP;
ijeA iel
So,
ltpallZs = (tuon tipadre = 3 ol
icl
and
Tr(tite) = Y Ntepsllze = Y _laisl® = Ikl < oo.
sel i,s€l
Therefore, t), € Bo(L*(X, 1)) and im ® = By(L*(X, 1)). Moreover, the
above equation tells us that ||k||z2 = ||tk||7. So, ® is also an isometry from

LX(X x X, pu % i) to Ba(L*(X, 1)),

The image of ® contains the dense subset F(L*(X, )). In conjunction with
the fact that ® is an isometry, we deduce that ® must be unitary. O]

One consequence of Theorem is that if t € B(L*(X, u)) is an operator
which can be written as an integral operator with square-integrable integral
kernel k(x,y) € L*(X x X, u x ) then t is a Hilbert Schmidt operator on
L?*(X, ) and is thus, compact by Theorem | Thus, Theorem [5.5.1]

provides us with a method to determine if an operator is compact.
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Chapter 6

Functional calculus for families
of operators

6.1 Preliminary results on C*-algebras

In this chapter, we are interested in extending the continuous functional
calculus to families of commuting self-adjoint operators and normal
operators. The method presented in [Soll8, Chapter 7] relies on a few
results on C*-algebras. These results are located in [Soll8, Appendix
A.5.2], but for the sake of completeness, we will work through them here.

Much of the notation we have established for bounded operators on a
Hilbert space extend to C*-algebras.

Definition 6.1.1. Let A be a C*-algebra. We say that an element a € A is
positive if a is self-adjoint and o(a) C [0, c0).

Let a,b € A. We say that a < b if and only if b — a is a positive element of
A.

Similarly to the case of bounded operators on a Hilbert space, every
positive element of a C*-algebra has a unique square root.

The first preliminary result we need states that in any left ideal of a unital
C*-algebra, we have an “approximation to the unit” lying entirely in the

left ideal.

Theorem 6.1.1. Let A be a unital C*-algebra (with unit 1) and let L be a
left ideal of A. Let I be the set of pairs (n, F) such that n € Z~y and F is a
finite subset of L. Then, we can define a partial order on I by stating that
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(n, F) 2 (n/, F') if and only if n <n’ and F C F’.
Then, there exists a sequence {e;}icr of positive elements of L such that

1. Ifi el then0 <e; <1.
2. Ifi = j then e; < e;.

3. If a € L then ||a — ae;|| — 0 as i — oo, with respect to the partial
order < on I.

Proof. Assume that A is a unital C*-algebra. Assume that L is a left ideal
of A. Assume that (I, <) is the poset defined as above. For i = (n, F') € I,
define

1
= Zb*b and e = (EH + ;) .

beF

Note that v; € A is a positive element due to the analogous result of
Theorem [2.3.5 as applied to C*-algebras. Since v; is positive, the continuous
functional calculus for C*-algebras applies so that in the above definitions,

t
t+ 1+
for t € o(v;) C [0,00). Now observe that if ¢ € [0,00) and n € Z~( then
0 < fult) <1. 80,0 < fu(vi) = €; < 1.

e; = fu(v;))  where  fu(t) =

Now let i = (n, F) and j = (n/, F’) be elements of I such that ¢ < j. Then,
v; < v; because

=V = Z b*b

beF'—

is a positive element of A. By the analogous result to Lemma [2.3.9] we find
that

1 —1 1 —1
_ , > (= A
(o) 2 ()

Next, we know that if ¢t € [0, 00) then

1.1 1.1
t — (=4t
n(n+) n’(n+>

and subsequently, as elements of A,
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11 11
S tu) T 2 S )

With these two inequalities, we find that

1 1,1

1
(= Nl s Z (2 N> _ N1
)2 () 2 (S )
and
1.1 1 1,1 _1
ﬂ—ﬁ(ﬁ—FUl) Sl_ﬁ(ﬁ—i_’l}j) .
Now, we observe that
1 1 1 1 1.1
i=(Cl4v) o= (=140) (=l +v——1)=1——(=+uv)"".
= (1w o= (C1+u) (L bu— 1) =1- (- +v)

Similarly, e; =1 — 5 (2 +v;) ! and ¢; < ¢;.

For the final assertion, assume that a € L and let i = (n, F') € I so that
a € F. Since ¢; =1 — (2 4 v;)7" and

for t € [0, 00), we have

D1 =) (b1 =) = (L—e)(D_bb)(L —e)

beF beF
= (]1 — ei)vi(]l — Gz)
I S 5 T
—n(n—l—vl) vln(n—l—vz)
1.1 _ 1
- E( + UZ') 21}1 < El
Since a € F,

(a1~ )" (a1 — ) < 301 - )" (b(1 ) < 71
Consequently,

o — aedl? = fla(d = e = (a1 — ))*(a(1 = )] < 7 =0

as n — 0o. This completes the proof.
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One particular application of Theorem [6.1.1|is to show that a closed ideal
in a unital C*-algebra is self-adjoint.

Theorem 6.1.2. Let A be a unital C*-algebra and J be a closed ideal in A.
Then, J is self-adjoint.

Proof. Assume that A is a unital C*-algebra and J is a closed ideal of A.
By Theorem [6.1.1] there exists a sequence {e; };e; such that

a = lim ae;.
iel

The limit is with respect to the norm topology on A. Since J is a two-sided
ideal, e;a* = (ae;)* € J. Since J is a closed subset of A, the limit

a* = lime;a* € J.
icl

So, J is a self-adjoint ideal. O

We know that if X is a Banach space and S is a closed subspace of X then
the quotient X/S is also a Banach space, with quotient norm given by

|z + S|| = inf||lx + s||.
ses
The next theorem shows us how to produce quotient C*-algebras.

Theorem 6.1.3. Let A be a unital C*-algebra and J be a closed ideal of A.
Then, the quotient space AJJ with quotient norm is a C*-algebra,

Proof. Assume that A is a unital C*-algebra and J is a closed ideal of A.
By Theorem [6.1.2] J is a self-adjoint ideal of A. So, A/J is a unital
*-algebra because the involution map * becomes well-defined from A/J to
A/J. Furthermore, since J is a closed subspace, A/.J is a Banach space
with the quotient norm

|la+ J|| = inf||a + ul|
ueJ

for a € A.
To show: (a) If a € A then ||a* + J|| = |la + J||.
(b) If a,b € A then ||[(a+ J)(b+ J)| < |la+ J||||6+ J||-

(a) Assume that a € A. Since J is self adjoint, we have
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la* + J| = ll(a+ J)*[| = lla+ J]|.
(b) Assume that a,b € A and € € R.g. By the definition of the quotient
norm as an infimum, there exists u,v € J such that

lat+ull <lla+ Jl[+e and o+ vf| < [lo+ J[| +e€

From this, we compute directly that

lab+ J|| < ||ab+ (av + ub + uv)||
= (@ +u)(b+v)]l
< |la+ul|]b +v|| (since A is a C*-algebra)
< (la+JI[+e)([o+ ] +¢€)
= la+ J|||b+ J|| +€e(l|la+ J||+||b+ J|| +€).

Since € € Ry was arbitrary, we find that [[ab+ J|| < ||a + J||||b + J]|.
To show: (c¢) |la+ J||* = ||a*a + J||.
(c) By parts (b) and (a), we first have

la*a+ J|| < |la*+ Jlllla+ J|| = [la+ J||*.

To establish the other inequality, let {e;};,c; be a sequence in J constructed
from Theorem Since ae; € J,

la+ JI| < lla — aei]

for i € I and hence,

lla + J|| <inf|la — ae;|.
i€l
Now for any u € .J, we have
la + ul] = [[(a +u)(1 — &)

because ||1 — ¢;]| < 1. Therefore,

lla + ul| > limeilan(a +u)(1 — &)
= lim %nf||(a —ae;) + (u— ue;)||
1€

= liminf||a — ae;|| > inf|ja — ae;]|.
i€l iel
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In the second equality, we used the fact that u — ue; — 0 as [ increases
with respect to the partial order < in Theorem If we take the
infimum over all v € J, we find that ||a + J|| > inf;c/||a — ae;|| and

la + J|| = inflla — aei].

Therefore,
la+ J|* = inflla(l - e)|*
— inf]|(1 - e)a"a(1 - &)
< inflla*a(l — e;
< inffla"a(1 - e,
= ||a*a + J|.
By parts (a), (b) and (c), A/J is a C*-algebra. O

The next theorem we require is a generalisation of Lemma [3.2.3]

Theorem 6.1.4. Let A and B be unital C*-algebras. Let ® : A — B be a
unital *-homomorphism. Then, ® is a contraction and ®(A) is a closed
unital C*-subalgebra of B. Moreover, if ® is injective then ® is isometric.

Proof. Assume that A and B are unital C*-algebras. Let 14 € A be the
unit in A and 1p be the unit in B. Assume that ® : A — B is a unital
*_homomorphism. Assume that a € A.

To show: (a) o(®(a)) C o(a).

(a) Assume that A € p(a) so that A1, — a € A is invertible. By applying ®
to the equality (A4 — a)(Alg —a)™! = 14, we find that

(Mg — ®(a))(Mp — ®(a)) ™ = B(1,) = 15.

Similarly, (A1 — ®(a))"'(A1gp — ®(a)) = 15. So, A € p(®(a)) and
p(a) C p(®(a)). By taking complements, we find that o(®(a)) C o(a).

Now suppose that a € A is self-adjoint. Then,

[@(a)]| = [o(®(a))] < |o(a)] = [lall

Now take an arbitrary element b € A. Then, b*b € A is self-adjoint. So,
|D(b*b)|| < ||b*D||. Since ® is a unital *-homomorphism, we deduce that
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[2O)[* = (@) @(b)|| = |2(6"b)]| < [[b"b]l = [Ib]]*.

Hence, we have proved that if b € A then ||®(b)|| < ||b]|. So, @ is a
contraction.

Now assume that ® is injective. To show that ® is an isometry, we can
recycle the argument we used to show that ® is a contraction. It suffices to
prove that if a € A is self-adjoint then o(®(a)) = o(a).

To show: (b) If a € A is self-adjoint then o(a) C o(P(a)).

(b) We already know that o(®(a)) C o(a). Suppose for the sake of
contradiction that o(®(a)) # o(a). Then, there exists f € Cts(o(a),C)
such that f # 0, but f =0 on o(®(a)). We know that ®(f(a)) = f(P(a))
because this holds for polynomials and & is continuous (since it is a
contraction).

However, since f =0 on o(®(a)), f(a) € ker ®. Since P is injective,
f(a) =0 and f =0 on o(a), which contradicts the assumption that f # 0
on o(a). Therefore, o(P(a)) = o(a).

By combining part (b) with the previous argument, we deduce that if ® is
injective then ® is an isometry as required.

Finally, we return to the case where ® may not be injective. We already
know that the image ®(A) is a unital C*-subalgebra of B because ¢ is a
unital *-homomorphism.

To show: (c¢) ®(A) is a closed subset of B.

(c) The idea is to factorise ® through the quotient C*-algebra A/ ker ®.
There exists a unique unital *~homomorphism such that the following
diagram commutes:

A —"— A/ker®

I
|
® v

B

The key here is thatfi) is an injective unital *-homomorphism from A/ ker ®
to B. By part (b), ® is an isometry. Since the image of an isometry is
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closed,

D(A) = O(A/ ker D)
is a closed subset of B. This completes the proof. O

An important consequence of Theorem is that the norm of a
C*-algebra must be unique.

Theorem 6.1.5. Let A be a unital C*-algebra and ||—||1, ||—||2 be two
norms on A. If a € A then ||ally = ||a|z.

Proof. Assume that A is a unital C*-algebra and ||—||1, ||—]||2 be two norms
on A. Let id : A — A be the identity map from (A, ||—||1) to (A, [|—]2)-
Then, id is injective and by Theorem [6.1.4] id is an isometry. Therefore, if
a € A then

lalls = llzd(a)l2 = llall.

For the purposes of the sections which follow in this chapter, we are
particularly interested the unital C*-algebra C'ts(X,C), where X is a
compact, Hausdorff topological space. Let J be a closed ideal in Cts(X,C)
and define

Y={zeX|f(x)=0for f € J}.

Note the eerie resemblance to the definition of an affine variety. By writing

Y =(]r"y{o}.

feJ

we find that Y is a closed subset of X. Next, we claim that X\Y is a LCH
(locally compact Hausdorff) topological space. Let us first recall the
definition of a LCH space.

Definition 6.1.2. Let (X, 7) be a topological space. We say that X is a
locally compact Hausdorff space if X is Hausdorff and if x € X then
there exists a compact set K C X such that z € K.

To see that X'\Y is a LCH space, note that X\Y is a (topological)
subspace of X and is hence, Hausdorff. Assume that xy € X\Y. Since X is
compact and Hausdorff, X must be a normal topological space.

159



Now we can apply Urysohn’s lemma to the disjoint closed sets Y and {x¢}.
There exists a continuous function f : [0,1] — X such that f|y =0 and
f(xo) = 1. Now if N is a compact neighbourhood of zy in X then the set

NfreX| )= 5)

qualifies as a compact neighbourhood of z in X\Y. Therefore, X\Y is a
LCH space. This leads us to our next definition.

Definition 6.1.3. Let X be a compact Hausdorff space and J be a closed
ideal of Cts(X,C). Let

Y={xeX| f(r)=0for feJ}
Define Cy(X\Y') to be the algebra
Co(X\Y)={f e Cts(X,C) | f(y) =0fory € Y}.

Inheriting the norm from the C*-algebra Cts(X,C), we find that Cy(X\Y)
is itself a C*-algebra. Note that Cy(X\Y) is not a unital C*-algebra.

Theorem 6.1.6. Let X be a compact Hausdorff space and J be a closed
ideal of Cts(X,C). Let

Y={zeX|f(zx)=0 for f e J}.
Then, Co(X\Y) = J.

Proof. Assume that X is a compact Hausdorff space and J is a closed ideal
of Cts(X,C). Assume that Y is the set defined as above.

By definition of Cy(X\Y'), we have J C Cp(X\Y).

To prove the reverse inclusion, we will invoke the Stone-Weierstrass
theorem for LCH spaces. The key fact which allows this is that Co(X\Y) is
isomorphic to the algebra of continuous functions from X'\Y to C which
vanish at infinity. A function f € Cts(X\Y,C) vanishes at infinity if for

0 € Ry, the set

{r e X\Y [ |f(2)] = 6}
is a compact subset of X\Y.
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Since J C Co(X\Y) is a closed ideal, it is a non-unital subalgebra of
Co(X\Y).

To show: (a) If x € X\Y then there exists f € J such that f(x) # 0.

(b) If x1, 25 € X\Y such that x; # x5 then there exists f € J such that
f(%) # f(xz)‘

(a) Suppose for the sake of contradiction that there exists z € X\Y such
that if f € J then f(z) = 0. By definition of Y, this means that x € Y,
which contradicts the assumption that © € X'\Y. So, there exists f € J
such that f(z) = 0.

(b) Assume that x;, 29 € X\Y such that z; # z5. By part (a), there exists
f € J such that f(a:l) # 0. By applying Urysohn’s lemma to the sets {x;}
and {x2}, we construct a continuous function g € Cts(X, C) such that
g(z1) =1 and g(22) = 0. Now define f = fg. Since J is an ideal of
Cts(X,C), f e J. Also, f(z1) # 0 and f(za) = 0. So, f(x1) # f(x2).

From parts (a) and (b), we can safely apply the Stone-Weierstrass theorem
to the closed subalgebra .J, in order to deduce that J = J = Cp(X\Y). O

Finally, it turns out that the quotient space Cts(X,C)/J has a neat
characterisation.

Theorem 6.1.7. Let X be a compact Hausdorff topological space andY be
a closed subset of X. Let J = Co(X\Y) be the algebra of continuous
functions on X which vanish on'Y . Define the map

g: Cts(X,C)/J — Cts(Y,C)
f+J = fly

Then, [ is a *~isomorphism.

Proof. Assume that § is the map defined as above.
To show: (a) (3 is a well-defined unital *~homomorphism.

(a) Let 7 : Cts(X,C) — Cts(X,C)/J be the canonical projection map and
R: Cts(X,C) — Cts(Y,C) be the map which sends f € Cts(X,C) to its
restriction f|y € Cts(Y,C). Notice that if g € J = Co(X\Y) then

R(g) = 0. By the universal property of the quotient, there exists a unique
unital *-homomorphism f such that the following diagram commutes:
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Cts(X,C) —— Cts(X,C)/J

|

Cts(Y,C)

This construction demonstrates that 5 is indeed a well-defined unital
*_homomorphism.

To show: (b) [ is injective.
(c) B is surjective.
(b) Observe that

ker R={f € Cts(X,C) | f(y)=0forye Y} =J.
Hence, ker 5 = J + J = {0} and so,  is injective.

(c) Assume that h € Cts(Y,C). Observe that Y is a closed subset of the
normal topological space X. By Tietze’s extension theorem, there exists a
continuous function F' € Cts(X,C) such that R(F) = F|y = f. So,

B(F + J) = F|y = f and consequently, (3 is surjective.

By combining parts (a), (b) and (c), we deduce that j is a *-isomorphism.
Note that by Theorem [6.1.4] § is also an isometry. m

6.2 Holomorphic functional calculus for
commuting operators

Let H be a Hilbert space and ay, ..., a, € B(H) be pairwise commuting
operators. Define

n

Ha(ai) =o(a1) X o(ag) X -+ x o(a,) C C".

i=1
As a topological space, [[;_, o(a;) is a compact Hausdorfl space. Let

Hol(IT;_, o(a;),C) be the algebra of functions which are holomorphic on a
neighbourhood of [];_, o(a;). Now define for f € Hol(][}_, o(a;),C)
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f(al, Ce ,an) = (%m)n‘%r cee ﬁi f()\h ceey )\n)()\ll—al)_l e ()\nI—Cll)_l d)\l . d)\n

(6.1)
Here, I'y, ..., T, are positively oriented curves in C such that if
i€{1,2,...,n} then I'; surrounds o(q;) and [[}_, o(a;) is contained in the
domain of holomorphy of f. As in the one variable case, the value of the
integral does not depend on the choice of curves I',...,T',.

The generalisation of Theorem [3.4.2| we will study here is

Theorem 6.2.1. Let H be a Hilbert space and ay,...,a, € B(H) be
commuting self-adjoint operators. Define the map

AH,multi : HOZ(H?:l O'(CLZ‘), C) — B(H)
f — f(al,...,an)

where f(a,...,a,) € B(H) is given by equation (6.1)). Then, Agmuz s a
unital *~homomorphism.

Proof. By the linearity of the Bochner integral, we know that Ay . is a
linear map.

Next, let k € {1,2,...,n} and N € Zx¢. Let f € Hol(][;_, o(a;),C).

To show: (a) If f(A,...

,An) = AY then f(ay,...,a,) =al (recall that
f(ala cee 7an) - AH,multi(f

))-
(a) Choose the positively oriented curves I'y, ..., I, so that if
i€ {l1,2,...,n}, the curve I'; lies in the set

{zeCllzl > llaill} < plas).

By a direct computation and Cauchy’s theorem, we have
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1
(_)nf e ]{ Ai;v()\lf — al)_l ce (A = an)_l dXi...d\,
I'n

itk

Note that this computation proceeds analogously to the one in Theorem
0.4.2)

To show: (b) If f,g € Hol([[\, o(a;),C) then
flag,...;an)g(as, ... a,) = (fg)(ay,...,a,).

(b) We claim that if 4,5 € {1,2,...,n} then the resolvents (\;] — a;)~! and
(A\;I — aj)~! commute. To see why this is case, note that \;J — a; and

A — aj commute. So, (\iI — a;) (NI —a;)~" and

(AT —aj) ' (NI — a;)! are both inverses to (A — a;)(\j] — a;). Hence,
the resolvents (A1 — a;)~! and (A\;] — a;)~" commute.

Let I'y,..., I, I, ..., I, be positively oriented curves such that if
i€{l1,2,...,n} then I'; and I'; surround the set o(a;). Moreover, the sets

Hrz:{<b177bn) eC" ‘ bl EF@}
=1

and ], I"} lic in the intersection of the domains of holomorphy of f and g.
We also want the curve I} to lie outside of T';. By Lemma [3.4.1]
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fal,..., al,..., )

- 2m jf FObr e A E)\I L. dA)

'y
(2_7”)” 7{/ T : 9(#17 . a,Un) H(H’ij - &i)_l dpy .. -dllm>
=1

: f{ jé]{ F,fAl,..., g, )

1
(0

H (NI = )™ (il — a))™Y) di ... dhdps - dpy,
=1

L

3

i ]{ /{173 F,f>‘17~--> )9, - - fin)

n

11 ¢

o M — )\i

(NI —a) ' = (il —a)™") dhi .o dhdps - .. dp.

The idea is that if we expand the quantity

1
(Mi — )\i((/\ij —a;)" = (il —a;)™))
then we obtain a linear combination of terms which are a product of some
(Al — a;)~t and some (ul — a;)~1. Fortunately, we chose the curves
I'y,..., " so that the integral of any term with at least one (u;I — a;)! is
equal to zero.

For instance, let n = 3 and consider the integral of one particular term in
the expansion

j[ FOL gy A3)g (1, oy f13)
I's I

1 1 1
I—a) Yo —ay) Y (NI —a3) td)...d
)\1 ,UQ_)\Q,UJ?)_)\?,(MI al) ( 2 a’2) (3 a3) 1 H3

f>\17)\27)\3)
fég 7{ L — M h)

" g(pn, pas ps) (ad — ar) " (Aol — a2) (Al —ag) ™ dXg ... dps

—>\2M3—

Observe that the map A — % is holomorphic in a contractible region

containing the curve I'y. Note that A; # p1 because the curve I'} lies
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outside I'y. Therefore, the above integral is zero.

Returning to our expression for f(ay,...,a,)g(ai,...,a,), we can eliminate
all terms which contain at least one (u;I — a;)~'. Therefore,

CL1,.. CL1,..
(Mg, ... T
27_” f % é/ r f 1, ) ) (,ula y K )

n

H(M_A.““ @) = Gl = @) ™)) A\ dadpn - dpy

:<271m ]{ jff F/f/\l,..., D0, 1)

- H)\I L ... du,

II

2‘1“2_)‘

1 ul, 5 ,un>
e d .d
<27T2 f f )‘17 ’ 2’/TZ f/ " H ) M1 - lun)

H(u a;) " d) ... d,

27” 7{ f )\1,...,An)g(kh...,)\n)Jl_[l()\j]_aj)—l ... d\,
= (fg)(a17‘”;an)-

In the second last equality, we used the multi-dimensional version of
Cauchy’s integral formula to obtain the factor g(\i, ..., \,).

Part (b) in tandem with linearity of Ay ue reveals that A e is a
*-homomorphism. Part (a) tells us that Ay e is unital. This completes
the proof. O

In the scenario of Theorem [6.2.1] a weaker version of the spectral mapping
theorem applies.

Theorem 6.2.2. Let H be a Hilbert space and ay,...,a, € B(H) be
pairwise commuting operators. Let P be a polynomaial in the polynomaial
ring Clxq,...,x,]. Then,

o(P(ay, ..., a,)) C P(Ha(ai)) ={P(\1,..., ) | N € o(a)}.

166



Proof. Assume that H is a Hilbert space and a4, ...,a, € B(H) are
pairwise commuting operators. Assume that P(z1,...,2,) € Clzy, ..., x,].

To show: (a) If & P([]\—, 0(a;)) then u & o(P(ay,...,a,)).
(a) Assume that p & P(]]., o(a;)). Then, the function
[+ Il 0(a) — C
(21,...,Zn) —

is an element of the algebra Hol(]]}_, o(a;),C). Also, the map

g: (21, 2n) = — P(z1,...,2,) is an element of Hol(][}_, o(a;),C). By
Theorem [6.2.1], we can use the fact that Ag g is a unital
*_homomorphism to deduce that

AH,multi(f)AH,multi (g) = AH,multi(fg> = AH,multi(l) =1.

By the same argument, we also have Ag muiti () Ammui(f) = I. Since

Agmuei(f) = f(ar, ... an) and Ag muni(9) = p— Plas, . . ., an),
p € p(P(ay,...,a,)). Therefore, o(P(as,...,a,)) C P([T, o(a)). O

6.3 Continuous functional calculus for
commuting self-adjoint operators

Theorem plays a key role in establishing the continuous functional
calculus for pairwise commuting self-adjoint operators.

Theorem 6.3.1. Let H be a Hilbert space and ay,...,a, € B(H) be
pairwise commuting self-adjoint operators. Then, there exists a unique
unital *~homomorphism

Apaii = Cts([T, 0(a;),C) — B(H)
f = flay, ... a,)

such that if w; : [, o(a;) — o(a;) is the projection operator onto the j*
component then

miar, ... a,) = a;

forj€{1,2,...,n}.
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Proof. Assume that H is a Hilbert space and ay, ..., a, € B(H) be pairwise
commuting self-adjoint operators. Define the map

Apoty Poly([];-, 0(%),@) - B(H)

21 7 i1 1
Zz‘l,...,in Qiy g T T leln Qi Q. al
_ 1 i : :
Let P(z1,...,x,) = Z“zn Qy,in @y ... 22 be a polynomial function so
that Apoy (P(21,...,2,)) = P(as, ..., a,). Since ay, ..., a, are commuting
self-adjoint operators, P(aq,...,a,) is a normal operator.

So, we can use Theorem to obtain

|P(ay,...,a,)|| = |o(Play, ..., a,))|
< sup{|P(Ai, ..., )] [ A € a(ai)} = || Plloo

The first equality follows from the fact that P(a4,...,a,) € B(H) is a
normal operator. The second inequality uses Theorem [6.2.2

It is easy to check that Ap,, is a unital *-homomorphism. For
j €{L1,2,...,n}, the projection map m; € Poly([[;_, o(a;), C) satisfies
Apoiy(m;) = a;.

By the Stone-Weierstrass theorem and the estimate

|P(a1, ... a,)| < ||Plloo, we find that Ap,, uniquely extends to a unital
*-homomorphism A, : Cts([[;—, 0(a;),C) — B(H) which satisfies

At Poly (I, o(a),c) = Apoty- This completes the proof. O

There is one significant difference between Theorem and Theorem
The *-isomorphism A in Theorem is an isometry, whereas in
Theorem [6.3.1] Ay is merely a contraction mapping. The natural
question which stems from this observation is: can we modify the statement
of Theorem so that we obtain an isometry from a subset of

Cts(I1;-, o(a;),C) to B(H)?

The answer to this question is yes and this is where our preliminary results
on C*-algebras come into play. Let X =[], o(a;). Then, X is a compact
Hausdorff topological space. Define

J={fe€Cts(X,C) | f(ay,...,a,) =0}.

It is easy to check that J is an ideal in Cts(X,C). By Theorem and
Theorem [6.1.7] if
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Y={zxeX|f(x)=0for feJ}
then Co(X\Y) = J and Cts(Y,C) = Cts(X,C)/J as Banach *-algebras.

In the scenario of Theorem [6.3.1] ker A,,.;;; = J. So, the unital
*-homomorphism A,,.;;; factorises through the quotient Cts(X,C)/J.

By Theorem [6.1.7, we obtain a isometric unital *~homomorphism
AC,multi : CtS(X, (C)/J = CtS(K C) — B(H)
f+J = flay,...,a,)

Definition 6.3.1. Let H be a Hilbert space and aq,...,a, be pairwise
commuting self-adjoint operators. The isometric unital *-homomorphism
Ac i : Cts(Y,C) — B(H) is called the continuous functional
calculus for the operators aq, ..., a,.

The set

Y={zeX|f(x)=0for f € J=ker Apui}

is called the joint spectrum of the operators aq, ..., a, and is denoted by
the symbol o(ay, as, ..., a,).

By the definition of the joint spectrum, a point
(p1, .-y pn) € X\o(aq,...,a,) if and only if there exists a function
f € Cts(X,C) such that f(u1,...,u,) #0, but f(a,...,a,) =0.

6.4 Functional calculi for normal operators

In this section, we will use the continuous functional calculus in Definition
[6.3.1] to extend the continuous functional calculus in Theorem 2.2.1] to
normal operators.

Let 2 € B(H) and define Re(z) = 3(z + 2*) and Im(z) = 5-(x — x*). Then,

Re(z) and Im(x) are self-adjoint operators and x = Re(x) + iIm(x).

Lemma 6.4.1. Let H be a Hilbert space and x € B(H). The operator x is
a normal operator if and only if Re(x) and Im(x) commute with each other.

Proof. Assume that H is a Hilbert space and = € B(H).
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To show: (a) If x is a normal operator then Re(z) and Im(z) commute
with each other.

(b) If Re(x) and I'm(x) commute with each other then x is a normal
operator.

(a) Assume that z is a normal operator. Then,

1 1
Im(z) = o (e —at
Re(x)Im(x) 2(93+3U )22(3? ")
1 1 . X
1 1 2 * 3 * 2
2527(35 —zx* + 2t — (z7)%)
1 1
=5 Z<x2 —a*r + xrt — (%))
1 1
1 1
=5 2—2(:1; —a")(x + 2*) = Im(x)Re(x).

So, Re(x) and I'm(z) commute with each other.

(b) Assume that Re(z) and Im(x) commute with each other. Then,
Re(z)Im(z) = Im(z)Re(x) and expanding both sides, we find that

1 1 1 1

2 * * *\ 2 2 * * %\ 2
- —=(x"—xx" + 27— (z =—-—(z° —2"x+xx" — (27)%).
2o Fatr— (@) = 5 oo aat = ()
So, x*xr — xx* = xx* — x*x and by rearranging, we have x*x = xx*. So, x is
normal. ]

The key step to extending the continuous functional calculus in Theorem
to normal operators is to link a normal operator x € B(H) to the
joint spectrum o(Re(zx), Im(z)).

Theorem 6.4.2. Let H be a Hilbert space and v € B(H) be a normal
operator. Then,

o(z) ={a+ib]| (a,b) € o(Re(x),Im(x))}.

Proof. Assume that H is a Hilbert space and x € B(H) is a normal
operator.
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To show: (a) o(z) C {a+ib]| (a,b) € o(Re(x),Im(x))}.
(b) {a+ib | (a,b) € o(Re(x), Im(zx))} C o(z).

(a) We will prove the contrapositive of this statement. Assume that
(¢,d) & o(Re(x),Im(x)). Then, the function

f: o(Re(z), Im(z)) — C

(@b~ e

is an element of Cts(o(Re(z), Im(x)),C). By the continuous functional
calculus in Definition [6.3.1] we find that f(Re(x), Im(x)) is the inverse of
the operator (¢ + di)l — (Re(x) + iIm(x)) = (¢ + di)l — x. Therefore,
c+di € p(x) and o(z) C {a+1ib| (a,b) € o(Re(x),Im(x))}.

(b) We will also prove the contrapositive statement. Assume that A € p(x)
and define r = Re(\) and s = I'm(\). Suppose for the sake of contradiction
that (r,s) € o(Re(x), Im(x)).

Assume that € € Rog. Let f € Cts(o(Re(z), Im(x)),C) be such that
Ifllo <1, f(r,s) =1 and the support of f is contained in the set

{(p.g) €C* [ (p—71)*+ (q—s)* < €}
Write

1

f(Re(z), Im(x)) = f(Re(x), [m(a:))((?“ +is)] — x) ((T +is)l — :B)i
so that

1f (Re(x), Im(2))]| < | f(Re(@), Tm(a)((r +is)] = 2) || ((r +is)T —2) "]
Now, observe that

(r+is)l —x = (r+is)l — (Re(x) + iIm(z)) = g(Re(x), Im(x))

where ¢g(p,q) = (r +is) — (p + iq). Using the continuous functional calculus
in Definition |6.3.1], we find that

1f(Re(z), Im(2))((r +is)I — x)|| = |[f(Re(x), Im(x))g(Re (), Im(x))|
= [I(fg)(Re(x), Im(z))]|
< [fgllse < [[fllscllglloe <€

171



The final inequality follows from the fact if (p,q) € supp(f) then
l9(p, q)] < €. So,

1
I

1f (Re(x), Im(2))|| < €|l ((r +is)] —z)

Since f(r,s) =1, ||f(Re(x), Im(x))|| > 1. However, € € R.q is arbitrary.
So, || f(Re(x),Im(x))|| is arbitrarily small, which contradicts the fact that

| f(Re(x), Im(z))|| > 1. So, (r,s) & o(Re(z), Im(x)) and

{a+ib| (a,b) € o(Re(x),Im(z))} C o(x). O

We will now use Theorem [6.4.2] to extend the continuous functional calculus
to normal operators.

Theorem 6.4.3. Let H be a Hilbert space and x € B(H) be a normal
operator. Then, there exists a unique unital *~homomorphism

Ay : Cts(o(z),C) — B(H)

f = flz)
such that if f(X\) = X for A € o(x) then f(x) = x. Moreover, f — f(x) is
an isometric *~isomorphism from Cts(o(x),C) onto C*(x,I) — the

C*-algebra generated by x and the identity operator I.
Proof. Assume that H is a Hilbert space and z € B(H) be a normal
operator. By Theorem [6.4.2]
o(z) ={a+ib]| (a,b) € o(Re(x), Im(z))}.
To show: (a) Cts(o(z),C) = Cts(o(Re(x), Im(x)),C) as C*-algebras.

(a) Assume that f € Cts(o(z),C). Define

e o(Re(x), Im(z)) — C
(u,v) = f(u+v)

This function is well-defined because

o(z) ={a+ib]| (a,b) € o(Re(x), Im(z))}.
Now define the map

®: Cts(o(x),C) — Cts(o(Re(x),Im(z)),C)

~

f = [

It is straightforward to check that ® is a unital *~homomorphism. To see
that ® is an isometry, we have for f € Cts(o(x),C)
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[fllsc = sup [f(N)]

A€o (x)

= sup |f( A1+ iXg)|

(AM,22)€0(Re(z),Im(x))

= sup | f (A1, A2)]

(A1,A\2)E0(Re(z),Im(x))

= [ flloe = 12(F)]loc-

To see that @ is invertible, assume that g € Cts(o(Re(zx), Im(z)),C).
Define ¢’ : o(x) — C by ¢'(u + iv) = g(u,v). Then, the map g — ¢’ is the

required inverse for ®.

So, ® defines an isometric *-isomorphism between the C*-algebras

Cts(o(x),C) and Cts(o(Re(x), Im(z)),C).

Using the isometric *-homomorphism A¢ e in Definition [6.3.1] define

Ay : Cts(o(z),C) — B(H) to be the composite

Cts(o(z),C) —2— Cts(o(Re(x), Im(z)),C) Aoy B(H)

This is a isometric unital *-homomorphism which sends f € Cts(o

-~

Ay (idy(q)) = z@(Re(m), Im(z)) = = by Theorem

Now, polynomials in Re(z) and I'm(z) span a dense subalgebra of

6.3.1

So, f(x)

Cts(o(Re(z), Im(z)),C) = Cts(o(x),C). By the Stone-Weierstrass

theorem, the condition f(z) = x determines Ay uniquely.

(z)
f(Re(z),Im(x)) = f(z). If f=1ids) is the identity map on o(x) the

,C) to
n

x.

Finally, the image of Ay contains all polynomials in z and z*, which is

dense in the C*-algebra C*(z, I). Since the image of a *-homomorphism
between C*-algebras is always closed by Theorem [6.1.4] we deduce that
im Ay = C*(x,I). Consequently, Ay is an isometric *-isomorphism

between Cts(o(x),C) and C*(x, I).

]

With the continuous functional calculus for normal operators in Theorem
we are able to extend important theorems pertaining to the
continuous functional calculus for self-adjoint operators to the case of

normal operators. The proofs of such theorems are virtually the same as
their counterparts for self-adjoint operators. We state them below.
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Theorem 6.4.4 (Spectral mapping theorem). Let H be a Hilbert space
over C and x € B(H) be a normal operator. If f € Cts(o(x),C), then

o(f(x)) = flo(x)) = {f(A) [ A €a(x)}.

Theorem 6.4.5 (Composition). Let H be a Hilbert space over C and
x € B(H) be normal. If g € Cts(o(x),C) then the operator g(x) is normal
and if f € Cts(o(g(x)),C), then f(g(x)) = (f o g)(x).

Theorem 6.4.6 (Spectral theorem with multiplication operators). Let H
be a Hilbert space over C and x € B(H) be a normal operator. There exists
a semifinite measure space (X, 1), an essentially bounded measurable
real-valued function F' € L*>(X, u) and a unitary operator

w: L*(X,u) — H such that

T =uMpu®.

Theorem 6.4.7 (Borel functional calculus). Let H be a Hilbert space over
C and x € B(H) be a normal operator. Let Bor(o(x),C) denote the
C*-algebra of bounded Borel functions on o(x) (recall that o(x) is a
compact subset of C). Then, there exists a unique unital *-homomorphism

Apn: Bor(o(z),C) — B(H)
f = f(z)
such that

1. If for all X € o(x), f(A) = X then f(z) = x.
2. If { fu}tnez~, is a uniformly bounded sequence in Bor(o(x),C)
converging pointwise to f : o(x) — C then f,(x) = f(x) asn — oo in

the strong topology.

3. The restriction Ap n|cts(o@),c) = An, where Ay is the isomorphism in

Theorem [6.4.3.

We emphasise that Theorem is the Borel functional calculus for
normal operators, which extends Theorem [3.2.4]
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Chapter 7

Unbounded operators

7.1 Graphs of unbounded operators

This chapter serves as an introduction to unbounded operators, which
appear often in fields such as the analysis of PDEs and mathematical
physics. One of the main reasons why unbounded operators are more
difficult to analyse than their bounded counterparts is because there is a
noticeable lack of algebraic structure on unbounded operators. Compare
this to the space of bounded operators B(H) on a Hilbert space H, which is
a C*-algebra by Theorem [1.1.1]

The reference [Sol18] approaches unbounded operators by reducing
questions about unbounded operator to questions about bounded operators.
The main tool to achieve this is the z-transform, which was introduced by
S.L Woronowicz in the more general context of C*-algebras (see [WN92]).
We will follow the exposition of [Soll8] and develop some basic theory about
unbounded operators before setting up the z-transform in the next chapter.

Let H be a Hilbert space. The product space H x H is a Hilbert space with
inner product

((&n), (0, ) axm = (& V)u + (0, ).

From here, a linear operator T on the Hilbert space H (which is not
necessarily bounded) will be defined on a vector subspace D(T) C H, which
is called the domain of the operator T'. So, T is a linear map

T:D(T)— H.
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Most of the time, we will not assume that D(7') = H. Instead, we will
assume that the vector subspace D(T) is dense in H.

Definition 7.1.1. Let H be a Hilbert space and T': D(T') — H. We say
that 7" is densely defined if the vector subspace D(T') is dense in H.

To summarise, the unbounded operators we will primarily work with are
densely defined operators T': D(T') — H. To understand unbounded
operators, we will lean heavily on its graph.

Definition 7.1.2. Let H be a Hilbert space and T': D(T') — H be a linear
operator. The graph of the operator 7' is the subspace

G(T) ={(,Ty) [ v € D(T)} € H x H.
We say that T is closed if the subspace G(T') is closed in H x H.

As a simple example of the above definition, if z € B(H) (z is bounded)
then D(x) = H and z is a closed linear operator. In this scenario, we recall

the closed graph theorem, which states that if x is a closed linear operator
and D(x) = H then z is bounded.

Here is an explicit characterisation of closed operators.

Lemma 7.1.1. Let H be a Hilbert space and T : D(T) — H be a linear
operator. Then, T is a closed operator if and only if for any sequence
{Yn}nez-, of elements in D(T) satisfying lim,_,o0 ¥, = ¢ and

lim,, oo T, = @, b € D(T) and TY = ¢.

Proof. Assume that H is a Hilbert space and T': D(T') — H be a linear
operator.

To show: (a) If T"is a closed operator then for any sequence {1, }nez., of
elements in D(T) satisfying limy o 1, = ¢ and lim, o Tt = 6,
b € D(T) and Ty = ¢,

(b) If for any sequence {t, }nez., of elements in D(T") satisfying
lim,, o0 ¥, = ¥ and lim,, o T, = ¢, ¥ € D(T) and T = ¢ then T is
closed.

(a) Assume that T is a closed operator. Assume that {1, }nez., 1S a

sequence in D(T') such that lim,, ., 1, = ¥ and lim,,_,o, T, = ¢. Observe
that
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Tim (4, ) = (¢, 9).

Since T is closed, G(T') is a closed subspace of H x H. So, (¢,¢) € G(T)
and consequently, ¥ € D(T') and Ty = ¢.

(b) Assume that {1, }nez., is a sequence in D(T') such that if

lim,, o0 ¥, = ¢ and lim,, o, T, = ¢ then ¥ € D(T) and T = ¢. Suppose
that {(¢n, T'dn) }nez., is a sequence in G(7T') which converges to (¢, p).
Then, lim,, .o, ¢, = ¢ and lim,, o, T'¢,, = p. By our assumption, this means
that ¢ € D(T) and T'¢ = p. So, (¢, p) = (¢, T¢p) € G(T). Therefore, G(T')
is a closed subspace of H x H. n

As explained in [Soll8, Page 102], Lemma is our replacement for the
notion of continuity which accompanies bounded operators on a Hilbert
space. The next theorem characterises subspaces of H x H which are
graphs of linear operators.

Theorem 7.1.2. Let H be a Hilbert space and G C H x H be a subspace.
The subspace G is a graph of a linear operator if and only if for

Proof. Assume that H is a Hilbert space and G C H x H is a subspace.

To show: (a) If there exists a linear operator 7" : D(T') — H such that
G = G(T) then (0,n) € G for n € H — {0}.

(b) If for n € H — {0}, (0,7) € G then there exists a linear operator
T :D(T) — H such that G = G(T).

(a) Assume that there exists a linear operator T': D(T') — H such that
G = G(T). Suppose for the sake of contradiction that there exists

n € H — {0} such that (0,n) € G. Then, T(0) = n # 0. However, this
contradicts the fact that 7'(0) = 0 (because T is linear). Hence, if

n € H — {0} then (0,n) € G.

(b) Assume that if n € H — {0} then (0,n) & G. If ({,m), ({,12) € G then
m = 12 because G is a vector subspace. Consequently, G = G(T'), where T

is a map defined on the vector subspace

D(T) = {£ € H | There exists n € H such that (¢,n) € G} C H
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by T¢ =n. To see that T is linear, assume that &;,&; € D(T) so that there
exists 11,12 € H such that (&,171), (§&2,12) € G. Since G is a vector
subspace of H x H, ({1 + &, m + m2) € G. So,

T(&+&)=m+m="T(E&)+T(&)
Therefore, T' is a linear operator on H such that G = G(T)). O

In light of Theorem [7.1.2, we make the following definition.

Definition 7.1.3. Let H be a Hilbert space. Vectors of the form
(0,n) € H x H are called vertical.

Next, we will define closable operators on a Hilbert space.

Definition 7.1.4. Let H be a Hilbert space and T': D(T') — H be a linear
operator. We say that the operator 7" is closable if the closure G(T) is a
graph of an operator. By Theorem , an operator 7' is closable if G(T)

does not contain any non-zero vertical vectors.

If T'is a closable operator then the operator whose graph is G(T) is called
the closure of T" and is denoted by T.

Definition 7.1.5. Let H be a Hilbert space and T': D(T') — H and

S : D(S) — H be linear operators on H. We say that S is an extension of
T (or S contains T') if G(T') C G(S). Equivalently, S is an extension of 7" if
D(T) C D(S) and if ¢ € D(T) then S¢ = T%. We write T' < S to denote
that S is an extension of 7.

In particular, if 7" is closable then T < T. We have the following
characterisation of a closable operator.

Theorem 7.1.3. Let H be a Hilbert space and T : D(T) — H is a linear
operator. Then, the operator T is closable if and only if for any sequence

{¥n}nez- i D(T) with lim,, o0 ¥, = 0 and lim, oo T, = ¢, ¢ = 0.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a linear
operator.

To show: (a) If T"is a closable operator then for any sequence {t, }nez., in
D(T) with lim, 0 b = 0 and limy, e T, = ¢, ¢ = 0.

(b) If for any sequence {t¢, }nez., in D(T) with lim,_, 1, = 0 and
lim,, oo T, = @, » = 0 then T is a closable operator.
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(a) Assume that T is a closable operator. Then, its closure T : D(T) — H
has graph G(T) = G(T). The closure T is a closed operator because G(T))
is a closed subspace of H x H. Assume that {1, }nez., IS a sequence in
D(T) such that lim,,_, ¥, = 0 and lim,,_,, T%,, = ¢. Since

(0,¢) = limy, 00 (¥, T%y), (0,¢) € G(T). Since G(T') = G(T'), we can use
Theorem to deduce that ¢ = 0.

(b) Assume that if {1, }nez., is a sequence in D(T) with lim, o ¢, =0
and lim, o T4, = ¢ then ¢ = 0. By Theorem [7.1.2] it suffices to show
that if n € H — {0} then (0,7) ¢ G(T).

Suppose for the sake of contradiction that there exists n € H — {0} such
that (0,77) € G(T). Then, there exists a sequence {(¢n, Tén) ez, in G(T)
such that lim,, (¢, Tén) = (0,n). By our assumption, n = 0 which
contradicts the assumption that n € H — {0}. Therefore, if n € H — {0}

then (0,n) & G(T). O

The following characterisation of densely defined operators is quite similar

to Theorem [.1.2]

Theorem 7.1.4. Let H be a Hilbert space and T : D(T) — H be a linear
operator. Then, T is densely defined if and only if for £ € H — {0},
(£,00 € G(T)* C H x H.

Proof. Assume that H is a Hilbert space and T : D(T') — H be a linear
operator.

To show: (a) If T"is densely defined then if £ € H — {0} then
(€,0) € G(T)*.

(b) If for £ € H — {0}, (£,0) & G(T)* then T is a densely defined operator.

(a) We will prove the contrapositive. Suppose that there exists v € H — {0}
such that (v,0) € G(T)*. If (§,n) € G(T) then

<’7a §>H = <('77 0)7 (€7n)>H><H =0.

Hence, v € D(T)* is non-zero. Since D(T)* # {0}, Theorem gives
D(T) = (D(T)*)* # H. So, T is not densely defined.

(b) We will also prove the contrapositive. Assume that 7" is not densely
defined. Then, D(T') # H and consequently, there exists n € H — {0} such
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that n € D(T)*. By definition of the inner product on H x H,
(n,0) € G(T)*. O

Definition 7.1.6. Let H be a Hilbert space. Vectors of the form
(n,0) € H x H are called horizontal.

If we combine Theorem and Theorem we obtain the following
theorem.

Theorem 7.1.5. Let H be a Hilbert space and G be a subspace of H x H.
Then, G is the graph of a closed, densely defined operator if and only if G
is a closed subspace, does not contain non-zero vertical vectors and G+ does
not contain non-zero horizontal vectors.

Now observe that if T is a closed operator then the graph G(T') C H x H is
a closed subspace and is thus, a Hilbert space. Moreover, the map
(d, T): D(T) — G(T)
v (), TY)

is bijective. Thus, we can define an inner product on D(T) by

(U, 0)pery = (¥, 1), (0, T)) -

This results in the norm

11Dy = 111 + 1T -

The above norm is called the graph norm. Since (id,T") is a bijection,
D(T) with the graph norm is a Hilbert space. Note that the graph norm
can be defined for any linear operator, not just a closed operator.

Theorem 7.1.6. Let H be a Hilbert space and T : D(T) — H be a linear
operator. Then, T is closed if and only if the vector subspace D(T) C H is
complete with respect to the graph norm.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a linear
operator.

To show: (a) If T"is closed then D(T) is complete with respect to the graph
norm.

(b) If the vector subspace D(T') is complete with respect to the graph norm
then 7' is closed.
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(a) Assume that 7" is closed. Then, the subspace G(T') C H x H is closed.
Assume that {1, }nez., is a Cauchy sequence with respect to the graph
norm on D(T'). Assume that € € R.y. Then, there exists N € Z~ such
that if m,n > N then

me - wnHD(T) <€

Squaring both sides, we have

[[%m — wn||2D(T) = [|¢m — @Z)nH%{ + 1T — T¢nl|§{ <é
But this means that

H(d}m = Un, T, — Twn)H?qu <€

So, the sequence { (¢, T%n) }nez., in G(T') is a Cauchy sequence. Since
G(T) is a Hilbert space, the sequence {(n, T%n) fnez., must converge to
some (¢, Tv) € G(T). Therefore, {4y, }nez., converges to ¢» € D(T) with
respect to the graph norm. Hence, D(T') is complete.

(b) Assume that the vector subspace D(T') C H is complete with respect to
the graph norm. We want to show that the vector subspace G(T') C H x H
is closed. Suppose that {(¢,, T'¢n) }nez., is a sequence in G(71") which

converges to (¢, x) € H x H. Then, {(¢n, T¢n) }nez-, is a Cauchy sequence.

Assume that € € Ryy. Then, there exists N € Z-q such that if m,n > N
then

Squaring both sides, we deduce that

||¢n - Qbm”?{ + ”Tﬁbn - Tﬁbm”%{ < 62

S0, ||¢n — émllp(r) < €, which means that the sequence {¢, }nez., is Cauchy
with respect to the graph norm on D(T'). Since D(T') is complete with
respect to the graph norm, there exists p € D(T) such that

Tim [|¢n = pllpery = 0.

So, there exists M € Z~q such that if n > M then

e2

160 = pllDry = 6n =l + 1760 = Tl < -
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So, ||on — pllg < €/2 and ||T'¢, — Tp|lg < €/2. We want to show that ¢ = p
and x = Tp. Since {(¢n, T'Pn) bnez., converges to (¢, x), there exists
M' € Z~g such that if n > M’ then

2

€
1(&n, Tén) = (& s = ll6n — Ol + 1T n = Xl < -
So, ||on — @llm < €/2 and ||T'¢, — x||n < €/2. If L = max(M, M’) and

n > L then

16 = plla < 1|6 = énllm + lon — pllr < e

and

IX = Tolla < |Ix = Tonllg + ITén — Tpllu <e

Since € € R.g was arbitrary, we deduce that ¢ = p and x = T'p. Therefore,
(p,x) = (p,Tp) € G(T) and consequently, G(T') is a closed subspace of
H x H. So, T is a closed operator. O

7.2 The adjoint of an unbounded operator

Fundamental to our treatment of B(H) is the adjoint, which acts as the
involution map on the C*-algebra B(H). We want to generalise this and
define the adjoint of an unbounded operator.

Let T be a densely defined operator on H. Define the subspace G of H x H
by

G=A{(&n) e HxH|If ¢ e D(T) then (§,T¢) = (n,¢)}. (7.1)

We claim that G is a graph of an operator on H. To see why this is the
case, we will use Theorem [7.1.2] Assume that (0,7) € G. If ¢» € D(T) then
(0, T9) = (n,v) = 0. Therefore, n € D(T)*. But since T is densely defined,

D(T) = (D(T)*)* = H. Consequently, D(T)* = {0} and = 0.

By Theorem [7.1.2] there exists a linear operator T* : D(T*) — H such that
G(T*) = G. The operator T* is called the adjoint of T'. By definition of G
in equation , the domain D(T™) consists of vectors £ such that the
functional ¢ — (&, T') is bounded for ¢ € D(T).

Definition 7.2.1. Let H be a Hilbert space and 7' : D(T') — H be a
densely defined operator. We say that T is self-adjoint if "= T". We say
that T is symmetric or Hermitian if 7" < T™.
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In particular, if 7" is self-adjoint then D(T) = D(T™*). We now want to
express the graph of the adjoint 7% in terms of G(T').

Theorem 7.2.1. Let H be a Hilbert space and T : D(T) — H be a densely
defined operator. Let I : H — H be the identity operator on H. Then,

G(T*) = UG(T)*

7= (5 o)

is an operator on H x H such that U(§,n) = (n, =£).

where

Proof. Assume that H is a Hilbert space and T': D(T') — H is a densely
defined operator. Assume that [ is the identity operator on H and U is the
operator on H x H, defined as above.

To show: (a) The operator U is bounded and unitary.

(a) To see that U is bounded, we compute its operator norm as

IU* = sup [[U(&n]*

I€ml=1

= sup |[(n,=¢)|?
1€ml=1

= sup <(n7_§)’(n7_€)>
1€mlI=1

= sup (IInlly +11€l%)
IEml=1

= sup [[(&n))?=1.
[1€mlI=1

So, ||U|| = 1 and U is a bounded operator on H x H.

To see that U is unitary, we note that by the above computation, U is an
isometry on H x H. We also observe that U is surjective because if

(&,n) € H x H then U(—n,&) = (§,n). Since U is a surjective isometry, we
can use Theorem to deduce that U is a unitary operator on H x H.

Now by equation (7.1), (¢,7) € G(T™) if and only if for ¢ € D(T),
(&, TY) = (n,v). Equivalently, (¢,n) € G(T*) if and only if

183



Since U(, Tv) = (T4, —1), we find that the above equation holds if and
only if (¢,n) € (UG(T))™.

To show: (b) If G is a subspace of H x H and W € B(H x H) is unitary
then (WG)*+ = WG*.

(b) Assume that G is a subspace of H x H and W € B(H x H) is unitary.
Then, (n1,12) € (WG)?t if and only if for (£1,&) € G,

<<Th? 772)7 W<§17 52)> =0
But this holds if and only if

(W, ma), (61.62)) = (W*(n1,m2), (€1, E2))
= ((m,m2), W(&,&)) = 0.

In turn, this holds if and only if W~1(n,,n,) € G* if and only if
(m,m2) € WG*. So, (WG)*= = WG

Consequently from part (b), we have

G(T*) = (UGT)*r =UG((T)* = (_I 0) G(T)*.

A major consequence of Theorem is that G(T™) is a closed subspace of
H x H. To see why this is the case, we know that the orthogonal
complement G(T')* is a closed subspace of H x H. So,

G(T*) =UG(T)*+ = (U Y)"Y(G(T)*), which is closed because U™t = U* is

continuous.

Theorem 7.2.2. Let H be a Hilbert space and T : D(T) — H be a densely
defined operator. The operator T is closable if and only if T is densely
defined.

Proof. Assume that H is a Hilbert space and 7" : D(T') — H is a densely
defined operator.
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By Theorem [7.1.2 T is closable if and only if G(T') does not contain
non-zero vertical vectors. This holds if and only if UG(T") does not contain
non-zero horizontal vectors, where U is the unitary operator from Theorem

By Theorem [7.2.7],

G(T") = (UG(T))* = U(G(T)")*" = UG(T).

So, T is closable if and only if G(7*)* does not contain any non-zero
horizontal vectors. By Theorem [7.1.4] T is closable if and only if T* is
densely defined as required. O]

Now if T" is closable then by the above theorem, T™ is densely defined. So,
we can construct the linear operator T** : D(T**) — H. The graph of T** is

G(I™) =U(G(T")") =UU(G(T)")") = ~G(T) = G(T).
Hence, we have the following theorem

Theorem 7.2.3. Let H be a Hilbert space and T : D(T) — H be a closable
operator. Then, the adjoint of the adjoint operator T, denoted by T, is
the closure of T'. That is, T** =T.

If we have two densely defined operators S and T on H such that T'< S
then their adjoints are related by the following theorem.

Theorem 7.2.4. Let H be a Hilbert space and S,T be two densely defined
operators on H such thatT' < S. Then, S* < T*.

Proof. Assume that H is a Hilbert space and S, T be two densely defined
operators on H. Assume that 7' < S. Then, G(T') C G(S) and

G(S)* c G(T)*. With U being the unitary operator in Theorem we
have

G(S*) =UG(S)*r cUG(T)*: = G(T™).
So, S* < T™* as required. n

An interesting consequence of Theorem is that a self-adjoint operator
does not have a proper symmetric extension. Assume that T'=T" and
there exists a linear, symmetric operator S : D(S) — H such that T'< S.
Since S is symmetric, S < S*. Since T' < S, S* < T™*. So,

S<S*<T"=T<18

and T'= S. But, since T'=T"*, D(T) = D(T*). So, D(S) = D(S*), which
contradicts the assumption that D(S) C D(S™).
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7.3 Algebraic operations on unbounded
operators

By definition of a C*-algebra, we are able to add and compose bounded
operators on a Hilbert space H. In this section, we want to define addition
and composition of linear (not necessarily bounded) operators on H. Unlike
bounded operators, we also have to take into account the domains of the
operators involved.

Definition 7.3.1. Let H be a Hilbert space and T': D(T') — H and
S : D(S) — H be linear operators on H. Define the sum 7'+ S as an
operator on the domain

D(T + S) = D(T) N D(S)
by (T 4 8)(€) = T¢ + S¢ for € € D(T + S).

Define the composition ST on the domain

D(ST) ={€ € D(T) | T¢ € D(S)}
by (ST)(n) = S(Tn) for n € D(ST).

This is similar to how sums and composites of functions are defined. If
S,T € B(H) then (S+T)* = S*+T* and (ST)* = T*S*. Unfortunately,
this does not work with general unbounded linear operators because the
sum or the composite of densely defined operators need not be densely
defined. Also, the sum or composite of closed operations might not be
closed or even closable. In the following theorems, we will discuss how close
we can get to the relations (S 4+ 7')* = S* +T* and (ST)* = T*S* which
hold for bounded linear operators.

Theorem 7.3.1. Let H be a Hilbert space and T : D(T) — H be a closed
operator. Let x € B(H). Then, the operator T +x : D(T +x) — H 1is
closed.

Proof. Assume that H is a Hilbert space, T' is a closed operator on H and
xr € B(H).

Let {ty, }nez., be a sequence of elements in

D(T +z) = D(T) N D(x) = D(T) such that lim,,_, 1, = ¢ and
lim,, oo (T, + 210y,) = ¢. We will show that (¢, ¢) € G(T + z).
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Observe that

lim Ty, = ¢ — (lim 2¢,) = 6 — 2.

Since T is closed, (¢, ¢ — z¢)) € G(T). So, ¢ € D(T) = D(T + z) and
Ty = ¢ — x1p. Consequently, (T + )1 = ¢ and (¢, ¢) € G(T + x). So,
G(T + x) is a closed subspace of H x H and T + z is a closed operator. [

A similar theorem holds for the composite of an unbounded operator with a
bounded operator.

Theorem 7.3.2. Let H be a Hilbert space and T : D(T) — H be a linear
operator. Let u € B(H). Then, Tw is closed and if u is invertible then uT
is closed.

Proof. Assume that H is a Hilbert space, T': D(T) — H is a linear
operator and u € B(H) be a bounded operator.

To show: (a) The operator T'u is closed.
(b) If w is invertible then w7 is closed.
(a) The domain of the composite Tu is

D(Tw) = {¢ € D(u) = H | ué € D(T)}.

Let {ty, }nez., be a sequence in D(T'u) such that lim,,_, ¢, = ¢ and
lim,, o0 Tu(e)y,) = p.

To show: (aa) (¢, p) € G(Tu).

(aa) Notice that lim,, o, T'(u,) = p and lim,,_,, ut), = u) because
u € B(H). Since T is a closed operator, (ui, p) € G(T'). So, up € D(T)
and p = T(u) = (Tu)($). Therefore, (1, p) = (4, (Tu)(¥))) € G(Tu)

(a) Part (aa) tells us that G(T'u) is a closed subspace of H x H. So, Tu is a
closed operator.

(b) Assume that u € B(H) is invertible. Let {7, }nez., be a sequence of
elements of D(uT) = D(T') such that lim,, ., 7y, = 7 and
lim,, o0 (uT) () = 6.

We want to show that (v,d) € G(uT'). The sequence {1y, }nez., satisfies
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lim 77, = lim v '((uT) (7)) = u'0.
n—oo

n—oo

Since T is a closed operator, (y,u~'d) € G(T). So, v € D(T) and
Ty =u"14. So, (uT)(y) =6 and (v,d) € G(uT). Therefore, G(uT) is a
closed subspace of H x H and uT is closed as required. O

A consequence of Theorem is that we can give a criterion for Tz to be
a bounded operator.

Theorem 7.3.3. Let H be a Hilbert space and T : D(T) — H be a closed
operator. Let x € B(H) such that im x C D(T). Then, Tx € B(H).

Proof. Assume that H is a Hilbert space and T": D(T') — H is a closed
linear operator. Assume that x € B(H) such that im x C D(T). By
Theorem m, Tz is a closed operator. Since D(T'z) = H, we can used the
closed graph theorem to find that Tx is bounded. O]

In the next few theorems, we will investigate how the adjoint interacts with
the sum and composite of unbounded operators, assuming that we can take
the adjoint of the sum and composite of unbounded operators.

Theorem 7.3.4. Let H be a Hilbert space and S, T be densely defined
operators on H such that ST is densely defined. Then, T*S* < (ST)*.

Proof. Assume that H is a Hilbert space. Assume that S, T are densely
defined operators on H such that the composite ST itself is densely defined.

To show: (a) D(T*S*) C D((ST)*).
(b) If n € D(T*S*) then T*S*n = (ST)*n.

(a) Assume that n € D(T*S*). Then S*(n) € D(T*) and subsequently, the
functional defined on D(ST')

U= (5%(n), Te)
is bounded. But, (S*n, Tv) = (n,ST). So, n € D((ST)*). Therefore,
D(T*S*) € D((ST)*).

(b) Continuing on from part (a), we also have (S*n, Tv) = (T*S*n,v) for
n € D(T*S*). We know from part (a) that n € D((ST)*). Since
(1750, 4) = (n, STvp) = ((ST)"n, ) for ¢ € D(ST), (T*5*)(n) = (ST)™n
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as required.

By combining parts (a) and (b), we deduce that T*S* < (ST)*. O

Theorem 7.3.5. Let H be a Hilbert space and T be a densely defined
operator on H. Let x € B(H). Then, (xT)* = T*z*.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a densely
defined operator on H. Assume that x € B(H). By the previous theorem,
we have T*z* < (2T)*. To see that (xT)* < T*z*, assume that

n € D((zT)*). If £ € D(T) = D(2T') then

(@T)n,&) = (n, (zT)8) = (n, 2(T€)) = (x™n, TE).
Hence, z*n € D(T*) and n € D(T*z*). By the above equation, we also have
(T*x*)n = («T)*n. So, (¢T)* < T*x*, which establishes (z7)* = T*z*. O

Next, we will handle the adjoint of a sum of unbounded operators.

Theorem 7.3.6. Let H be a Hilbert space and T, S be linear operators on
H such that T 4+ S is densely defined. Then, T and S are densely defined
and T* + S* < (T + 9)*.

Proof. Assume that H is a Hilbert space and T, S be linear operators on H.
Assume that 7'+ S is densely defined. Then, D(T' + S) = D(T) N D(S) is
dense in H. Since D(T' +S) C D(T) and D(T + S) C D(S), D(T) and
D(S) are both dense subsets of H. Therefore, 7" and S are both densely
defined.

To show: (a) D(T* + S*) C D((T + S)*).
(b) If n € D(T* + S*) then (T* + S*)n = (T + S)*n.

(a) Assume that n € D(T* + S*). If v € D(T + S) then

(n, (T + 8)) = (n, TY) + (n, S)
= (T"n,v) + (S™n, %)
= ((T" + S")n,¢).

Since ((T* + S*)n, 1)) < oo, the functional ¢ — (n, (T'+ S)1») must be
bounded. Therefore, n € D((T 4 S)*) and D(T* + S*) C D((T + S)*).
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(b) From part (a), we know that

(T +5)n,¢) = (n, (T + 5)¢) = ((T" + 5")n, ).
So, (T'+ S)*n = (T* 4+ S*)n.
By combining parts (a) and (b), we deduce that T* + S* < (T' + S)*. O

Theorem 7.3.7. Let H be a Hilbert space and T be a densely defined
operator on H. Let x € B(H). Then, (T + z)* =T* + x*.

Proof. Assume that H is a Hilbert space, T': D(T') — H is a densely
defined linear operator and x € B(H). We know from the previous theorem
that 7% 4+ 2* < (T + z)*.

To show: (a) (T + x)* < T* + z*.

(a) Assume that p € D((T + z)*). Then, the functional which maps
e D(T'+x) = D(T) to (p, (T + x)) is bounded. Therefore, the
functional ¢ — (p, Ty) is also bounded because z is a bounded linear
operator. Therefore, p € D(T*).

Now, we compute directly that

(0, (T + 2)¢) = {p, TY) + (p, x¢)
= (T"p,¥) + (x"p, )
= ((T" +27")p, ).

Since (p, (T'+ z)¢) = (T + x)*p,¢), we find that if p € D((T + x)*) then
(T* 4+ 2*)p = (T + z)*p. Consequently, (T + x)* < T* + z*.

Because T + z* < (T + z)* and (T'+ z)* < T* + z* from part (a), we
deduce that T% + z* = (T + x)*. O

7.4 Spectrum of a closed densely defined
operator

As we know, the concept of a spectrum depends on invertibility. Hence, we
first define what it means for an unbounded operator to be invertible.

190



Definition 7.4.1. Let H be a Hilbert space and T': D(T) — H be a linear
operator. We say that 7" is invertible if 7" is a bijection from D(T") onto H.

By the closed graph theorem, if T"is a closed densely defined operator
which is invertible then the inverse bijection 7' : H — D(T) must be
bounded. Fortunately, the concept of a spectrum does not differ from the
spectrum of a bounded operator.

Definition 7.4.2. Let H be a Hilbert space and T" be a closed densely
defined operator on H. Let I be the identity operator on H. The
spectrum of T, denoted by o(7), is the set

o(T)={X € C| A\I — T is not invertible}.
The resolvent set of 7', denoted by p(T), is

p(T)=C—0o(T)={X € C| A\ — T is invertible}.

Just like the spectrum of a bounded linear operator, the spectrum of a
closed densely defined operator on H is also a closed subset of C.

Theorem 7.4.1. Let H be a Hilbert space and T : D(T) — H be a closed
densely defined operator on H. Then, o(T) is a closed subset of C

Proof. Assume that H is a Hilbert space and T is a closed densely defined
operator on H. We will prove that the resolvent set p(7') is an open subset
of C.

Assume that \g € p(T"). Then, \oI — T is invertible and
(Aol —T)~' € B(H). Recalling the argument in Theorem [1.2.3] if

1
A— Xl <
A TowW e ey
then the series
> (o= NNl =T)
n=0

converges in B(H) to an operator 7.
To show: (a) If v € DN —T) = D(T') then r(A — 1)y = 1.

(b) If ¢ € H then r§ € D(T) and (M —T)r¢§ = &.
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(a) Assume that ¢ € D(A] —T) = D(T). Then,

(M =T))p = A=)V + (N —=T)

and by direct computation,

r(M =T) = (D (A= N"(NoI =T)" )M = T)o
==Y o= NI =T) "+ (A = A" (Aol = T) ™)
_ w'nzo n=0

(b) Assume that £ € H. If n € Z~ then
(Aol —T)™ ¢ € D(A\I —T) = D(T). Now define

N

Ev= (o= N"(NI —T) "¢

n=0
Then, {{n}vez., is a sequence of elements in D(A] — T') converging to r¢.
Now observe that

(M =T)én = (A=)l + ()\0] T))én

(AM&+ZM— "ol = T)7"¢

n=0

N
=A=20)én + (Mo — A ZAO— NNl = T) ¢

2

— (A= Xo)ew + (No — ( 45 o = N (ol —T)‘”f)

Ao — A

T
A g

§+ D (o= A" (el = 1))

n

= (= d)e + (o =N (5
= (A =2)n +E+ (Mo — A)én
=&+ (A= o(éy —&Env-1) = €

as N — 00. So, {(&n, (M —T)éN) }vez, 1s a sequence in G(A] — T') which
converges to (r¢, ). Since AI — T is closed, (r€,£) € G(M —T). So,
ré € D(AI —T) and € = (A — T')ré as required.

Il
=)
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By parts (a) and (b), we deduce that A\l — T is invertible with inverse
r € B(H). So, A € p(T) and p(T') is an open subset of C. Therefore,
o(T) =C — p(T) is a closed subset of C. O

In [Soll8, Page 111], it is mentioned that one can construct closed densely
defined operators T such that o(T) = () or o(T') = C. It is also explained
that if « is a unitary operator then o(uTu*) = o(T'). This mirrors Theorem

B.110

In some references, the spectrum is defined as a subset of the Riemann
sphere C and by definition, co € o(7') whenever 7' is unbounded. This is
sometimes called the extended spectrum. The extended spectrum is always
a non-empty and compact subset of C, regardless of whether the operator is
bounded or not.
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Chapter 8

The z-transform

8.1 Definition of the z-transform

In this section, we will define the z-transform of a closed and densely
defined operator. We will approach the z-transform via a slew of
preliminary results on closed operators.

Definition 8.1.1. Let H be a Hilbert space and T" be a closed operator on
H. A subspace D C D(T) is a core for T if T' is the closure of the
restriction T'|p of T to D.

If D is the core for the closed operator T': D(T) — H then T|p = T and

G(T|p) = G(T). This show that the subspace G(T'|p) is dense in G(T).

From here, we will assume that 7" is closed and densely defined operator on
a Hilbert space H. Recall from Theorem that

G(T") =UG(T)" ={(T"¢,—¢) | ¢ € D(T")}

0 I
7= ()
is an operator on H x H such that U(&,n) = (n, —¢). Since T is closed,

G(T) is a closed subspace of H x H. So, H x H = G(T) ® G(T)* by
Theorem [2.4.1l

where

Theorem 8.1.1. Let H be a Hilbert space and T be a closed, densely
defined operator on H. If £ € H then there exists a unique ¥ € D(T*T)
such that
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=T +TT).
Moreover, ||| < ||€]|.

Proof. Assume that H is a Hilbert space. Assume that T is a closed,
densely defined operator on H. Assume that £ € H.

Since H x H = G(T) ® G(T)*, there exists ¢ € D(T) and ¢ € D(T*) such

that (£,0) = (¢, T¢) + (T°6,~0). So, € = ¢ + T*¢ and 0 = T4 — .
Consequently, T = ¢, ¥ € D(T*T) and

E=v+To=v+TTY=(I+TT).
To show: (a) ||| < |I€]|

(a) We compute directly that

I1€11* = (€. €)
= (I +T"T), (I +T"T)p)
= [[0I* + (&, T*T) + (T*Tep, ) + | T*T||?
= (|91 + 2 TY[* + 1T Ty > [[¢]*.
Finally, to see that ¢» € D(T*T) is unique, assume that there exists

W' € D(T*T) such that € = (I + T*T)'. Since (I + T*T) = (I + T*T),
(v =)+ T*T(¢p — ') = 0. By part (a), we have

1Y — ¢ <0.
So, 1 = 4" and ¢ € D(T*T) is therefore the unique element such that
(I+T°T)p = €. O

Let us rewrite the statement of Theorem [8.1.1} If T" is a closed, densely
defined operator on a Hilbert space H then by Theorem [8.1.1],
D(T*T) # {0} and the operator

I+T*T: D(T*T) — H
Y = Y+ 1Ty

is a bijection which does not decrease norms. That is, if
¥ € D(T*T) = D(I +T°T) then [[]| < ||(I + T"T)s]).
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Since I + T*T is a bijection, we can define its inverse
(I+T*T)~': H — D(T*T). In fact, its inverse is actually bounded because
by Theorem [8.1.1],

I+ 7Y = sup I+ T°T) ¢l < st ] = 1.
=1 =1

This leads us to our next preliminary result.

Theorem 8.1.2. Let H be a Hilbert space and T be a closed, densely
defined operator on H. Then, the operator T*T is closed and D(T*T) is a
core for T

Proof. Assume that H is a Hilbert space and T is a closed, densely defined
operator on H.

To show: (a) T*T is a closed operator.
(b) The subspace D(T*T) is a core for T.

(a) We know that the inverse operator (I +T*T)~' : H — D(T*T) is
bounded. So, its graph G((I + T*T)™!) is a closed subspace of H. But,

G(I+TT)™") ={(& (I+T"T)7'¢) | § € H} = {((I+T"T)n,m) | n € D(T"T)}.

Now let ¢ : H x H — H x H be the bounded linear operator defined by
¢(&m) = (n,€). Then,
GU+TT)= ¢ ({((I+T*T)n,n) | n € D(T"T)})

which is a closed subspace because ¢ is a continuous map. Hence, I + T*T
is a closed operator and since T*T = (I +T*T) + (—1I), we can use
Theorem to show that 7*T must also be a closed operator.

(b) To see that D(T*T) is a core for T', it suffices to show that
G(T|pr+1)y) = G(T'). Suppose for the sake of contradiction that
G(T|p(r+r)) is not dense in G(T). Then, there exists a non-zero ¢ € D(T)
such that (¢7T¢) S G(T|D(T*T))J'.

Hence, if ¢ € D(T*T') then

((0,T9), (1, T)) = (¢, ¥) + (T, Tep) = 0.
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So, (¢, (I +T*T)¢) = 0. By Theorem 8.1.1] (I 4+ T*T') is a bijection from
D(T*T) to H. So, ¢ € H* = {0} and ¢ = 0. This contradicts the
assumption that ¢ is non-zero. So, G(T'|p(r-1)) is a dense subspace of G(T)
and D(T*T) is a core for T. O

We will proceed further with our analysis of the bounded operator
(I +T*T)™1

Theorem 8.1.3. Let H be a Hilbert space and T be a closed, densely
defined operator on H. Then, the bounded operator (I +T*T)~! is positive.

Proof. Assume that H is a Hilbert space and T' is a closed, densely defined
operator on H. To reiterate, the inverse operator (I +T*T)~' € B(H)
satisfies ||(I +T*T)7!|| < 1. Now assume that £ € H and

Y = (I +T*T)"'¢. Then,

ET+TT)E) = (W +T T, (I +TT) (I +T*T))

{
= (0 + 17T, )
< ¥) + <T*Tw, )

= [lel1* + HT1/1||2 > 0.
Therefore, (I +T*T)~! is a positive operator. ]

Theorem allows us to construct the operator (I + T*T) 2 — the
positive square root of the positive operator (I +7*T)~*. We claim that the
image of (I + T*T)_% is dense in H. To see why this is the case, recall from
Theorem [8.1.2 that D(T™T) is a core for T'. This means that 7" = T'| p¢p+1)
and D(T) = D(T*T). Taking the closure of both sides and noting that 7" is
densely defined, we find that D(T*T) = H and T*T is densely defined.

We now have

D(T*T) = (I +T*T)'H
— (I +TT) :(I+TT)2H
C(I+T*T) 2 H.

Since D(T*T) is dense in H, the image (I + T*T)~2 H must also be dense
in H.
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Theorem 8.1.4. Let H be a Hilbert space and T be a closed, densely
defined operator on H. Then,

(I+T*T)"2H = D(T),
T(I+T*T)"2 € B(H) and | T(I +T*T) 2| < 1.

Proof. Assume that H is a Hilbert space and T is a closed, densely defined
operator on H.

To show: (a) T(I +T*T)"% € B(H).
(b) ||T(I +T*T) 2| < 1.
(¢) (I+T*T)"2H = D(T).

(a) Assume that n € H. Then, (I +T*T)"'n € D(T*T) C D(T) and

IT(I+T°T) " ||> = (T +T*T) 0, T(I + T*T) 7))
= (I +T"T)" 77,T* (I 4+T*T)'n)
<A +TT) ', T*T(I+T*T) " 'n) + (I + T*T) 'n,n)
= (I +T*T)" 177 (I+T*T)(I+T* ) 1n)
= (I +T*T)'n,n)
— (I +T°T)" %n (I +TT) 2n)
= ||(I + T*T)"=n|>

If € = (I + T*T)" 21 then the above computation tells us that

IT(L+T7T) 2] < JI¢].

Now assume that ¢ € H. Since the image (I +T*T)"2 H is dense in H,

there exists a sequence {(, }nez., in (I + T*T)~2 H such that ¢, — ¢ as
n — 00. S0,

(I+T"T) %6 — (I +T"T) 3¢
as n — 0o because (I +T*T)"2 € B(H).
We now claim that the sequence {T'(I + T*T)_%fn}nez>O is Cauchy.
Assume that € € R.q. Since (, — (, there exists N € Z-q such that if
m,n > N then ||(, — (n|| < € and
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IT(I +T*T) 72, — T(I +T*T) 2, = |T(I + T*T) "2 (& — &)
S an - gmH <€

So, {T(I + T*T)_%ﬁn}nez>0 is a Cauchy sequence. Since H is a Hilbert
space, the sequence {T'(I + T*T)_%fn}nez>0 must converge to some s € H.

The key observation here is that the sequence

(I +TT) 260, T+ T°T) 260 bnezes

in G(T) converges to ((I +T*T)"2&,s) € H x H. Since T is a closed
operator, ((I +T*T)"2¢,s) € G(T), (I +T*T)"2¢ € D(T) and
= T(I +T*T) 2¢.

So, the image (I +T*T)~2H C D(T). By Theorem [7.3.3 the composite
T(I+T*T)"2 € B(H).

(b) Since | T'(I + T*T)~2£|| < ||€]], we compute directly that

ey 1
70+ T < sup el = 1

(¢) From part (a), we have (I +T*T) 2 H C D(T).
To show: (ca) D(T) C (I +T*T) 2 H.
(ca) Assume that p € D(T'). Recall from Theorem that D(T*T) is a

core for T'. So, D(T*T) = D(T) and there exists a sequence {1, }nez., in
D(T*T) such that lim,,_, ¥, = p and lim,,_,o, T4, = Tp.

For n € Z~y, define ¢,, = (I + T*T)1,,. To see that the sequence
{I+1*T )_%an}nezw converges, we compute directly that

(I +T*T) "% (¢ — d)s (L + T*T) 2 (6 — b))

(L +T*T)"%(¢ — m)|* = { )~

{(¢n ¢m<I+T*> Y — b))
( T)

= |

[¥n — m|* + HT% T%H2
— 0
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as m,n — o0o. The above computation establishes that the sequence

1 . . .
{(I+T*T) 2¢p}nez., is Cauchy and hence, converges in the Hilbert space
H.

Finally, we have

p = lim 1,
= lim (I +T*T) ¢,
n—oo
= lim (I + T*T) 2(I + T*T) 2¢,
n—oo
= ([ +TT) 2 lim (I + T*T) 2,
n—oo

€ (I+TT)H
So, D(T) C (I +T+T) 2H.

(¢) Therefore, D(T) = (I +T*T) 2 H. O

Now, we are able to state the most important definition in our analysis of
unbounded operators.

Definition 8.1.2. Let H be a Hilbert space and T': D(T') — H be a
closed, densely defined operator. Let I : H — H be the identity operator
on H. The z-transform of 7', denoted by the symbol z7, is the operator

7 . H — H
¢ — T(I+TT) z¢

The z-transform zr well-defined by part (c¢) of Theorem and zp is a
bounded linear operator on H which satisfies ||27|| < 1 by part (b) of
Theorem R.I1.4l

Note that since ||z7|| < 1, 252y < I and consequently, the operator
I — 2527 is positive. To see why this is the case, we compute for £ € H that

<£7 (I - Z;’ZT>(£)> = <£>€> - <£>Z;’ZT£>
= |l&lI* — lleré]f?
> [[€l1*(L = [lzr))* = 0.

By Theorem [2.3.4] I — z}.27 is a positive operator.
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8.2 Properties of the z-transform

In order to understand the effectiveness of the z-transform, we will prove a
variety of properties of the z-transform which demonstrate why the
z-transform 27 contains information about a closed densely defined
operator T

Theorem 8.2.1. Let H be a Hilbert space and T : D(T) — H be a closed,
densely defined operator on H. Then,

G(T) = {((I — Zor)2€, 21€) | € € H}.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed
densely defined operator on H. Recall from Theorem [8.1.4] that
(I +T*T)"2H = D(T). So, we can rewrite the graph G( ) as

G(T) = {(v, T¥) | ¥ € D(T)}
= {((I +T*T)"2&,T(I + T*T)"2¢) | € € H}
= (I + T*T) 3¢, 2€) | € € H}.

To show: (a) (I +T*T)"2 = (I — z}2r)2.

I\J‘H

(a) If € € H then (I + T*T)~'¢ € D(T*T) and

(I +T*T)"2¢, (I + T*T)"2¢)
(I +T*T)7%,€)
{ 3

(I +TT)~2¢|* = )"
)~
(I+T*T) &, (I +TT)(I+TT)'¢)
)"
)"
)"

(I +TT)""¢|2 + (I +T*T)"'¢, T*T(I + T*T) ')
(1 +T*T) €| + | T + T*T) |2
|2+ TT) 5 (1 + T°T) &[> + |1+ T*T) (I + T*T) 3¢

By setting ¢ = (I + T*T)~2¢, we find that

HwP:uu+va%wW+nwwﬁ

Notice that 1 € (I + T*T)"2H = D(T) by Theorem . Since D(T) is a
dense subspace of H (because T is densely defined), we ﬁnd that the
equation ||| = ||(1 + T*T)~24|2 + [|zx¢|? holds for any 1 € H.
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Now if ¢, ¢ € H then Theorem yields

3

(6,00 =7 3 *lo+ il

k 0

f—§j (1T +T*T) "2 (¢ + i*)|2 + [|2r (e + i*)|)

3 3

1 . e 1 . e L 1 . .
= 22 A +TT) 26+ F (1 +TT) 200 + 7 D7 llerd + iyl

k=0 k=0
= (I +TT)"2¢, (I + T*T)"29) + (2rd, 219)
= (6, (I + T*T) ") + (¢, z2r9)).

Thus, if ¢ € H then

I == ((I+T°T)"" + zpzr)
and I — zhzp = (I + T*T)~'. Taking the positive square root of both sides,
we find that (I — z27)2 = (I + T*T) "2 as required.

From part (a), we have

G(T) = {(6.T) | ¥ € D(T)}
(1 +TT)36.206) | € € H)
(

(I — 2pop)2€, 20€) | € € HY.

]

By Theorem [8.2.1] we find that the graph G(T') can be expressed entirely
with the z-transform zp.

Theorem 8.2.2. Let H be a Hilbert space and S, T be closed densely
defined operators on H. If zg = zr then S =T.

Proof. Assume that H is a Hilbert space and S, T are two closed, densely
defined operators on H. Assume that zg = zp. Then, by Theorem [8.2.1],

G(T) ={(I = #p2r)2¢,21€) | € € H)
={(I — 2525)2&,258) | £ € H} = G(9).
Therefore, T'= 5. 0
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Here is a useful property satisfied by the positive operator I — z7.2p.

Theorem 8.2.3. Let H be a Hilbert space and T : D(T) — H be a closed
densely defined operator. Then, the positive operator I — zy.zr is injective.

Proof. Assume that H is a Hilbert space and T": D(T') — H is a closed
densely defined operator. We know that

ker [ — 2hzp = (im [ — 2hzp)®

By Theorem [8.2.1]

im I — 2hzp =im ([ +T*T)"' = D(T*T).
By Theorem [8.1.2) D(T*T) is dense in H. Therefore,

(ker I — 2zp)™ = ((im I — ,zf*pz;p)L)l
=1im [ — 22y

= D(T*T) = H.
Consequently, ker I — z.zp = {0} as required.

It is useful to know when a bounded linear operator on H is the
z-transform of a closed densely defined operator on H. To this end, we
prove the following lemma.

Lemma 8.2.4. Let H be a Hilbert space and z € B(H) be such that
|z]| < 1. If f € Cts([0,1],C) then
f(z"2)2" = 2" f(22") and  zf(2z) = f(z2")z.
Proof. Assume that H is a Hilbert space and z € B(H). Assume that
|zl <1 and f e Cts([0,1],C). Since ||z|| <1,
o(z"2) C{AeC|A 22|} C{AeC| A< 1}
Since z*z is self-adjoint, its spectrum o(z*z) C R. Therefore,

o(z*z) C [0,1]. Similarly, o(z2z*) C [0, 1].

By the Stone-Weierstrass theorem, let {f, }nez., be a sequence of
polynomials such that f,, — f uniformly on [0, 1] as n — co. If n € Z~
then

fa(22)2" = 2" fu(227).
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By letting n — oo, we find that f(z*z)z* = 2* f(zz*). We also have for
n e Z>0

2fn(272) = fu(227)z.
By letting n — oo, we deduce that zf(2*z) = f(22%)z. ]

Now, we will show when a bounded linear operator z € B(H) is a
z-transform with the following major theorem.

Theorem 8.2.5. Let H be a Hilbert space and z € B(H). Then, z is the
z-transform of a closed densely defined operator T if and only if ||z|| < 1
and ker(I — z*z) = {0}.

Proof. Assume that H is a Hilbert space and z € B(H).

To show: (a) If z is the z-transform of a closed densely defined operator T
then ||z]] <1 and ker(I — z*z) = {0}.

(b) If ||z]] <1 and ker(I — z*z) = {0} then z is the z-transform of a closed
densely defined operator on H.

(a) Assume that z = zp for some closed densely defined operator
T :D(T)— H. By Theorem [8.1.4] ||z|| < 1. By Theorem [8.2.3]
ker(I — z*z) = {0}.

(b) Assume that ||z|| < 1 and ker(I — 2*z) = {0}. Define

G={(I-72)7€2)|¢cHYCHxH.

To show: (ba) There exists a closed densely defined operator T' on H such
that G = G(T).

(ba) Define the operator U, on H x H by

U — ((I_Zz*z)é ' __z;)%)

Notice that we can do this because I — z*z and I — zz* are positive
operators on H. Explicitly, U, is the operator

U,: HxH — Hx H
(h1,ha) = (I = 2*2)2(h1) = 2*(ha), 2(h1) + (I — 22*)% (hy))
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Observe that U, is bounded. To see why this is the case, we compute
directly that

IU:0* = sup  [[U.(ha, o)

[[(h1,h2)]|=1
f L \ .
|(h1,h2)]|=1
* )% * 2 ! 9
< s (=200 0+ (0l + 10— 220l
1,12)||=

x_\ % * 2 a1 9
< o 1(H(zf—z 22|11l + 1125 M2l + (=]l + /(T = 22%) 2]l hal])
1,12)||1=—

In the above computation, we have

[(ha, ho)lI* = (1, ), (hay ha)) = ([P ]|* + [|ha]* = 1.
Consequently, ||hi|| <1 and |hy|| < 1. So,

e 1 N 2 1 2
IUN2 < sup (17 = z"2)2 [|7ull + 12 R2ll)” + (N2l ]l + (2 = 227)2][[|h2]])

(b2l =1
* )\ % 1) 2 1) 2
< sup o ([ ==z + 1271)" + (Il + (7 = 227)2[])” < oo
(a2l =1

So, U, € B(H x H). We now claim that U, is unitary.
To show: (baa) U, is unitary.

(baa) We compute directly that

U — ((I—z*z)é z* 1) ((I—z*z)é —z* 1)
=0 —z (I —zz*)2 z (I —22%)2
B (I —2*z) + 2"z I —z229)2 — ([ — 2%2)22"
B ((I — 222z — 2(] — 2°2) )
B I (= z229)2 — ([ — 2%2)22"
B ((I—zz*)éz—z(l—z*z)é I > '

(NI
N
N

*
_|_
—~

~
|
IS
N
*
~—

Define f € Cts([0,1],C) by f(¢t) = v/1 —t. By Lemma m,

=

21— 22"z = 2" f(22%) = f(2"2)2" = (I — z*z)%z*

and
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z=f(22")z2=z2f(2"2) = z(I — z*z)%.

o (10
@@—<0J

and by a similar computation,

0. = ((1 _5*2)5 ' __j;*)é> ((I —_z;z)é ' _z;*)é)

B (I —2*2)+ 2"z (I —2%2)2z% — 2°(] — 22%)2
T \e(I =222 — (I — 22%)22 22"+ (I — z2%)

_ (é ?).

So, U, must be a unitary operator on H x H.

=

(I —zz")
Consequently,

(ba) The key reason for defining U, is that

G=U.({(§.0) | £ € H}).

Since G is the image of a closed subspace under a unitary operator, it must
be a closed subspace of H x H. By Theorem [7.1.5] it suffices to show that
G does not contain non-zero vertical vectors and G+ does not contain
non-zero horizontal vectors.

To show: (bab) If £ € H — {0} then (0,¢) ¢ G.
(bac) If £ € H — {0} then (£,0) € G*.

(bab) We will prove the contrapositive of the given statement. Assume that
(0,€) € G C H x H. By definition of G, there exists ¢ € H such that

(0.6) = (I — 2*2)7¢, 29).

Notice that (I — z*z)%¢ = 0. So, (I — z*z)¢ = 0. By assumption,
ker I — z*z = {0}. Therefore, ¢ =0 and £ = z(¢) = 0.

(bac) We will prove the contrapositive of the given statement. Assume that
(£,0) € G*. Note that
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Gt = (U.({(€.0) [ ¢ € H})*
=U.({(5,0) | £ € H})™

U{( £)|§€H}

= {(=2"¢, (I = 22")2¢) | € € H}.

Since (£,0) € G, there exists ¢ € H such that

(£,0) = (=z"p, (I — zz")2¢p).
So, (I — z2*)2¢p = 0 and (I — z2*)¢ = 0. This means that ¢ = zz*¢ If we
compose by z* on the left on both sides, we find that

2Xo=2"22"p and (I —2"2)(z"¢) = 0.

Since ker [ — z*z = {0}, z*¢ = 0 and so, £ = —z*p = 0.
(ba) Part (bab) shows that G does not contain any non-zero vertical
vectors. Part (bac) shows that G+ does not contain any non-zero horizontal
vectors. By Theorem [7.1.5] G must be the graph of a closed, densely
defined operator 7" : D(T) — H.
(b) Hence, z = 27 as required. O

There is one particular consequence of Theorem [8.2.5| we will like to
highlight. In part (bac) of the proof, we were able to compute G in terms
of z. By repeating the same argument, we are able to express the
orthogonal complement of a graph G(T)* in terms of the z-transform 2.

Theorem 8.2.6. Let H be a Hilbert space and T : D(T) — H be a closed
densely defined operator. Then,

G(T) = {(=#€&, (I — 2727)28) | € € H}.
The z-transform behaves harmoniously with the adjoint.

Theorem 8.2.7. Let H be a Hilbert space and T : D(T) — H be a closed,
densely defined operator on H. Then, zp« = 27.

Proof. Assume that H is a Hilbert space and T is a closed densely defined
operator on H. From Theorem [7.2.1] recall the bounded operator
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U= (_0] é) € B(H x H).

Using Theorem [8.2.6| and Theorem [8.2.1] we compute directly that

G(T*) =UG(T)*
= U{(=23¢, (I — 2023)3€) | € € HY
= {((I — 2r25)2€, 246) | € € H}
= {((I = Zpozg-)26, 20:6) | € € H}

S0, zp+ = 2. O

Finally, we show that the z-transforms of unitarily equivalent operators
behave in exactly the expected way.

Theorem 8.2.8. Let H and K be Hilbert space and T : D(T) — H be a
closed densely defined operator on H. Let u € B(K, H) be a bounded,
unitary operator from K to H and let S = u*T'u, where the domain

D(S)={¢ € K |uwp € D(T)} = {un|n e D(T)}.
Then, S is a closed, densely defined operator on K and zg = u*zpu.

Proof. Assume that H and K are Hilbert space and 7" : D(T') — H is a
closed densely defined operator on H. Assume that u € B(K, H) is a
bounded unitary operator and S = u*Tu. We know that the domain of S is

D(S)={¢y e K |up € D(T)} ={u"n|ne D(T)}

where the rightmost equality follows from Theorem [3.1.8 Since u: K — H
is a bounded unitary operator, G(S) is a closed subspace of H x H and
D(S) ={u*n|ne D(T)} is a dense subspace of K. So, S is a closed,
densely defined operator.

To see that zg = u*zyu, let z = u*zpu. Then,

G(S) = {(v, S¥) | ¢ € D(S)}
={(u"n,u"Tn)|ne D)}
= {(u"(I — zpzr)2€,u"2r€) | € € H}
{(
{(

u* (I — Z;ZT)%ugb, u zpug) | ¢ € K}
(1—22)56,20) | 6 € K}.

208



In the second last line, we used the fact that u is unitary and hence,
surjective by Theorem [3.1.8] By Theorem we find that

zg = 2 = u zru.

8.3 Polar decomposition for closed densely
defined operators

As our first significant application of the z-transform, we will extend the
polar decomposition in Theorem to closed densely defined operators.
We begin by defining positivity for unbounded operators.

Definition 8.3.1. Let H be a Hilbert space and T': D(T') — H be a (not
necessarily bounded) operator. We say that T" is positive if for £ € D(T),

(6, T¢) = 0.

Lemma 8.3.1. Let H be a Hilbert space and T : D(T) — H be a closed
densely defined operator on H. Then, T*T 1is positive and self-adjoint.

Proof. Assume that H is a Hilbert space and T': D(T) — H is a closed
densely defined operator. To see that T*7T is positive, we compute directly
that if £ € D(T*T) then

(€, T"T€) = (T, T¢) = ||T¢|* > 0.
So, T*T' is positive.

To see that T*T is self-adjoint, define a = (I +T*T)~!. By Theorem [8.1.3]
a is a bounded positive operator and hence, self-adjoint. By Theorem [7.2.1],

Gla) = G(a*) = (_0] é) Gla)*.

Now the operator

vz((; é)EB(HxH)

is a unitary operator. If we apply V' to both sides of the equality with G(a),
we deduce that
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VG(a) = (? é) Gla) = (—01 ?) Gla)*.

Now observe that

(7 o) ct@

(ag,&) [ € € H}
(

{
{(n, (I +T"T)n) | m € D(T™T)}
G(I+1°T).

and

(3 7) 6@t = (o e frx H] (09) € G}
={(—z,y) € Hx H|If £ € H then (z,£) + (y,a&) = 0}
={(—z,y) € Hx H |If £ € H then (—x,—&) + (y,af) = 0}
={(—z,y) € Hx H|If ¢ € H then (—x,—(I +T*T)¢) + (y,&) =0}
_<I J)GU+TWWP
Therefore,
GI+T°T) = (_OI é) G +T*T) = G((I +T°T)").

Therefore, the operator I + T*T is self-adjoint. By Theorem [7.3.7, we have

(T =((I+T"T)+(-1) =(I+T"T)"—I=1+T"T—-1=T"T.
Therefore, T*T is self-adjoint. m

We are able to tell when a closed densely defined operator is positive by
examining its z-transform.

Lemma 8.3.2. Let H be a Hilbert space and T : D(T) — H be a closed
densely defined operator. Then, T is positive if and only if

(I — z}zT)%ZT > 0.

In particular, T s positive and self-adjoint if and only if zr > 0.
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Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed
densely defined operator.

To show: (a) T is positive if and only if (I — zhz7)22p > 0.

(a) Assume that ¢ € D(T'). By Theorem [8.2.1] there exists £ € H such that
= (I- Z}ZT)%{’ . We compute directly that

(I — 252r)2€, T(I — 2p27)26)
= ((I = Zor)2€, T(I + T*T)726)
{
{

=

= (I — Zhor)3€, 2rE)
£, (I — 22r)3 206).

By the above computation, we find that T is positive if and only if the
1
bounded operator (I — z5z7)z2zp > 0.

To show: (b) T is positive and self-adjoint if and only if zr > 0.

(b) By Theorem [8.2.2] T'= T if and only if 27 = z}. By using part (a), we
find that T is positive and self-adjoint if and only if zp = 27 and if £ € H
then

(€, (I — 2pzr)2or€) = (I — 2hor) 1€, (I — Zper) 120€) > 0.

We claim that im (I — z}zT)% is dense in H.
To show: (ba) im (I — z327)1 is dense in H
(ba) Recall from Theorem and Theorem that

D(T) = (I+T*T) 2H = (I — Zhzr)2 H.
So,

D(T) = (I — Zhop)2H C (I — Zhop)iH
and since T is densely defined, (I — zh27)1H = im (I — 2527)7 is dense in

H.

(b) Thus, T is positive and self-adjoint if and only if zp = 24, and if p € H
then (p, zrp) > 0 by part (ba). So, T is positive and self-adjoint if and only
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We are now ready to state and prove the polar decomposition for a closed
densely defined operator.

Theorem 8.3.3 (Polar Decomposition V2). Let H be a Hilbert space and
T:D(T)— H be a closed densely defined operator on H. Then, there
exists a unique pair of operators (u, K) such that

T =uK,
K is positive and self-adjoint and u*u is the projection operator onto im K.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed
densely defined operator on H.

The idea is to use the polar decomposition for bounded operators (see
Theorem [2.6.1)) to write zp = u|zr|.

To show: (a) |z7| is the z-transform of a closed densely defined operator.
(a) We will apply Theorem to prove this statement.

To show: (aa) |||2r||| < 1.

(ab) ker(I — |zz|*|z7|) = {0}.

(aa) Using Theorem we compute directly that

lzr|* = sup |lr]|*

ll€ll=1
= sup (27§, 2ré)
ll€ll=1

= HSFP (ulzr[€, ulzr|€)
= sup (|27|&, u u|zr|E)
p (|2r[€; s(lor)l2r|E)

:HSWP(!ZTK J2r(€) = [[ler [

So, ||l2z/|| = llzr]l < 1 by Definition 8.1.2}
(ab) Recall from Theorem that
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|zT|2 = zj27.

Since |zr| is a positive operator and is thus, self-adjoint, we have

ker(I — |zp|*|zr|) = ker(I — |27[?) = ker(I — z4h2r) = {0}
by Theorem [8.2.3]
(a) By combining parts (aa) and (ab), we can then use Theorem to
show that there exists a closed densely defined operator K : D(K) — H

such that |zr| = zk.

Since |zr| is positive (and self-adjoint), zx is also positive (and
self-adjoint). By Lemma [8.3.2] K is a positive and self-adjoint operator.

To show: (b) T'=ukK.
(b) To see that D(K) = D(T), we use the fact that |2p|*> = 2427 and
Theorem to compute that

D(K) = (I — zjezi)? H = (I — |2¢[*|20)2 H = (I — z32r)2 H = D(T).

Next, we establish the relation between the graphs G(K) and G(T'). By
Theorem [8.2.1],

{(I - z}zm%&,lz;{s) | € H}
HOES !zT!*\le\)f& lzr|€) | € € H}
{((I = zp2r)2&, |20[6) | € € HY.

G(K)

Therefore,

and consequently, T'= ulk.

Finally, recall from Theorem that u*u is the projection operator onto
im |z7|. Since

G(K) = {((I — #p20)7¢, |20[€) | € € HY,
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im K =im |zr|. Therefore, u*u is the projection operator onto the closure
im K as required.

Now we will prove that the decomposition T' = uK is unique. Suppose that
(v, D) is another polar decomposition of T" such that 7'= vD. Then,

T°T = (uK)*(uK) = K*u'uK = KK = K*

and similarly, 7*T = D?. By the definition of the z-transform (see
Definition [8.1.2)), we have

2 =T(I+T*T) 2 =T(I + K*)™2 =T(I + D*)"2.
So, uK (I + K2)"2 = vD(I + D?)"2 and uzx = vzp. Consequently,

zruwuzg = zpvtuzp

but, zxu*uzg = 2% because im zx = im |zp| = im K. Similarly,
zpv*vzp = 2%,. The above equation reduces to 2% = 2%. So, zx = zp and

by Theorem [8.2.2] K = D.

Finally, to see that © = v, note that since K = D, u*u and v*v are both
projection operators onto the closure im K. So, u*u = v*v, which is
equivalent to s(zx) = s(zp). We can then repeat the argument in Theorem
to obtain u = v as required. This proves uniqueness. O]

If T is a closed densely defined operator on H then the operator K in
Theorem [R.3.3]is called the modulus or absolute value of T and is
denoted by |T'|. The partial isometry u is called the phase of T'. These
definitions are familiar from the polar decomposition for bounded linear
operators in Theorem [2.6.1}
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Chapter 9

Spectral theorems for
unbounded operators

9.1 Continuous functional calculus for
unbounded operators

Our second major application of z-transforms is to construct functional
calculi and spectral theorems for certain unbounded operators. In this
section, we will begin by constructing an analogue of the continuous
functional calculus.

The idea is to start small and define a functional calculus for bounded
continuous functions. The C*-algebra we will work with is

Definition 9.1.1. Define Cts,(R, C) to be the set of bounded continuous
functions from R to C. The set Ctsy(R, C) is a C*-algebra with addition,
multiplication and scalar multiplication defined pointwise on C, the
involution map defined by complex conjugation of functions and the norm
given by the uniform norm

[flloe = suplf ()]
z€R

Let H be a Hilbert space and T': D(T') — H be a self-adjoint operator.
Our goal is to define a unital *-homomorphism from Cts,(R, C) to B(H) by
using the z-transform zr € B(H). Define the function

(: R - C
t —
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Then, ¢ € Ctsy(R,C). In particular, ¢ is a homeomorphism from R to
(—1,1). By definition of the z-transform (see Definition [8.1.2]), we want to
set up our unital *-homomorphism such that {(7") = 2.

Since T is self-adjoint, the z-transform zp is self-adjoint and bounded. The
map f > (fo (1) (2r) is a map from Ctsy(R,C) to B(H).

We want this map to form the definition of the continuous functional
calculus from Ctsy(R,C) to B(H). A major complication presents itself
here. The function f o (™! € Ctsy((—1,1),C). However,

o(zr) C{A€CIA < lzrll} S{A e CAl <1}

Since 27 is self-adjoint, o(27) C [—=1,1]. So, fo (™' & Cts(a(2r),C) and we
cannot blindly apply Theorem to define (f o (')(27). Thus, the naive

construction does not work.

Nonetheless, we can construct a unital *-homomorphism from Cts,(R, C) to
B(H). We have to work much harder though.

Theorem 9.1.1. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator. Define the function ¢ by

(: R - C
¢
b= 1442

Then, there exists a unique unital *~homomorphism

(I)b : CtSb(R, (C) — B(H)
f = f(T)
such that {(T') = z7.

Proof. Assume that H is a Hilbert space and T : D(T') — H is a
self-adjoint operator. Assume that ( is the function defined as above.

The idea to rectifying our naive construction is to modify the composite
f o (7t slightly and define for f € Ctsy(R, C)

f:(-1,1) — C
to (fol™() (1)

The point of introducing the extra term (1 — ¢2)2 is that f extends to a
continuous function from the closed interval [—1,1] to C. Hence, we can
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consider the continuous function f as a function with closed domain [—1, 1].

Now let £ € D(T'). By Theorem [8.2.1} there exists a unique n € H such
that € = (I — zhzr)2n = (I + T*T) zn. Since o(z7) C [—1,1] and 27 is a
bounded self-adjoint operator, we can use the continuous functional
calculus in Theorem to define the map

¢: D(T) - H
& = fler)n
To show: (a) If £ € D(T) then ||¢(§)]| < oo.

(a) First of all, the function f is bounded. To see why this is the case, we
compute directly that for ¢ € [—1,1],

(f)(@) = 1F @)
= f(CT PO -1
< sup]| f(z)[* - (1 - %)

z€eR

= [If11Z(1 = *) < || f]1% < oo

Since the continuous functional calculus in Theorem [2.2.1]is an isometry, if
we apply the continuous functional calculus to the inequality

(FN)(#) < If 1% (1 = #?), we obtain

far) flzr) < IR = 2per).
Thus,

1$(II* = Il f (zz)mll®
= (f(zr)n, f(zr)n)
<77 f(ZT) (ZT>77>
< || f13{n, (I = 2pzr)n)
= | FI2(I = 2pzr)2n, (I — 2p2r)2n)
= [IF11%(6,€) = IIFIZlIE]>.

So, [|#]] < || f|lec < 0o. This shows that the map ¢ is bounded and thus,
proves part (a).
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Since T is densely defined by assumption, D(T') is dense in H. So, ¢
extends to an operator ¢ : H — H such that [|¢[| < ||f||. Note that
¢ € B(H). We now define f(T') = ¢.

To show: (b) The map f + f(7) is a unital *-homomorphism.

(b) Assume that f,g € Ctsy(R,C). We want to show that
(f+9)(T)= f(T)+ g(T). By definition of ¢, we have for £ € D(T)

~
(@)
-
~—
—~
N
S
S~—
—~
~
|
I\
N *
N
~
N~—
NI
—
3
N~—
+
—~
Q
(@)
I
L
S~—
—~
N
~
S~—
—~
~
|
I\
N *
N
N
S~—
Wl

(n)

where & = (I — z327)7n. So, (f + g)(T) = f(T) + g(T) on the dense
subpsace D(T'). Therefore, (f 4+ ¢)(T) = f(T') + g(T') on H.

Next, let 1 be the unit of the C*-algebra Cts,(R, C). That is, let 1 be the
function which sends z € R to 1. If £ € D(T") then

L(T)(€) = (Lo () (zr)(I = 2720)2 (n) = (I = 2520)2 (1) = 1(£):

Since 1(T") and I agree on the dense subspace D(T'), they must also be
equal on the entire Hilbert space H.

Next, we show that f(T) = f(T)*. We compute directly that for & € D(T),

— F(z)n = F(T)"(€)

In the second equality, we used the fact that (7! is a real-valued function.
In the final equality, we used the fact that the continuous functional
calculus in Theorem is a unital *-isomorphism. Since f(7') and f(7T)*
agree on D(T), they must also agree on H because D(T') is a dense
subspace of H.

Finally, we will show that f(7)g(T) = (fg)(T). Observe that if
h € Ctsp(R,C) and & € H then by definition of h,
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h(r)€ = W(T)(1 = sjer) .
Using this identity, we find that if p € D(T*T) = (I — z527)H then

fF(T)g(T)p = f(T)g(zr)I —Z:?ZT)1¢ 1
T)g(T)(I - Z:?ZTP( — 2p21)?Y

(T)

(T)

(T)g(zr)(I —ZTZT)W
(T) (&
(

|
=T S S S =
N~

(I — szT) g(zr)Y  (see Theorem [2.2.2))
2r)g(zr)Y

(I — z5zr)¢. The crucial observation in this
(—1,1) then

where ¢ € H satisfies
computation is that if

€ (-1
F(H3t) = (fo B =122 (go ()1~ )
= ((Fgr o ¢ =) (1 - 12)?
= fg(t)(1 - %)%,
Consequently,

F(T)g(T)p = fer)g(ar )
= fg(er)(I = 2p2r) 29
= (fo)(T)U — zpar) 2 (I = Zrar) 3¢
= (f9) (D) = zpzr)y = (fg)(T)p.
Therefore, f(T)g(T) = (fg)(T) on D(T*T), which is a dense subspace of H
by a consequence of Theorem So, f(T)g(T) = (fg)(T) on H.

Consequently, we deduce that the map f +— f(7') is a unital
*-homomorphism, which proves part (b).

To show: (¢) {(T) = zr.

(c) By definition of the map f + f(T), we compute directly that if
¢ € D(T) and n) € H satisfies (I — z527)2n = £ then

N[

= C_l)(ZT)(lf — zp27)2(N)
= 2r(I = zp27)2(n) = 27(§).



Since ((T') = z7 on the dense subspace D(T'), ((T) = zr on H.
Finally, we will show that the unital *-homomorphism f +— f(T') is unique.
To show: (d) The unital *-homomorphism f — f(7") is unique.

(d) Suppose that ® : Cts,(R,C) — B(H) is another unital
*-homomorphism such that ®(¢) = z7. Since ® is a unital
*-homomorphism, the values of ® are uniquely determined by polynomials
in (. By Lemma [3.2.3, ® must be a contraction and is thus, continuous.
This means that ® is uniquely determined by its values on ¢(¢), where

v € Cts([-1,1],C).

If f e Ctsy(R,C) then define for t € R and n € Z

f(=n), ift < —n,
fu) = (), iff =n <t <mn,
f(n), if t > n.

The idea is to show that if £ € D(T') then ®(f,)¢ — ®(f)€ as n — oo. This
means that ®(f) is uniquely determined on D(T'), a dense subspace of H
by values of ® on functions f,, which have limits at +oc0.

Let us explain why this gives uniqueness of the continuous functional
calculus. Since f,(t) — f(t) as n — oo, there exists a constant C' € R+
such that if n € Z~g then [|®(f,)|| < C. Now assume that £ € H and

e € Ry. Since D(T) is dense in H, we can select ¢’ € D(T') such that
|€ — &'|] < €/3C. We then argue that

12(fn)€ — @(N)EN < N2(fn) — 2(L)ENI + 1 R(Fa)E = P(NE N + (| 2(F)E — 2(f)E]]
< ||<1>(€fn)!|||§ =&+ e(fa)€ - <1)(£)§'|| +e(ANIE =<
<O R — RN + O

If we assume that ®(f,)¢ — ®(f)& as n — oo then there exists N € Z~

such that if n > N then ||®(f,){ — ®(f)¢']| < ¢/3. Thus,

[B(fn)€ — (f)E]l <€

and ®(f,,) must converge to ®(f) on H. This shows that ®(f) is uniquely
determined.
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To show: (da) If £ € D(T) then ®(f,){ — ®(f)E as n — oo.

(da) Let g(t) = (1 — ¢(£)?). Since values of ® on polynomials in z; are
uniquely determined, we have

O(g%) = (1= C(t)*)(2r) = [ — 2par
and by the uniqueness of positive square roots

(g) = (I = 2par)*.
Assume that & € D(T). By Theorem [8.2.1] there exists a unique n € H
such that £ = (I — z}zT)%n. So, £ = ®(g)n and

O(fn)€ = @(fu)P(9)n = (fug)n.

Now observe that

[(fng) () = (f9) )] < [((fa = F)g)(@)]
< Nfa = fllso |i‘tiplgq(lf)l
< 2||f||oo|§‘1iplg(t)|
— 0

as n — oo. Thus, f,g — fg uniformly on R and consequently,
®(f.9) = ®(fg) i B(H). So,

lim ®(f,)¢ = lim B(fg)n = B(fg)1 = ()€

n—o0

This proves part (da).

(d) Thus, the continuous functional calculus f +— f(7") is unique, which
completes the proof.

]

We want to extend Theorem [9.1.1] to continuous real-valued functions on R
(that is, functions in Cts(R,R)). Fortunately, this can be done thanks to a

specific result about the bounded continuous functional calculus we prove

below.

Lemma 9.1.2. Let f € Ctsp(R,R) (f is a bounded real-valued function on

R) be such that if t € R then f(t) # 0. Let H be a Hilbert space and
T :D(T) — H be a self-adjoint operator. Then,

ker f(T') = {0}.
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Proof. Assume that f € Cts,(R,R) and if t € R then f(t) # 0. Assume
that H is a Hilbert space and T': D(T) — H is a self-adjoint operator. In
the setting of Theorem [9.1.1, define

a= f(T), b= f(zr) and  ¢= (I—zf*pzT)%.
We first claim that b € B(H) has kernel ker b = {0}.

To show: (a) kerb = {0}.

(a) Invoking the spectral theorem in Theorem [3.1.9, we can assume that
the z-transform z7 is a multiplication operator M, : L*(X, u) — L*(X, u)
for some semifinite measure space (X, u) and g € L>(X, u).

We know that ker(I — 22) = ker(I — zz7) = {0} by Theorem [8.2.5] Then,
+1 cannot be eigenvalues for zp = M. By applying Lemma [3.1.7, the set

{we X |gw)==+1}

must have measure 0. Thus, b = f(2r) is the multiplication operator M¥,,.
Now since f(t) # 0 for t € (=1, 1),

pfwe X [ (fog)(w)=0}) =0.
By another application of Lemma [3.1.7] we find that b has no non-trivial

eigenvalues. Hence, ker b = {0} as required.

By definition of the functional calculus for T in Theorem [9.1.1], we have for
neH
acn = bn.

Since a, b and c are all bounded self-adjoint operators, we find that

ca = (ac)" =b" =b=ac.
So, b = ac = ca and kera C kerb = {0}. O

Using Lemma [9.1.2] we can extend Theorem [9.1.1] as follows.

Theorem 9.1.3. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator. If f € Cts(R,R) then there exists a unique closed
densely defined operator f(T') such that zyry = (o f)(T), where C is the
function
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R
_t
1+¢2

(: R —
t =
Moreover, f(T) is self-adjoint.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a
self-adjoint operator. Assume that f € Cts(R,R).

Now let z = (C o f)(T). Then, o f € Ctsy(R,R) and

because the unital *-homomorphism which maps ¢ o f to (¢ o f)(T) in
Theorem [9.1.1] is a contraction by Lemma [3.2.3

Next, observe that

I—22=¢g(T)
where g(t) =1 — ¢(f(t))? > 0 for t € R. Hence, we can use Lemma to
deduce that ker(I — z*z) = {0}.

By Theorem [8.2.5 z must be the z-transform of a unique closed densely
defined operator, which we call f(7').

To see that f(T') is self-adjoint, we first observe that z = z* because the
function ( o f is real-valued and thus, equal to its complex conjugate. Next,
we use Theorem and the fact that z = 2* in order to find that

25Ty = z;(T) =2"=2=2zp1).

By Theorem [8.2.2) we deduce that f(T) is self-adjoint as required. O

9.2 Borel functional calculus for unbounded
operators

We begin with a simple observation. Let H be a Hilbert space and

T : D(T) — H be a self-adjoint operator. Then, the z-transform z; € B(H)
is a self-adjoint operator such that o(zr) C [—1,1]. In particular, we can
apply Theorem to zp. This leads us to the following result.
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Theorem 9.2.1. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator on H. Then, there exists a semifinite measure space
(X, 1), a measurable function f: X — R and a unitary operator

u € B(L*(X, pn), H) such that T = uMu*. Moreover, the spectrum

0(T) = Vess(f)-

Proof. Assume that H is a Hilbert space and 7" : D(T') — H is a
self-adjoint operator on H. By Theorem and Theorem [8.2.2] the
z-transform zr is a self-adjoint operator.

By applying Theorem |3.1.9, we find that there exists a semifinite measure
space (X, ut), a measurable function F': X — R and a unitary operator
u € B(L*(X, p), H) such that zp = uMpu*.

Now consider the operator S = u*Tu. By Theorem [8.2.8] we have

zg = u zpu = u(uMpu*)u = Mp.

The domain of S is therefore given by (see Theorem [8.2.1))

D(S) = {(I - zzs)2¢ | ¢ € L*(X, )}
= {(I - M2)3¢ | ¢ € L*(X, )}
— (M0 | o € L*(X, 1)}

Since ker(] — z&zg) = {0}, we can invoke Lemma to find that
V1 — F? 20 almost everywhere on X. Hence, the function

F
V1— F?
is well-defined and finite almost everywhere on X. Also, if

W =1 = F%¢ € D(S) where ¢ € L2(X, 1) then

f=

S = z5¢  (By Theorem [8.2.1)
= Mpo = Fo¢
=SV1—F?¢
= V1= F?¢ = fip =M.

Therefore, D(S) C D(My) and if ¢ € D(S) then Sy = M. So, S < My
(M is an extension of S). Notice that both S and My are both self-adjoint
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operators. In particular, the latter is self-adjoint because the function
f X — R is real-valued.

Since S cannot have a self-adjoint extension, we find that S = M and
T =uSu* = uMu*.

Now since 7" and My are unitarily equivalent operators, o(1") = o(My). By
Theorem [3.1.6] (M) = Vess(f) (see Definition [3.1.4)). Hence,
o(T) = o(My) as required. O

Analogously to bounded operators, Theorem leads straight to an
extension of the Borel functional calculus given in Theorem [3.2.4]

Theorem 9.2.2. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator on H. Let Bor(R,C) denote the set of bounded Borel
functions on R. Then, there exists a unique unital *~homomorphism

®,: Bor(R,C) — B(H)

g = g(T)
such that if ¢ is the function
(: R - C
t
t V14t2

then ((T') = zp. Furthermore, if {gn}nez-, is a uniformly bounded sequence
of Borel functions converging pointwise to g then g,(T) — g(T) as n — oo
with respect to the strong topology.

Proof. Assume that H is a Hilbert space and 7" : D(T') — H be a
self-adjoint operator on H. By Theorem there exists a semifinite

measure space (X, 1), a measurable function f: X — R and a unitary
operator u € B(L*(X, u), H) such that T' = uM ju*.

In particular, the proof of Theorem |3.1.9| suggests that we can assume X is
a LCH space (locally compact Hausdorff), i is a Borel measure on X and f
is a Borel function. Now if g € Bor(R, C) is a bounded Borel function on R
then the composite g o f is a bounded Borel function on X. Hence, we
define g(T') = ®4(g) by

g(T) = uMyopu’.

Arguing similarly to Theorem [3.2.4] we find that ®, is a contractive unital
*-homomorphism. In particular, ||g(T)| < ||9]c-
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Assume that ( is the function defined as above. Then,

T)=Pp(() =uM_; u".

Vitr2

Recall from the proof of Theorem we have T' = uMyu*, where

Fo F
CVI—F?

and zr = uMpu*. If we rearrange the above equation for F', we find that

_f
Vi+f?

F =
Consequently, ((T') = uMpu* = z7.

Next, let {gn }nez., be a uniformly bounded sequence of Borel functions
converging pointwise to ¢g. If £ € H then

Hgn(T)f - g(T)€|‘2 = Hu‘/\i(gn—g)ofu*fH2
= [[uMig,-gpor¥|l*
= ||[Mg,—gos||* (since u is isometric)

= /Xlgn(f(w))—g(f(w))lQI@b(w)IQdu(w)
— 0

In the last line, we applied the dominated convergence theorem. So,
gn(T) — g(T') as n — oo in the strong topology.

Finally, we will show that ®, is unique. First, note that ®; restricts to a
unital *-homomorphism from Cts,(R, C) to B(H ), which satisfies

¢(T) = zr. By uniqueness in Theorem [9.1.1 ®;, must coincide with the
unital *-homomorphism in Theorem on Ctsy(R, C).

Arguing in a similar manner to Theorem [3.2.5] we find that ®, is unique,
which completes the proof. O]

9.3 Spectral measures for unbounded
self-adjoint operators

As usual, let H be a Hilbert space and T : D(T') — H be a self-adjoint
operator. The main goal of this section is to express T as an integral with
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respect to a particular spectral measure on R. Previously, we have
considered integrals of bounded Borel functions over spectral measures.
This time, we will be dealing with arbitrary Borel functions.

Before we proceed, we recall some of the main definitions and constructions
pertaining to spectral measures:

1. The definition of a spectral measure is given in Definition |3.3.1]
2. The total variation of a measure is defined in Definition B.3.2]

3. Let H be a Hilbert space and 7,& € H. Let X be a set and A be a
o-algebra on X. We define the map

€lBn): A — C
A = (E(A),6)

This is a finite complex-valued measure on (X, .A), with finite total
variation.

4. Let f € Bor(X,C) be a bounded Borel function. By using the Riesz
representation theorem, we were able to define a bounded operator
xy € B(H) such that

(e, ) = /X £ (w) d{¢|E(w)).

5. Finally, recall that we have a unital *-homomorphism given by

Theorem B.3.11

We commence with the following lemma.

Lemma 9.3.1. Let H be a Hilbert space and ¢, € H. Let X be a set and
A be a o-algebra on X. Let E be a spectral measure on (X, A). Let
g € Bor(X,C). Then,

| [ gatetza] < el [ lo? atwlze))

Proof. Assume that H is a Hilbert space and ¢, € H. Let |(p|Ey)| be
the total variation of (p|E).

Since (p|FE1) is a finite complex-valued measure, we can apply the
Radon-Nikodym theorem. In particular, we have
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| /ngwiEw < / 91 dl (e )

d{pl EY)| 90|E¢
= 1ol GE T Al

- /X ug d(p|EY)

where u : X — C is a measurable function with modulus 1 almost

everywhere on X. This uses [Cohl13l Corollary 4.2.6] as well as the fact that

we can write g € Bor(X,C) as g = p|g|, where p : X — C satisfies
1plloc = 1.

Hence, we have

‘/ng(leM S/Xug d{o|Ev)

= <$ugz/)7 90>
= ‘(xugaw>90>
< [lellllzugill-

It remains to compute the quantity ||z,,1|. By definition, we have

||$ug¢||2 <xug¢ xugq/’)
= x|ug|2¢ 1/1> (See Theorem [3.3.1)

~ [ Jutwlaw)F dwlEw))
= [ latw)P dtiBG)e).

Therefore,

|| g delB)] < ezl = el [ ol dwiBs)”

Soon, we will need the following computation, which is valid for bounded

Borel functions f, g € Bor(X,C):
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/ 9f d{p|EY) = (3090, 0) = (149, 270) = / g d(z5p|EY).
X X
Hence, we have the equality of complex-valued measures
(z5p|E) = [ d(p|EY). (9.1)
In the next theorem, f is now a general Borel function from X to C. In

order to define the integral of f, we must first have a domain which is dense
in H.

Theorem 9.3.2. Let H be a Hilbert space and ) € H. Let X be a set and
A be a o-algebra on X. Let E be a spectral measure on (X, A). Let
f: X — C be a measurable function and define

9y ={we H| [ |fP dw|Bv) <o}
X
Then, 9y is a dense subspace of H.
Proof. Assume that n € Z~y. We define

An ={w e X [[f(w)] <n}.
Now let v € E(A,)H. If A C X is measurable then

E(A)) = E(A)E(An)d = E(AN AL ).

Hence, the spectral measure (|Ev) satisfies

(WIEY)(A) =

—~

YIE(A)Y)
DIE(ANAL)Y)
IE)(ANA,).

A H C Yy for n € Zsy.

—~

PR

We will now show that the images F
To show: (a) If n € Z-( then the image E(A,)H C %;.

(a) Assume that n € Z~y. Assume that f: X — C is a measurable
function. Utilising the most recent finding, we have

/X P d|By) = / £ Al B

< n?ly)* < oo
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In the second last inequality, we used the definition of A,,. Therefore,
E(A,)H C 2.

The characteristic functions {xa, }nez., converge to 1 pointwise as n — oo.
Hence, E(A,)Y — ¢ as n — oo. Thus, Z; is a dense subspace of H.

It remains to show that %y is a vector subspace of H. Assume that
U, 0 € Pp. If A € A then

IEA) + [[E(A)e])?
IEQ)* + 2| E(A) el

IE(A) (W + @)l* < (
2

IA

The last inequality follows from the AM-GM inequality. This means that

(Y + lE(Y + ¢)) < 2(|EY) + 2(p| Ep).

and consequently,

/X P A0+ ol E(p + ) <2 /X P dlE()) +2 /X P Aol Ew))

< Q.

Hence, ¥ + ¢ € Z¢. Now if A € C then

/X 12 A0l () < A1 /X P dlelE(9))

< oQ.

Hence, 9; is a dense vector subspace of H. n

With Theorem [9.3.2] we can now define an operator ¢ from a measurable
function f : X — C. We want the domain D(z;) = % as in Theorem [9.3.2]
Let ¢ € D(xy) and ¢ € H. By Lemma and the dominated
convergence theorem, we find that

[ s atelEa] < el ( [ 157 atwizn)

Therefore, the map

o /X f dig|EY)
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is a bounded linear functional on H. By the Riesz representation theorem,
there exists a unique n € H such that

| atlee) = o)
X
Thus, we define z¢ by

ry: Yy=D(xy) — H
¥ =

The expression [ f d{¢|E) which defines 7 is linear in ¢). By Theorem
we find that xf is a densely defined linear operator. Furthermore, if
f € Bor(X,C) then this definition of z; corresponds to the one in Theorem
3.3.11

The operator z¢ is also additive with respect to the measurable function f.
To see what this means, assume that f; and f; are measurable functions
from X to C. Let ¢ € D(zys,) N D(zy,) = Dy, N Dy,. If p € H then

(b ) + (2, ) = /X f1 d(o|EY) + /X f2 dlo| E)
_ /X fi+ fo (Ol BY) = @ panth, o).

Hence, xy, + 2y, = 24,4+, The next theorem is dedicated to proving more
properties about ;.

Theorem 9.3.3. Let E be a spectral measure on the measurable space
(X, A). Then,

1. If f : X — C is a measurable/Borel function then the operator xy is
closed.

2. If Y € D(xy) then

]2 = /X P Al B,

3. If f,g: X — C are measurable functions then xjry, < x5, and
D(zpzy) = D310 Dy

4. If f+ X — C is a measurable function then 3 = 7.
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Proof. Assume that F is a spectral measure on the measurable space
(X, A), where X is a set and A is a o-algebra on X.

To show: (a) If ¢ € D(ay) then |a76]> = [l f1? d(wIEY).
(a) Assume that ¢ € Z;. For n € Z, define

An ={w e X [[f(w)] <n}.

Let x,, be the characteristic function of A,, and define f,, = x,,f. Then,
fn € Bor(X,C) is bounded for n € Z and Z;_;, = Z. We have

s — 2, ||* = (xph — 2y, 00, xp0 — 2p,1))
= (Tp_f, 0, Tp_p, )

—| [ (= ) dlas-g.0lE0)
X 1
< a0l [ 17 = 5 dwiEe)
By the dominated convergence theorem,

fopt = el < ([ 15 = ol i) -0

as n — 00. Since f, is bounded, we know that by Theorem |3.3.1

o bl1? = (g, ) = / 1l d|EY).
X

Since ||z — xy,9| — 0, we obtain
logll = [ 11 dtwiBv)
as required.

To show: (b) If f,g: X — C are measurable functions then z sz, < z, and
D(xyrg) = Dy N Dyg

(b) First assume that g : X — C is measurable and f € Bor(X,C). Then,
Dy C Dyg. It ) € Dy and ¢ € H then
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(Tragh, ) = <$g¢,x?£p>

= /Xg d(z5p| )
_ /ng d{p|Ev) (See equation )
= (Tsg¥, 0)-

We have shown that if ¢ € 7, and f € Bor(X,C) is bounded then
rrrg) = w410, Consequently,
J P gl Bt = bl = llogowl = [ 1ff dwlEw)

The above equation holds for any bounded measurable function f. Thus, it
also holds for any measurable function f : X — C by a similar argument to
part (a) using the dominated convergence theorem. The above equation
tells us that for a measurable function f, z,¢ € D(xy) = Z; if and only if
Y € Dy, Therefore, D(zsxy) = Diy N D, and because xpr 1) = x4, for

YV E Dy, xpxy < T4y

To show: (c) If f: X — C is a measurable function then z%} = 7.

(c) Once again, assume that f : X — C is a measurable function. We will
use the bounded Borel functions {f, }nez., constructed in part (a).

Assume that ¢ € &y and p € I = ;.

To see that ¢ € D(z}), we compute directly that

(zr, ) = lim (g, )

So, ¢ € D(x}). Furthermore, we also showed that 23y = 25¢. So, x5 < 7.

Now let § € D(x}). By part (b) and the definition of f,, we have
Tf, = Ty, . Since z,,, is self-adjoint, we have

Ty, ¥y =2 (Tp2y,)" =7 = 27
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In particular, z,, 23§ = z3:€ for n € Z.

To see that § € D(zy) = Z%, we compute directly that

JI5E dtc1Be) = arel?
— Jlz i€
= [ bl diwelBaie)
< (25| Bas€) (X) < oo

because (x?{ ]Ex;f) is a finite measure. By the dominated convergence
theorem, we must have

/ I d(¢|EE) < .
X

Therefore, § € D(z5) = %5 and D(z}) C D(z5). In conjunction with the
previous finding that z7 < x7%, we deduce that z7 = x7}.

To show: (d) If f : X — C is measurable then the operator z; is closed.

(d) By applying the result of part (c) to the measurable function
: X — C, we find that z; = x%. Since z is the adjoint of another densely
f 7 f
defined linear operator, xy must be closed as a consequence of Theorem

2.1 O

Here is the main result of this section.

Theorem 9.3.4. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator. Then, there exists a unique spectral measure Er on R
such that

T = /R)\ dBr(\).

Proof. Assume that H is a Hilbert space and T': D(T') — H is a
self-adjoint operator. Let X = o(2r) and A be the Borel o-algebra on
o(zr). Recall that the spectral measure E,. is defined by

E..: A — Proj(B(H))
A xXa(zr).
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where ya is the characteristic function on A. Since o(zr) C [—1, 1], we can
treat E,. as a Borel spectral measure on the interval [—1, 1]. Moreover, £+1
are not eigenvalues of zp because ker(I — z4.zr) = {0}. So,

E..({—1,1}) = 0. Hence, E., is a spectral measure on the open interval

(_17 1)'
Define

1
0
5:/ 4B, ().
i (1)

We claim that S =T.
To show: (a) S =1T.

(a) First note that S = xy, where f(u) = \/1+7 Now set g(u) = /1 — p?.
By Theorem 9.3.3] we have

1
Sty =x5Ty < Tpg = / pdE., (n) = 2r.
-1

Now since g and fg are bounded on the open interval (—1, 1),
D(Sz,) = 9,1 D¢, = H. In tandem with the fact that Sz, < 27, we
deduce that Sz, = zyx, = 27.

By Theorem [3.3.2] we have z, = g(27) = (I — 22)z. Hence, the equality
Sz, = zp becomes

Since D(T') C D(S) = H, we deduce that T' < S. Since S and T are
self-adjoint, S = T.

Now, let R be the Borel g-algebra associated to R. For A € R, define

where ( is the homeomorphism
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¢: R — (—=1,1)

_t
o= 1+¢2

In particular, Fr is the pushforward of E,, by (*! and is thus, a spectral
measure on (R, R). We have

1
0
T:/ —E_JdE.,
e (1)

:/11 ¢Hp) dE.. (1)
_ /R N dEr().

To show: (b) The spectral measure Ep is unique.

(b) Assume that E is another Borel spectral measure on R such that

- /R)\ dE(N).

Then, zr = {(T) = [ ﬁ dE(X). Now let E" be the pushforward of E

onto (—1,1) by ¢. Then,

A
o= /R\/ﬁ dE()\)
=4q»¢m»

= /_lu dE" ().

By uniqueness of the spectral measure of 27 (see Theorem [3.3.2)), we must
have ' = E,,.. Since ( is a homeomorphism, the pushforward measures £
and Ep must be equal. So, Er is unique as required. O

Let us note some specific consequences of Theorem [9.3.4. Since
T = [ A dEp(X), we can define a functional calculus for T' via the map

fHﬂﬂ=AﬂMMHM (9.2)
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Here, f : R — C is a (not necessarily bounded) Borel function. If f is
bounded then we recover the functional calculus in Theorem [9.2.2]

Additionally, if f, g : R — C are Borel functions and g is bounded then
f(T)g(T) = (fg)(T). To see why this is the case, we compute directly that

D(f(T)g(T)) = Dy N Dy = HN Dy = D((f9)(T)).
By Theorem 9.3.3] we have

g(M)f(T) < (gf)(T) = (f9)(T) = F(T)g(T).

So, f(T)g(T) = (fg)(T). In the above equation, one cannot expect
equality. For instance, if f(7) is unbounded and g = 0 then the domain of
g(T)f(T) is D(f(T)) and the domain of f(T)g(T) is all of H.

Let us reconcile Theorem with Theorem which says that f(7) is
the unique closed, densely defined operator whose z-transform is ({ o f)(7),

where ((7) = #=.

Is f(T) in Theorem the same f(7T) defined in equation ((9.2))?

Let Er be the spectral measure of 7" in Theorem [9.3.4] Let f: R — R be a
continuous real-valued function. With f,Er denoting the pushforward of
Er by f, we have

/R Nd(fEr) V) = / ) dBr(\) = F(T).

By uniqueness of the spectral measure of f(7") in Theorem [9.3.4] we must
have E¢ 1y = fuEr. So,

2Ty = /RC(U) dE (i)

- / (Co PN dEr(N)
— (Co (D).

Therefore, the z-transform of f(7") in Theorem is the operator whose
z-transform is given in Theorem [9.1.3
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Chapter 10

Self-adjoint extensions of
symmetric operators

10.1 The Cayley transform

One of the main questions about unbounded operators is whether
symmetric/Hermitian operators have a self-adjoint extension. The idea here
is that self-adjoint operators are crucial to several fields, such as quantum
physics and partial differential equations. However, many operators which
arise from problems turn out to be merely symmetric. This chapter is
dedicated to developing a few results about self-adjoint extensions of
operators, with the z-transform playing an important role.

First, we recall the definition of a symmetric/Hermitian operator.

Definition 10.1.1. Let H be a Hilbert space and 7': D(T') — H be a
densely defined operator. We say that T' is symmetric or Hermitian if
T<T"

Recall that the expression T' < T* means that D(T) C D(T*) and T =T*
on the dense subspace D(T).

We want to define the Cayley transform, a useful tool for studying
self-adjoint extensions. We need the following lemma about z-transforms to
do this.

Lemma 10.1.1. Let H be a Hilbert space and S,T be densely defined
operators on H. Then, T' < S if and only if

N

(I — zszg)%zT = 25(I — z72r)2.
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Proof. Assume that H is a Hilbert space and S, T are two densely defined
operators on H.

By Theorem [8.2.1} the graphs of S and T are

G(S) = {((I — 2525)3€, 25€) | € € H}

and

G(T) = {((I — Zor)2€, 7€) | € € H}.

The key idea is that we can express these graphs as G(T') = U..(H & {0})
and G(S) = U,,(H @ {0}). Here, U,, is a unitary operator on H x H
defined by

v (U=zer)r -z
o 27 (I — zp23)2

The unitary operator U, is defined similarly. Consequently, the statement
T < S is equivalent to saying that G(T") C G(S). So,

U..(H ©{0}) C U:5(H ©{0})

and

UrU.,(H ®{0}) C Hea {0}.

Now, the only operators on H & H which preserve the subspace H & {0}
are the ones with matrix form

* ok

0 =/)°

So, T' < S if and only if the operator U U,, takes on the above matrix
form. Computing U} U, we find that

2T

@ﬂ&:(u—%@ﬁ 25 ><u—@wﬁ —2; )

—2g (I — zszj;)% 27 (I — ZTZ})%
*

*
- (—Zs(f — z:*FzT)% + (I — zszg)%zT *) ’

Therefore, T' < S if and only if zg(I — zh2r)2 = (I — zg25)2 27 as
required. O
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Before we develop the Cayley transform, we will introduce some notation
used for handling partial isometries. It is useful to recall the notion of a
partial isometry by consulting Theorem and Theorem 2.5.2] In
particular, Theorem is the definition of a partial isometry.

Let v € B(H) be a partial isometry. By Theorem [2.5.2] there exists a
closed subspace S C H such that if ¢ € S+ then v¢ = 0 and if € S then

lon|l = |Inl].

Define v to be the restriction v|g. We think of v as an operator on H with
domain D(v) = S. For instance, if x € B(H) then the operator x + v has
domain D(z 4+ v) = D(x) N D(v) = S. Also, we have the bijective
correspondence

Isometric operators deﬁned}
on closed subspaces of H
v — v

{Partial isometries on H} < {

In what follows, we let T': D(T') — H be a symmetric operator.

Definition 10.1.2. Let H be a Hilbert space and T': D(T') — H be a
symmetric operator. A self-adjoint extension of T is a densely defined
operator S : D(S) — H such that T'< S and S = S*.

Recall that by Theorem [7.2.1] a self-adjoint operator must be closed
because its graph is the graph of its adjoint, which is always a closed
subspace of H x H. By Theorem [7.2.2] a symmetric operator must be
closable. Since T' < T*, the domain D(T™) is a dense subspace of H. So, T*
is densely defined and hence, T is closable.

Consequently, any self-adjoint extension of T" also qualifies as an extension
of the closure T" because if S is a self-adjoint extension of 7" then G(S5) is a
closed subspace of H x H which contains G(T') and

G(T) = G(T) C G(S).

Without loss of generality, we may assume that T is a closed, symmetric
operator. Since T' < T*, we can use Lemma [10.1.1| to deduce that

(NI

(I — Z;ZT)%,ZT = z2p(I — zpz7)2.

We define the bounded operators w, and w_ by

(S

wy = 2zp £i(l — 272r)2.
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Lemma 10.1.2. Let H be a Hilbert space and T : D(T) — H be a closed
symmetric operator. Let wy,w_ € B(H) be defined by

m\»—A

wy = zr +i(l — 2hzr)2.
Then, wy and w_ are isometries.

Proof. Assume that H is a Hilbert space and T": D(T') — H is a closed,
symmetric operator. Assume that w,,w_ € B(H) are defined as above.

To see that w, and w_ are isometries, we compute directly from the
definition that

wiwy = (27 Fi(l — Z;«ZT)%)(ZT +i(I — zp2r)
= zrzr tizp(I — zr}zT)% Fi(l — zpzr)

=zhzr+ (I — 2z7zr) = 1.

)

LSIL TN

v+ (I —zp2r)

Hence, w, and w_ are isometries. O]
Let us make some more definitions with regards to w, and w_.

Definition 10.1.3. Let H be a Hilbert space and T': D(T') — H be a
closed, symmetric operator. Let w, and w_ be the isometries defined in
Lemma [10.1.2] Let #4 = wiH.

The deficiency subspaces of T', denoted by Z., are defined by 2, = #-
and 2_ =W+

The dimensions of the deficiency subspaces, denoted by n.., are called the
deficiency indices of T

Here is a result regarding the deficiency subspaces Z, and Z_.

Lemma 10.1.3. Let T : D(T') — H be a closed, symmetric operator. Then,
the deficiency subspaces Y+ of T' satisfy

9:|: = ker(T* + Z])

Proof. Assume that T': D(T) — H is a closed symmetric operator. By
definition, 2y = #-. Thus, ¢ € 2. if and only if

(¢, 20& £i(I — Zhzr)2E) = 0.
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for any £ € H. By using Theorem [8.2.1] we find that the above equation
reduces to

(¢, T xih) =0

for ¢» € D(T'). In turn, the above equation holds if and only if
¢ e D((T +il)*) and (T +4I)*¢ = 0. Using Theorem we find that
(T'+4I)*¢ = (T* Fil)¢ = 0 and consequently, ¢ € ker(T™ Fil).

Thus, we obtain 7y = ker(T™* Fil). O

In order to understand why we can define the Cayley transform in the first
place, we require the following lemma, which shows that the Cayley
transform arises from a partial isometry.

Theorem 10.1.4. Let H be a Hilbert space and T : D(T) — H be a closed,
symmetric operator. Let cp = w_w?, where wy and w_ are the isometries
defined in Lemma[I0.1.3. Then, cr is a partial isometry with initial
subspace #.. and final subspace W .

Proof. Assume that H is a Hilbert space and T": D(T') — H is a closed
symmetric operator. Assume that ¢y = w_w?. To see that ¢y is a partial
isometry, we compute directly that

cr(er) er = wowl (w_wi ) w_w?
= w(wwy ) (W ww!

*
=w_w, = cr.

In the second last equality, we used Lemma [10.1.2] By Theorem [2.5.1], we
deduce that cp is a partial isometry.

Recall that the initial subspace of ¢y is the image of cj.cr = wiw? and the
final subspace of c¢r is the image of ¢y = w_w* . Hence, the initial
subspace of ¢y is #, and the final subspace of ¢ is #_. O]

Definition 10.1.4. Let H be a Hilbert space and T': D(T') — H be a
closed symmetric operator. Let

we = zr (1 — Z;«ZT)%

and cr = w_w} be the partial isometry defined in Theorem [10.1.4, The
operator ¢y : #, — H is called the Cayley transform of T
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As usual, we will prove some properties satisfied by the Cayley transform.
First, we note that the graph of T can be recovered from the graph of c7.

Theorem 10.1.5. Let H be a Hilbert space and T : D(T) — H be a closed
symmetric operator. Then,

G(T) = (‘jl ’f) Glér).

Proof. Assume that H is a Hilbert space and T": D(T') — H is a closed
symmetric operator.

By using the same argument in Lemma [10.1.3] we find that

G(cr) 6, w_wib) e Hx H|§ecW.}

(
(wyew_wiwy &) €e Hx H| &€ Hy
(
(

{
{
{(wiw-§) e Hx H|{ € H}

{Twﬂw,w—zweffoWGD( )}

il 1
—l 1

By taking inverses, we find that

G(T) = (‘}7 Z}) Glér).

The Cayley transform cz provides a bijection from the set of closed
symmetric operators to a particular subset of partial isometries.

Theorem 10.1.6. Let H be a Hilbert space. Then, we have the bijection of
sets

{Partial isometries ¢ € B(H)}
such that (c — Ic*H = H
T — cr.

{Closed symmetric operators on H}

Proof. Assume that H is a Hilbert space.

To show: (a) If T: D(T) — H is a closed symmetric operator then cr is a
partial isometry such that (¢ — INchH = H.
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(b) If T, S are closed symmetric operators and ¢y = ¢g then T'= S.

(c) If c € B(H) is a partial isometry such that (¢ — I)c*H = H then there
exists a closed symmetric operator 1" such that ¢ = cp.

(a) Assume that T is a closed symmetric operator on H. By Theorem
10.1.4] we know that cr is a partial isometry.

To show: (aa) (er —I)chH = H.

(aa) We know that G(T') is the graph of the densely defined operator T'. By
Theorem and Theorem [7.1.4], we find that

G(T)"n(H&{0}) =G(T)Nn ({0} & H) = {0}.

In particular, G(T)* N (H @ {0}) = {0} means that if (5,0) € G(T)* then
1 = 0. Using Theorem [10.1.5] we deduce that if

<(?7,0), (—Iz'l z}) (9,0}9)> ~0

for € D(cr) then n = 0. Simplifying the above equation, we find that if

for € D(cp) = #, then n = 0. So, ((c¢p — I)#,)* = {0}. However,

((er = D#L)" = ((er — D)y H)™ = {0},

If we take the orthogonal complement of both sides of
((cr — I)cnH)* = {0}, we find that (cp — I)eH = H.

(a) By part (aa), we find that ¢y is a partial isometry such that
(er — )¢ H = H. This proves part (a).

(b) Assume that S and T are closed symmetric operators on H. Assume
that ¢y = c¢g. By Theorem [10.1.5|

o) = (7)o - (7)o =)

Hence, T'= S and the bijection described in the statement of the theorem
is injective.
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(c) Assume that ¢ € B(H) is a partial isometry such that (¢ — I)¢*H = H.
Define the subspace G C H x H by

G = <_[” Z{) G(é).

We want to show that G is the graph of a closed, densely defined operator.
We will accomplish this by applying Theorem [7.1.5]

To show: (ca) G is a closed subspace of H x H.
(cb) If n € H and (0,7n) € G then n = 0.
(cc) If n € H and (n,0) € G+ then n = 0.

(ca) Since ¢ is a partial isometry, Theorem tells us that there exists a
closed subspace S C H such that the restriction c|g is an isometry.

The graph of ¢ is given by

G(e) ={(&c(§)) € Hx H | € 5} =8 xc(S).

Now since ¢ is an isometry on the closed subspace S, the image ¢(.S) must
also be closed. Hence, G(¢) = S x ¢(S5) is a closed subspace of H x H.

(cb) Assume that n € H and (0,7) € G. By definition of G, there exists

6 € D(¢) = S such that
0\ (=il I\ (6
n) \I T1)\ch)"

So, 0= (¢—1)0 and n = (¢ + I)0. This means that 6 € ker(¢ — I) and
subsequently that

0 € ker(¢c —1I)
C ker(c¢—1)

C ker(c*(c — 1))

= ker(c(c" — 1)) = ((c— I)¢"H) ™ = {0}.

¢
c

The second last equality follows from the fact that ¢ is a partial isometry
and the final equality follows from the fact that (¢ — I')c*H = H. Therefore,
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0=0andn=(¢c+1)0=0.
(cc) Assume that n € H and (n,0) € G+. If 6 € D(¢) = S then

(0. (_]” Z{) (6.66)) =0

Again, this simplifies to

(n,(¢c—1)0) =0.

Therefore,

ne((
Since H = (¢ — I)e*H = (((
arbitrary p € H. So, n = 0.

é— 1St = ((c—I)c*H)*
c— Ic*H)*)t, we find that (n, p) = 0 for

(c) Parts (ca), (cb) and (cc) allow us to use Theorem to demonstrate
that there exists a closed densely defined operator T" such that G = G(T)).
Next, we must show that T is symmetric.

To show: (cd) G(T') C G(T™).

(cd) First we will work out the graph G(T™*). By Theorem it is

G(T") = (_O[ é) G(T)*

I 1 A\t
- ((u —u) G(C>> ‘
The second last equality follows from the fact that the operator
0 I
(_[ O> € B(H x H)
is unitary.
Now suppose that (£,n) € G(T). Then, there exists 6 € D(¢) such that
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)= 07 ) (9)

To see that (£,n) € G(T*), we compute directly that for 8 € D(¢),

() ()0 (@)
B < (g)) ! (Z'z'fj 1) (u elu) (é@’)>
(5) (5 4)()

The last equality follows from the fact that ¢ is an isometry on the closed
subspace D(¢) = S and hence, preserves the inner product by the
polarization formula in Theorem [2.1.1]

We conclude that (¢,7) € G(T*) and G(T') C G(T*).

(c) Part (cd) tells us that 7" is a closed symmetric operator. By definition
of G = G(T), we find that ¢y = ¢. So, the bijection of sets in the statement
of the theorem is surjective and the proof is complete. n

Next, we want to know how partial isometries behave under extensions.

Lemma 10.1.7. Let H be a Hilbert space and c¢y,co € B(H) be partial
isometries such that ¢; < ¢o. Then,

(cp —I)ciH C (co — I3 H.

Proof. Assume that H is a Hilbert space and ¢y, ¢, € B(H) are partial
isometries on H such that ¢; < ¢;. By definition of an extension, we have

¢iH = D(c1) C D(¢2) = c3H.

Since ¢; < G, if € € D(cy) then (¢; — )€ = (¢ — I)€. In tandem with the
finding that ¢ H C c5H, we deduce that

(cp —I)ciH C (co — )G H.
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A particular consequence of Lemma [10.1.7]is that if ¢; < ¢ and
(¢t —I)c;H = H then (¢ — I)csH = H.

The next theorem gives us a glimpse into why the Cayley transform is
relevant to the study of self-adjoint extensions of symmetric operators.

Theorem 10.1.8. Let H be a Hilbert space and T : D(T) — H be a closed
symmetric operator. Let T : D(T') — H be another operator. Then, T" is a
closed symmetric extension of T if and only if cp < cpv.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed
symmetric operator. Assume that 7" : D(T") — H is another operator.

To show: (a) If 7" is a closed symmetric extension of T' then ¢p < cpv.
(b) If ¢r < ¢ then T" is a closed symmetric extension of 7.

(a) Assume that 7" is a symmetric operator and 7" < T". From Theorem
10.1.5|, we have

. —il il
cen = (7)o
Of course, a similar equality holds for G(cz+). Since G(T) C G(T"),

(‘IH Zf) G(T) C (_I” Zf) (T,

Consequently, G(cr) C G(er) and ¢p < epr.

(b) Assume that ¢p < ¢jv. By Theorem [10.1.6| (¢; — I)chH = H. By
Lemma |10.1.7, we find that (¢pv — I)ch H = H.

Now since G(cr) C G(czv), we can apply Theorem [10.1.5 to obtain
G(T) C G(T"), which means that T' < T* as required. O

The next theorem gives a decomposition which is key to describing
self-adjoint operators on H.

Theorem 10.1.9. Let H be a Hilbert space. Let T : D(T) — H be a closed
symmetric operator with deficiency subspaces P, and 9. Let

Ds ={(¢,%i¢) | ¢ € 22} C H x H.

248



Then,

GT)=GT) &2, 9_.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed
symmetric operator. Assume that _@~+ and Z_ are the subspaces of H x H
defined as above. We will show that the subspaces G(T), P, and J_ are
all pairwise orthogonal.

To show: (a) 2, and Z_ are pairwise orthogonal.
(b) G(T) and Z.. are pairwise orthogonal.

(a) To see that 2, and Z_ are pairwise orthogonal, observe that if n,& € H
then

((€,18), (n, —in)) = (& n) + (i&, —in) = 0.

Hence, the subspaces 9+ and Z_ are orthogonal.

(b) Recall from Lemma [10.1.3| that 2, = ker(7™* F ¢I). Assume that
€ D(T) and ¢ € Z.. We compute directly that

(0, TY), (¢, ig)) =

/\j\./\/\
=
~
ASE
|
N

*
_H
~.
=
=

Therefore, G(T) is orthogonal to both Z, and Z_.

Now since T' is a symmetric operator, G(T') C G(T*) and since the %, are
eigenspaces of T* by Lemma P+ C G(T*). To see that

G(T*) = G(T)® 2, ® 9_, it suffices to show that any vector in G(7T™)
which is orthogonal to the direct sum G(T') ® Z, ® Z_ is zero.

To show: (c) If (¢, T*¢) € G(T™) is orthogonal to the subspace
GT)® P+ P then ¢ =0.
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(c) Assume that (¢, T*p) € G(T™) is orthogonal to the subspace
G(T)® %, ® 2. Since (¢, T*p) € G(T)* by assumption, we have for
v € D(T)

(0, T70), (&, TY)) = (@, ) + (T, TY) = 0.
Consequently, T*p € D(T*) and (T*)*p = —¢. This means that

0 € D(T*)? 4+ 1) = D((T* +iI)(T* — il))

and (7% +iI)(T* —il)p = 0. Now set n = (T — il)p. By Lemma [10.1.3]
ne ..

Next, we use the fact that (¢, T*p) € 7 " to compute directly for ' € Z_
that

i(n, ') =i((T" —il)p,n)
= (T"p, —in') +i(~ip,n)
= (T, —in) + (o, 7)
= (¢, T"p), (', —in')) = 0.

The last equality follows from the fact that (n/, —in/) € Z_. Notice that if
we set ' = 1, we find that 7 = 0 and therefore, 7"y = i¢p. So,
p € ker(T* —il) = 7, and (o, T*p) € Z,.

Since (¢, T*p) € Z, was assumed to be orthogonal to Z,, we find that
¢ = 0. This proves part (¢) and completes the proof. O

Using Theorem [10.1.9, we will now give an explicit characterisation of
self-adjoint operators T on a Hilbert space H.

Theorem 10.1.10. Let H be a Hilbert space and T : D(T) — H be a
closed symmetric operator. Then, the following are equivalent:

1. T is self-adjoint.
2. 9, =92 ={0}.
3.ny=n_=0

4. The Cayley transform cr of T is a unitary operator
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Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed,
symmetric operator.

If T is self-adjoint then G(T™) = G(T'). By Theorem [10.1.9 we must have
@i = {O} Hence, -@i = {0}

If @i = {0} then ny = dim @i =0.

If ny = dim 24 = 0 then since 2 = #-, #. = H. So, the Cayley
transform ¢y = ¢, which is a bounded operator on H. Note that ¢y is a
partial isometry from the initial subspace #, = H. So, cr is an isometry.
By Theorem [2.5.2] the final subspace of c¢p is

H=W_ =cr#, =im cr.
So, cr is a surjective isometry and by Theorem the Cayley transform

¢ = cr is a unitary operator.

Finally, suppose that the Cayley transform cr is a unitary operator. Then,

cr = cr is a surjective isometry on H by Theorem [3.1.8f By Theorem [2.5.2]
and the fact that cr is a partial isometry with initial subspace #, and final
subspace #_, we deduce that #, = H and

W = CTW_;. =H

where the last equality is due to surjectivity of c¢p. So, 2. = #+ = {0}
and by Theorem [10.1.9] G(T*) = G(T'). So, T must be self-adjoint. O

From Theorem [10.1.10] and Theorem [10.1.8] we obtain criteria for T to have
a self-adjoint extension.

Theorem 10.1.11. Let H be a Hilbert space and T : D(T) — H be a
closed symmetric operator. Then, the following are equivalent:

1. T has a self-adjoint extension.
2. There exists a unitary operator from Y, to 9.

3. ny=mn_.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed
symmetric operator.
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By Theorem [10.1.10, 7" has a self-adjoint extension if and only if its Cayley
transform c¢r has a unitary extension. This means that ¢y : #, — H can be
extended to a unitary operator defined on all of H. Note that ¢z #, = #_
by definition of the partial isometry cr.

To see what this means, recall that 2. = #-. So, H = #+ ® 2. Hence, a
unitary extension of ¢y is equivalent to defining any unitary operator from
2. to Z_. Also, we have a unitary operator from Z, to Z_ if and only if
ny =n_. 0

An interesting aspect of Theorem is that the number of self-adjoint
extensions of T is exactly the number of unitary maps from 2, to Z_. In
most non-trivial cases, there are infinitely many unitary maps from %, to
2_ and thus, infinitely many self-adjoint extensions of 7T'.

We remark that we can perform a similar analysis to the one in this section
for symmetric operators 1" which are not necessarily closed. However, it is
harder because we do not have the z-transform 2z at our disposal. The
issue is that if 7' is not assumed to be closed then Theorem [10.1.9 does not
hold. That is, the deficiency subspaces ¥, and Z_ can be zero, but

G(T) # G(T*). When this happens, the closure T is self-adjoint and T is
called essentially self-adjoint.

10.2 Krein and Friedrichs extensions of
positive operators

Let H be a Hilbert space and T': D(T') — H be a densely defined, positive
operator. Recall the definition of a positive operator from Definition [8.3.1
— if ¢ € D(T) then (b, Tv) > 0. Subsequently,

(0, TY) = (T, )
and by the polarization formula in Theorem [2.1.1} if ¢, ¢ € D(T') then

(T, ¢) = (1, T¢) = (T, ).
We find that if ¢ € D(T) then T*¢ = T%). So, T < T* and T is symmetric.

In this section, we will study self-adjoint extensions of positive operators.
For the same reason outlined in the previous section, we can assume that T’
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is closed.

Recall that if x € B(H), is positive then o(z) C R>g. A similar result
holds for positive and self-adjoint unbounded operators.

Theorem 10.2.1. Let H be a Hilbert space and T : D(T) — H be closed,
positive and self-adjoint. Then, o(T) C Rxy.

Proof. Assume that H is a Hilbert space and T': D(T) — H is a closed,
positive and self-adjoint operator.

To show: (a) ker(T'+ I) = {0}.
(b) im(T'+1)=H.
(c¢) The image im(7T + I) is a closed subspace of H.

(a) Assume that ¢ € ker(T'+ I). Then, TW 4+ ¢ = 0 and T% = —1. Since T
is positive,

So, 1 = 0 and ker(T'+ I) = {0}.

(b) It suffices to show that (im(T + I))* = {0}. Assume that
¢ € (im(T + I))*t. If op € D(T) then

(0, TY + ) = (&, Th) + (d,4) =0

So, (¢, TY) = (—¢, ). This means that ¢ € D(T*) and T'p = T*p = —¢.
So, ¢ € ker(T + I) = {0} by part (a). So, ¢ =0 and (im(T + I))*+ = {0}.

(c) First observe that if ¢» € D(T') then

T+ Dl* = ITY I + (o, TY) + (T, ) + [¢* = [l

To see that im(7" + I) is closed, suppose that {(T + I)v, }nez., is a Cauchy
sequence in im(7" + 7). By the above estimate, we find that {¢;, }nez., is a
Cauchy sequence in H and thus, converges to some p € H.

Now since T is closed, T + I is also closed by Theorem Since
limy, o0 ¥ = p, limy, oo (T + I)th, = (T'+ I)p by Lemma [7.1.1]
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Consequently, im(7T + ) is a closed subspace of H.

By combining parts (b) and (c), we find that im(7 + I) = H. Together
with part (a), we find that 7'+ I is a bijection from D(T') to H. Moreover,
the inverse operator (7' + I)~! is continuous because if £ € H then

1T+ D)7 ell* < (T + (T + 1)~ ¢)* = [1€]1*

In fact, (T + I)~! is actually a contraction.

By the above reasoning, we find that —1 ¢ o(7T"). Now if A € R- then the
operator %T is also closed, positive and self-adjoint. So, —1 & a(%T) and
consequently, —\ & o(7'). So, o(T") C Rxy. O

In order to proceed, we require a rather technical lemma.

Lemma 10.2.2. Let H be a Hilbert space and K be a closed subspace of H.
Leta € B(K), be B(K,K') and c € B(K*). Then, the operator

a b
(b c) =0
in B(H) if and only if a > 0 in B(K) and if € € Ry then

c>bla+elg) b

in B(K1), where I is the identity operator on K.

Proof. Assume that H is a Hilbert space and K is a closed subspace of H.
Assume that a,b and ¢ are the operators defined as above. Define

a b
f= (b c) € B(H).
The matrix is written with respect to the basis K, K+.

To show: (a) If f > 0 then a > 0in B(K) and if € € R.( then
c>bla+elg) 10" in B(K).

(b) If @ > 0 in B(K) and if € € Ry then ¢ > b(a + el)~'b* in B(K*) then
f>0in B(H).

(a) Assume that f > 0in B(H). Assume that £ € K. Then,
((£,0), f(£,0)) > 0. Expanding the LHS, we have
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() () =0

Using the fact that H = K & K+, we deduce that

(€ +0,a8 + b)) = (£, af + bE)
= (£, af) + (£, b8)
= (£,a€) > 0.

This means that ¢ > 0 in B(K).
Next, assume that € € Ryg. Let px € B(H) be the projection operator on
the closed subspace K. Then, epx € B(H) is a positive operator and
epg — 0 as € — 0 in the strong operator topology.
Define the operator f. € B(H) by
_[a + EIK b*

fE - ( b C> .

We claim that f > 0 if and only if f. > 0 for € € R.,.

To show: (aa) f > 0 if and only if f. > 0 for € € R.,.

(aa) Assume that f > 0. If (§1,&) € K @ K+ = H then

((§1,82), f(&1,62)) 1+ &, a8y + b7E + b&y + &)

= (
= (§1,a81) + (§1,0°82) + (62, 0&1) + (2, cba)
0.

This inequality holds if and only if for € € R,

((61,&2), fe(&1,862)) = (&1, (a+ elk)&r) + (61,0°8a) + (&2, 061) + (§2, c2)
= ((&1,&), f(&1,&)) + €&l > 0.

So, f > 0 if and only if f. > 0 for € € Ry.

(a) Using part (aa), we find that f. > 0 for € € R.y. By the previous
computation in part (aa), if (&,&) € K @ K+ = H then
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(€1, (@ + elg)&r) + (61, 07E) + (€2, 061) + (€2, c&2) > 0.

Since a > 0 is a positive operator, o(a) C Rsg and Ry C p(a). This means
that if € € Roo then —elx — a is invertible. So, a + el € B(K) is
invertible. Hence, if we set & = —(a + el ) 'b*&, then

(—(a+el)7'0"6, —(a + elx)(a + eli) T'b"Ea) + (—(a+ elk) "', b"Eo)
(&, —bla+ elx) Tb*E) + (&2, cko)

= ((a+ elg) &, b ) — ((a+ elx)'b*E, bE)
+(&, —bla+ el)'b*E) + (&2, cbo)

= (&2, (c = b(a + elx)7'b")(&)) > 0.

So, ¢ > b(a + elg)~tb* for € € Ryy.

(b) Assume that @ > 0 in B(K) and ¢ > b(a + elr)~'b* in B(K') for
€ € Rog. It suffices to show that f. > 0 for € € R.

Notice that

f_ CL+€[K b* _ CL+€[K b* + 0 0
<= b o) b bla+elg) ") T\0 c—bla+elg) )

By assumption, the operator

0 0
0 ¢—bla+elg) b

on K @ K+ = H is positive. Hence, it suffices to show that if ¢ € R- then

a—+elg b*
( b b(a+eIK)‘1b*> =0

on B(H). Denote this operator by g..
Let (£1,6) € K @® K+ = H. Then, ((&,£&), ge(&1,&2)) is equal to

(&1, (a+ elr)&r) + (€1, 0°E) + (&2, 061) + (&2, b(a + el ) T'b &),

By assumption, b* € B(K+, K). By Theorem we can decompose K+
as the direct sum
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K* =kerb* @ (ker b*)* = im b @ ker b*.

Note that since b € B(K, K*), im b = bK. Hence, K is the closure of the
direct sum im b & ker b*. So, it suffices to prove that

(&, (a+ elg)&) + (&1, 0°6) + (&2, 061) + (&a,b(a + el ) T'b*E) > 0

for & € im b @ ker b*. To this end, assume that & = by + 1/, where n € K
and 7' € kerb* = (im b)*. We compute directly that

(&1, (a+ elg)&r) + (61, 0°Ea) + (&2, b61) + (&, b(a + el ) T'b*Ey)
= (&1, (a+elg)&r) + (&1, 0"bm + ™) + (bn + ', bE1)

+(bn 41, b(a + elg) 10 (bn + 1))
= (&1, (a+€elg)&r) + (&1, 0"bn) + (bn + 1, b&1)

+(bn 41, b(a + elg) " b*bn)
&1, (a + elg)&n) + (&, b"0n) + (b, b&r) + (bn, b(a + el ) ~'b"bn)
&1, (a+ elg)ér + 0°bn) + (0°bn, &1 + (a + elx) ™ 0" b)

1 (a+ el) (& + (a+ elg)T'0%bn)) + (000, & + (a + eli) 07
(a+ elg)€r, €+ (a+ elg) 10 bn) + (b*bn, & + (a + el ) 'b*bn)
(a4 elx)& + b*bn, & + (a + el k)~ 'b*bn)

&4 (a+elg) 0% b, (a + elg) (& + (a+ elx)'b*bn)) > 0.

o~ o~ o~ o~~~

So, {(£1,£2), ge(&1,&)) > 0 for & € im b @ ker b*. Since K= is the closure of
im b @ ker b*, ((£1,£2), 9.(€1,&2)) > 0 must hold for & € K+. Therefore,
ge > 0 for € € R., which completes the proof. O]

From Lemma [10.2.2 we obtain yet another technical result.

Lemma 10.2.3. Let H be a Hilbert space and K be a closed subspace of H.
Leta € B(K), be B(K,K*) and c € B(K*). Then, the operator

0< (a b*) <I
b ¢
in B(H) if and only if 0 < a < I and if € € Ryq then

bla+elg)™'b" < e < T —b((1+€)Ig —a)~ 0"

Proof. Assume that H is a Hilbert space and K is a closed subspace of H.
Assume that a,b and ¢ are the operators defined as above. By Lemma

10.2.2, the operator
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a b
(b c) >0
in B(H) if and only if @ > 0 in B(K) and if € € Ry then

c>bla+elg) b
in B(K'), where I is the identity operator on K.

Now the operator

if and only if
IK —a —b*
>
( b IKL—C> =0
By Lemma [10.2.2] this holds if and only if a < Ix and if € € R.( then

IKJ_ —C Z b(]K —a—+ E/IK)_lb*.

Rearranging the above equation, we obtain

c<Ipr—b((1+e)lx —a) b

og(z b:)gf

in B(H) if and only if 0 < a < I and if € € R.q then

Hence, we have shown that

bla+el) 0" < e < Igo —b((14 )l —a)'b",

Definition 10.2.1. Let H be a Hilbert space and 7', S be positive,
self-adjoint operators. We write T' > S if the bounded operators

(T + 1), (S +I)~" (see Theorem satisfy (T + 1)~ < (S+1)~".
That is, the bounded operator (S + I)~! — (T + I)~! is positive.

In the next theorem, we show that positive self-adjoint extensions of a
closed positive operator exist.
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Theorem 10.2.4 (Krein and Friedrichs extensions). Let H be a Hilbert
space and T : D(T) — H be a closed, densely defined, positive operator.
Then, there exists positive self-adjoint operators Tk and Tr such that

T < Ty and T < Tr. Moreover, if T is a positive self-adjoint operator then
T is an extension of T if and only if T < T < Tp.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a closed,
densely defined, positive operator. Let K = im(7T + I). Recall the following
results we proved in Theorem [10.2.1}

1. The operator T'+ I a bijection from D(T') to K.
2. The inverse (T + I)~! is a contraction (and hence continuous).

3. The image K is closed subspace of H.

Let px and pg1 denote projection operators onto the closed subspaces K
and K+ respectively. Define

a=pg(T+1)'e€B(K) and b=pr(T+I1)"" e B(K K.

We will need the following result later.
To show: (a) a(Ix — a) > b*b.

(a) Assume that ¢ € K and let &€ = (T +I)7'¢ € D(T). Since the
projection operator pg is self-adjoint by Definition [2.4.1]

Cpr(T+1)7'0)

prC, (T +1)7¢)

(T +1)7'¢)

¢, §)

(T +1)¢,€)

= (& (T+1)¢) (since T + I is positive)
= [I€II* + (&, T¢€)

> [|¢]1?

= [lac]® + [Ib¢].

=
= {
=
=
= {

In the last line, we used Pythagoras theorem. So, a > a*a + b*b = a® + b*b
because a is self-adjoint. Rearranging, we deduce that
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a—a®=a(lx —a) > b*b. (10.1)
This proves part (a).

Let us explain how the proof proceeds from this point. The idea is to
construct a bijection

{Positive self—adjoint} {Operators c € B(K%1) such that
extensions T of T’ cr <c<cg

} (10.2)

where ¢, cr € B(K*) are some operators which need to be constructed.
Before we construct the bijection in equation ((10.2)), we will first construct
the operators cp, cx € B(K™).

To show: (b) If € € Ry then b(a + €lg) 'b* < I — b(I — a + elg) 1"

(b) Assume that € € R.g. We will first give an equivalent characterisation
of the inequality

bla+ elx) b < Iner — b(Ix — a+ elg) b (10.3)

First, equation (|10.3) is equivalent to

b((a+elg) ™ + (Ix —a+elx) )b < Igu.

Using the continuous functional calculus, the expression
(a+elg) ™+ (I — a+elg)™! can be rewritten more simply as f(a), where
for t € [0, 1],

1 1 B 14 2e¢

f(t):t+5+1—t+€_ (t+e)(1—t+e)

In particular, we can rewrite the previous equation as

(1 +26)b((a+ elx) " (Ix —a+elg) )" < Irw

and if we set d = (a + elx)"Y?(Ix — a + elx)~'/?, the expression simplifies
to

(1+ 2€)bd*"db* < Is. (10.4)
In order to prove part (b), it suffices to show that equation ((10.4]) holds.
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Recall that in part (a), we proved equation (10.1)). Equation (10.1)) can be
expressed as F'(a) > b*b, where for ¢t € [0, 1],

F(t)=t(1—-1).
The norm of F' is

1
1Flloe = sup [F(t)] = 7.
t€[0,1]

By Lemma b*b < 1Ik. Subsequently, 2b*b < 4b*b < I.. Now, we have

(a+elg)(Ix —a+elg) =a(lg —a) + (e + )k
> b+ (e + )
> b*b + 2(e + €2)b*b
= (14 2€)b*b + €2b*b > (1 + 2¢)b™b.

The above inequality can be rewritten as (1 + 2¢)b*b < d~!(d*)~! and
consequently, as (1 + 2¢)db*bd* < Ix. By Lemma [2.3.8]
(1 + 2€)db*bd*|| < 1.

Therefore,

1> (1 + 2¢)db*bd*||
(1 + 2¢)||bd"||?
(1 + 2¢)||db*||?
(1 + 2¢)||bd*db*||

and by Lemma again, we obtain equation ((10.4)) and consequently,
equation ((10.3). This proves part (b).

The key observation here is that if € — 0 then the LHS of equation is
monotonically increasing with respect to the strong operator topology,
whereas the RHS is monotonically decreasing. By Theorem [2.7.1] the LHS
of equation has a supremum in B(K?1) and the RHS has an infimum
in B(K'). Hence, we can define

cr = supb(a + elg)'b* € B(K™)
e>0

and
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cx =inf I —b(I — a+ elx) 'b* € B(K*).

e>0

Now we can construct the bijection in equation ((10.2). Let T be a positive
and self-adjoint extension of T'. Then, T'+ I < T + I and consequently,
T+ g=(T+1)"

Let us write (T 4 I )_1~as a matrix with respect to the decomposition
H=K®K™*. Since (T'+1)" ', =(T+ 1), the matrix of (T'+ )" takes

the form
~ -1 _ a b*
(T+1)" = <b C)

for some ¢ € B(K 1). Notice that b is the upper right element because
(T + I)! is self-adjoint. Since (T'+ I)~! is a positive contraction, we can
use Lemma 2.3.8 to find that

0< (“ b) <

By Lemma [10.2.3] this holds if and only if for € € R+

bla+elg) 0" <e< It —b((1+€)x —a)'b"
In turn, the above inequality holds if and only if cp < ¢ < cx. Thus, the
bijection in equation (|10.2)) maps 7T to c.

We claim that the bijection 7+ ¢ in equation (10.2) is order-reversing,
with respect to the partial orders (both denoted by <) on both sides of the
bijection.

To prove the claim, suppose that 7 and 7" are positive self-adjoint
extensions of T and ¢, ¢ € B(K*) are the corresponding bounded
operators. By definition, 7 > 1" if and only if (T +I)' < (T" 4+ 1)~ as
bounded operators. In matrix notation, this means that

a b* a b
6 0)=<C o)

In turn, this holds if and only if

0 0
>
(0 c’—c)_o
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if and only if ¢ > ¢. This proves the claim.

Now we will go from right to left in equation ((10.2)). Suppose that
c € B(K%) satisfies cp < ¢ < cg. By Lemma [10.2.3] this holds if and only if

0§<Z bc*)gl.

For simplicity of notation, let

_fa b
Je=\bp ¢ )
To show: (¢) The image im g, is dense in H.

(c) Using the fact that H = K & K+, we have

ch :gc<K@Kl)
D go(K ® {0})
= {(al,b¢) | (€ K} = (T +1)"'H = D(T).

Since T is densely defined, D(T') is dense in H. Therefore, the image g.H is
dense in H.

By part (c), we find that

(ker g.)* =1m g, = H.

So, ker g. = {0} and therefore, the inverse g_ ' : im g. — H is a closed,
densely defined operator. Since g. is self-adjoint by definition, g, ! must
also be self-adjoint. Furthermore, by Lemma , g.' > I because g, < I.
Now define

T:gc_l—l.

Then, T is positive and self-adjoint by Theorem m By construction, it is
also a positive, self-adjoint extension of T". This finally demonstrates that
we have the bijection in equation (|10.2)).

Finally, let T and Tr be the positive self-adjoint extensions of T’
corresponding to ¢k, cr € B(K*). Then,
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b cx b cr

(Tx + 1)} (“ b*) and  (Tp+1)" (“ b*).

By the bijection in equation ([10.2), any positive extension T of T must
satisfy Tx < T < Ty because the bljectlon is order reversing. Furthermore,

any positive self-adjoint operator T satisfying Ty < T < Ty is an extension
of T. O

Let us summarise Theorem A closed, densely defined, positive
operator T always admits self-adjoint extensions. Amongst the self-adjoint
extensions which are positive, there is a minimal and maximal positive,
self-adjoint extension, with regards to the partial order on positive
unbounded operators.

The minimal extension Tk is called the Krein extension of 7" and the
maximal extension Tr is called the Friedrichs extension of 7T'.

264



Chapter 11

One-parameter groups of
unitary operators

11.1 Stone’s theorem

One of the major applications of the theory of operators on a Hilbert space
is to the study of representations of topological groups. This chapter aims
to describe the basic results associated to the representation theory of the
abelian (additive) group R.

The notion of a one-parameter group of unitary operators is fundamental to
this chapter.

Definition 11.1.1. Let H be a Hilbert space and {u; };er be a collection of
operators on H. We say that {u,;} is a strongly continuous
one-parameter group of unitary operators if

1. If t € R then the operator wu; is unitary.
2. If t,s € R then uyy s = upus.

3. If ¢ € H then the induced map

H

evy : R —
t — Utl/J

1S continuous.

In the above definition, we remark that the third condition is equivalent to
saying that if ¢ € H then ev, is continuous at 0 € R. This is precisely
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because of the second condition.

We will now give the archetypal example of a strong continuous
one-parameter group of unitary operators.

Theorem 11.1.1. Let H be a Hilbert space. Let T : D(T) — H be a
self-adjoint operator. Fort € R, define

up = exp(—itT).

Then, {u;}ier is a strongly continuous one-parameter group of unitary
operators.

Proof. Assume that H is a Hilbert space and T : D(T') — H is self-adjoint.
Assume that {u;}4er is the collection of operators defined as above.

First assume that ¢ € R. To see that u, is unitary, we will apply the Borel
functional calculus in Theorem [9.2.2] For ¢ € R, define

fe(A) = exp(—itA).

Then, f; € Bor(R,C). Let ®, be the unique unital *-homomorphism in
Theorem [9.2.2] associated to the self-adjoint operator T'. We compute
directly that

By a similar computation, we find that u;u; = I. So, w; is a unitary
operator.

Next, assume that s,¢ € R. Then,
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Finally, assume that ¢ € H. To see that evy, : R — H is continuous, it
suffices to show that ev, is continuous at 0 € R.

Now {f;}ier is a uniformly bounded sequence of Borel functions which
converge pointwise to the constant function 1 as t — 0. By Theorem [9.2.2]
(1)) = w(¢) = 1 as t = 0. So, evy, must be continuous at 0 € R.

We conclude that {u;}4er is a strongly continuous one-parameter group of
unitary operators on H. 0

The example given in Theorem [11.1.1]is particularly important because
Stone’s theorem, which is the main theorem of this section, tells us that any
strongly continuous one-parameter group of unitary operators arises from

Theorem MTT.1.11

Before we formalise Stone’s theorem, we will first demonstrate that if
u; = exp(—itT) is the unitary operator in Theorem [L1.1.1|for ¢t € R then we
can recover the self-adjoint operator T' from {u; }scr.

Theorem 11.1.2. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator. Fort € R, define

up = exp(—itT).
If ¢ € D(T) then

lim %(ut@/z — ) =T.

t—0 ¢t

Furthermore, if the limit limy_,o £ (wp — @) ewists then o € D(T).

Proof. Assume that H is a Hilbert space and T': D(T') — H is a
self-adjoint operator. Assume that {u;}cr is the collection of operators on
H defined as above. By Theorem [11.1.1} {u;}ser is a strongly continuous

one-parameter group of unitary operators.

Assume that ¢ € D(T). Since T is self-adjoint, there exists £ € H such that
v=I+T 2)_%. By using the Borel functional calculus in Theorem ,
we can write

1
E(Uﬂﬁ — ) = F(T)¢
where for ¢t € R, F; is defined by
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F,: R — C

’L'e_itA7 _1
A = 3 5y 1)\(1+)\2) 2.

It is straightforward to see that {F}}er., is a uniformly bounded sequence
of continuous functions. By taking the limit as t — 0, we find that if A € R
then

—itA\
. . . -1 2y —1
iy A = f (1L )
— 1 '_ZeﬁﬂM1+A%*%
I RS
= lime "\(1 + A2) 2
t—0
)
(1+X2)2

Therefore, F; converges pointwise to the function (, where we recall the
definition of ¢ from Theorem [9.2.2f

¢(: R
A

N
= 1+A2
By Theorem [9.2.2] we must have

lim + (urp ) = lim Fy(T)¢ = C(T)§ = 21§ = T
For the next claim, we define an operator 7T : D(]:I ) — H, where the domain

D(T) = {¢ € H | The limit 11tin(1) %(ugp — ) exists}
—
and T is the map
T: DH) — H
o = limgg f(up — @)
Then, T is a linear operator and by the previous computation, 7" < T.
Since T' is densely defined, T' must also be densely defined.

To see that T is symmetric, assume that ¢y, @, € D(T). Then,
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~ X '3
(@17T902> = 11_1301@017 £<Ut¢2 - 902)>

. Z Z
= 11_{% (<901, ZUWZ) — {1, ¥902>)

. 7/ * Z
= lg% ((—Zut%,@z) - <—g¢17902>)

. i ‘
= ll—rfol (<_Eu—t§017 p2) — <—59017 £2))

.0
= hm(—t(uftsm — 1), p2)

t—0 —

= <TS017 902>

So, T is symmetric. In particular, it is a symmetric extension of 7.
Therefore, T'="T and D(T') = D(T). This completes the proof O

One consequence of Theorem [11.1.2is that a particular differential equation
always has a global solution. This is not too surprising, given the definition
of u; as an exponential of an operator.

Theorem 11.1.3. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator. Let 1y € D(T). Then, the initial value problem

d
Ty, (o) = vy

has a unique solution 1) : R — H.

Proof. Assume that H is a Hilbert space and T': D(T') — H is a
self-adjoint operator. Assume that ¢y € D(T"). Define

v: R — H
t = efitHlﬁO

Then, 1 is a continuous function such that ¢ (0) = 1y. By Theorem |11.1.2
1 is differentiable at t = 0 and

i

d
Vo = Tun,
To show: (a) v is differentiable on all of R.

(a) Recall that as a consequence of Theorem 9.3.3] if f, g are Borel
functions from R to C and g is bounded then
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g(M)f(T) < f(T)g(T).
Applying this to the functions f(\) = A and g = e~**, we deduce that if
t € R then e T < Te 4T,

Moreover, we claim that if s € R then e *7(D(T)) € D(T). Indeed, if
e Ty € e (D(T)) then with u; = e we compute directly that

: E —isT,  —isT 1 E o
lim - (we™ @ — €™ ) = lm - (s — usy)

= Te #T(1+T%) 2 = ugT(1 + T%) 2.
In the above computation, we used a similar method of computation as in

Theorem [11.1.2] Since the above limit exists, Theorem [11.1.2] tells us that
e Ty € D(T). So, e *T(D(T)) Cc D(T).

Since e T'T < Te ™ D(e7*I'T) C D(Te "T). To see that
D(Te Ty C D(e”"T'T), we use the finding that e=*7(D(T)) c D(T) for
any s € R to conclude that

D(Te™") ={¢ € D(e™"") | e™""¢ € D(T)}
={¢eH|e¢eD(T)}
=""'D(T) c D(T)
= D(e”"'T).
The last equality follows from the fact that e=#T is a unitary operator. So,
D(Te ) = D(e"'T) and consequently, Te " = e#I'T for t € R.

To see that v is differentiable on all of R, we compute directly for ¢t € R
that as s — 0,

(s + 1) = 6(D) = —ie L (W(s) — (0))
— —ie Ty = —iTe ",

= —iTY(t).

Hence, v is differentiable on all of R and solves the initial value problem
given in the statement of the theorem.
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It remains to show that v is unique. Assume that ¢ : R — H is another
solution to the initial value problem. Define f(t) = ||®(t) — ¢ (t)||*>. Then,
f(0) =0 and

d d
(1) = S6(t) — (), 6(0) — v()

= (=iTo(t) + 1T (1), ¢(t) — (1)) + (o(t) — ¥ (t), —iTP(t) + iT)(t))
(=iT(t) +iTP(t), o(t) — (1) + ((To(t) — iTY(t), o(t) — (1))
0.

Y

Therefore, f(t) = 0 and (t) = ¢(t). This shows that ¢ is the unique
solution to the original initial value problem. O]

Now we will embark on the proof of Stone’s theorem. In fact, the
techniques used in the proof of Theorem [11.1.3| will feature in the proof of
Stone’s theorem.

Theorem 11.1.4 (Stone’s theorem). Let H be a Hilbert space and (u;)ier
be a strongly continuous one-parameter group of unitary operators on H.
Then, there exists a self-adjoint operator T' on H such that if t € R then
uy = exp(—itT).

Proof. Assume that (u;)cr is a strongly continuous one-parameter group of
unitary operators on a Hilbert space H.

We will construct the desired self-adjoint operator T': D(T') — H from

scratch. Let C2°(R, C) denote the space of smooth, compact supported
functions from R to C. For ¢ € H and f € C°(R,C), define

o = / f(t)up dt.
R
Let

2 =span{p; | p € H, f € CF(R,C)}.
To show: (a) Z is a dense subspace of H.

(a) Assume that ¢ € H. Let {f,}nez., be a sequence in C2°(R, C) such that

supp(f) C [-=, 5] and / ult)] di = 1.

)
n n
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We claim that the sequence {¢y, }nez., in Z converges to ¢. We compute
directly that

los — ol = | / Fult)up dt — / fult) ]|
.yl / o) — @) dt]

< / Fulllusp — o dt

< sup [lugp — ¢
lt<i

—0

as n — oo. Hence, s, — ¢ and Z is a dense subspace of H.

Part (a) reveals that we would like to define our candidate self-adjoint
operator on Z. For s € R and f € C®°(R,C), we define f; to be the
function t — f(t — s).

To show: (b) If s,t € R then uspr = ¢y..

() limy o 4 (ustpy — 0f) = -

(b) Assume that s,t € R. We compute directly that

s — Usg t d
uspy U/Rf(t)uso t
:/f(t)usutgo dt

R
:/f(t)UertSO dt

R

= / fs(x)uzp dx (x =s+1)
= o5,

(c) By using part (b), we compute directly that
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1 1

(uspy = op) = (pr. = @5)
=< [0 - @) at

S

R
R S
— / —f'(t)upp di
R
= —Spf/
as s — 0o.
In light of part (c), we define the operator Ty by
Ty : D(Tg) =9 — H
¢ = ilims—>0 %(usgb - ¢)

By part (c), we observe that im Ty C & and if ¢t € R and ¢y € & then

T()utgpf = TO‘Pft
.1
=1 il_I)I(l) g(us@ft - <)Oft)

o1
= dug lim —(usoy — ¢y)
= UtTOSDﬁ

So, Tou; = uTy.
To show: (d) Tp is a symmetric operator.
(e) The closure Ty is self-adjoint.

(d) We argue in a similar fashion to Theorem [11.1.3] If ¢, ¢ € & then
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(. To6) = (0, - lim(u,6 — )

= i(lim (s~ 1))
= i(~iTy, ¢) = (Tot, 6).

Hence, Tj is a symmetric operator.

(e) Since Ty is a symmetric operator, its closure T is both closed and
symmetric. By Lemma [10.1.3] and Theorem [10.1.10} it suffices to show that
ker(T§ +4I) = {0}.

Assume that n € ker(Ty +iI). If ¢ € D(Ty) = 2 then

d
) = T, s — u)o)

s—0
— l (e (0 — 1)
= (n, u(=1)To9) = i(n, Tow®)
= i(T5n, w9)
= i(Fin, w; ) = £(n, wo)

Now let g : R — C be the function ¢ — (n, u;¢). The above computation
tells us that ¢’ = +¢. Solving this ODE, we find that

for t € R. Now observe that

g1 < [, we)| < lnllllwell = [nlllo]l

The last equality follows from the fact that u, is unitary. So, g(t) = g(0)e*!
is uniformly bounded, which can only occur if g = 0. In particular,

g(0) = (n,¢) = 0. Since ¢ € & was arbitrary and Z is dense in H, we
deduce that n € H+ = {0}. So, ker(Ty £iI) = {0} and Ty, is self-adjoint by

274



Theorem [10.1.101

Now define 7' = Ty,. By part (e), T is a self-adjoint operator. By Theorem
11.1.1} (e*”T)teR is a strong continuous one-parameter group of unitary
operators on H. For ¢ € & and t € R, define

& R — H
t = wo—e g

By definition of Tj, we find that
d - rp —itT ,
Eé(t) = —iTowp +iTe " ¢ = —iHE(L).

Consequently,

= (SE(0), €0) + (€, S£(0)
(~TE(1), (1) + (€(1), ~TE(D) = 0.

Therefore, the map ¢ — ||£(t)| is constant. But, £(0) = ¢ — ¢ = 0. So,
£(t) =0 for t € R and consequently,

wp=e""¢
fort € R and ¢ € Z. Since ¥ is dense in H, we find that for t € R,
u; = e T as unitary operators on H. O

In Theorem [11.1.4] the unique self-adjoint operator T' such that u, = e #7
for t € R is called the infinitesimal generator of the group (u;)cr.

11.2 Trotter formula

Let H be a Hilbert space and T': D(T') — H be a self-adjoint operator.
Recall that the graph norm ||—||7 makes D(T') into a Hilbert space. If
¢ € D(T') then

Il = VIl + 1Tl

We also recall from the proof of Theorem [11.1.3|that if s € R then
e T (D(T)) c D(T).
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Lemma 11.2.1. Let H be a Hilbert space and T : D(T) — H be a
self-adjoint operator. Fiz 1) € D(T) and define the function

a: R — D(T)
t = e Ty,

Then, « is continuous with respect to the graph norm ||—||z on D(T).

Proof. Assume that H is a Hilbert space and 7" : D(T') — H is a self-adjoint
operator. Assume that for ¢» € D(T'), the function « is defined as above.

It suffices to show that « is continuous at zero with respect to the graph
norm on D(7T). Recall from the proof of Theorem |11.1.3| that
Te T = =TT, So,

la(t) = a(0)]7 = [le”y —¢|7
= [le™ T —9|* + | Te™ "y — Ty?
= lle™ ) — 9| + e™ Ty — Ty?
— 0

as t — oo. Here, we use the fact that (e7%T);cg is continuous at zero.
Hence, « is continuous at zero and hence, continuous with respect to the
graph norm. O

The Trotter formula is very similar to Theorem |3.5.1

Theorem 11.2.2 (Trotter formula). Let H be a Hilbert space and K, T be
self-adjoint operators on H. Assume that K +T is also self-adjoint. If
t € R then

t t :
(exp(—i—T) exp(—i—K))" — ¢ "THK)
n n
as n — oo in the strong operator topology.

Proof. Assume that H is a Hilbert space and K, T are self-adjoint operators
on H. Assume that K + T is also a self-adjoint operator. Define the map

F: R—{0} — B(H)

t — %(e—itTe—itK _ 6—it(T+K))

We claim that if £ € H then the map ® which sends ¢t € R — {0} to
F(t)¢ € H is continuous on R — {0}.
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To show: (a) If £ € H then ® : R— {0} — H is continuous on all of R — {0}.

(a) Assume that € € H. Define the maps v, and ¥ by

wl : R— {0} — H
" N %e—z’t(T-i-K)f

and

Q/JQZ R—{O} — H
t e it

Then, 1, and 1, are continuous functions on R — {0} and

1 —1 —1 —1
;6 tTe tKéze tTw2(t).

Ift,¢ € R— {0} then

1 . A 1 . " A .
|| ge_ZtTe_Zth _ ;e_lt Te—zt K€|| — He—thwQ(t) _ e—zt T¢2 (t/) ”
< lle™ aa(t) — e o) + le™ i (t') — e ()]
< lla(t) — o) + [le™ " Taha(t) — ()]

— 0

as t — t'. So, the map ¢ — e~ *'e~"K¢ is continuous on all of R — {0} and
in tandem with the fact that () is continuous on R — {0}, ® must be
continuous on R — {0}.

We also observe that lim; ,.., F/(t)§ = 0. To see why this is the case, we
compute directly for £ € H that

IE@)EN < [[E@IE]]

Lo ir - —i
|1 (e e — e~ T+ g

t

(e IHle™™ 1 + fle=™ O ) ]

1
< =
—t

2l
t

as t — too.
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Now let D = D(T'+ K) = D(T) N D(K). We claim that if ¢ € D then
limy_o F(t)¢ = 0.

To show: (b) If ¢ € D then lim,_,o F(t)1) = 0.

(b) Assume that ¢ € D. Then, we can write

1 1. 1
F(t)) = G_ZtTg(e_nK@ﬁ — )+ 2(6_”% — ) — ;(e_ﬁ(ﬂm@/} — ).

By Theorem [11.1.2) we deduce that

i (1) = lim e~ (e — ) + T = (e — ) — T 7 (e Ty — )
— —iK — Ty — (—i(T + K)) = 0.

As a particular consequence of part (b), we can define F'(0)y) = 0 for
¥ € D. In this manner, we obtain a family of linear maps

(F(t) D — H)te]R

such that the map ®, which sends ¢ to F(t)1) is continuous. Moreover, we
have the limits

lim F(t)y = lim F(t)y = 0.

t—+oo

Consider the graph norm ||—||74yx on D(T + K) = D. Since
I=|l7+x > ||—||, we find that the operators F'(t) are continuous from D
with the graph norm ||—||7.x to H. Thus, if 1) € D then the set

{F@)y |t eR}
is bounded. By the uniform boundedness principle, there exists M € Ry
such that

IF@) = sup [[F@)¢| <M.

1YllT+x=1

For ¢ € D, let

Cy = {e T Ky | t € [-1,1]}.

By Lemma [11.2.1] the map s — e *T*K)qy) is a continuous function from R
to (D, ||—|l7+x) (we emphasise that D has the graph norm). Therefore, C,,
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is a compact subset of (D, ||—||71x) because it is the image of the compact
interval [—1, 1] under the continuous map s s e~ **(T+K)q),

Now assume € € Ry and let {¢1,...,¢n} be an €/2M-net in Cy. This
means that if n € Cy then there exists i € {1,2,..., N} such that

€

— Q; < —.
||77 ¢||T+K Wi

Since limy_,o F'(t)1) = 0 for any ¢ € D, there exists § € R. such that if
t| < ¢ then

€
1P < &
for j € {1,2,...,N}. So,

[E@nll < [1F(E)n — F(&)eill + [[F ()¢l
< IE@n = éill + [1F ()¢l
< Mlln = il + [|F (@)

S
- +t=-=ec
22

Hence, we have shown that the functions

(w = F(t)w)te[—l,l}

converge to zero uniformly on Cy as ¢t — 0. This means that if ¢ € D is
fixed then the quantity

IE()e =Ty — 0

uniformly as t — 0 for s € [—1, 1].

Recalling the proof of Theorem [3.5.1) we have the identity

n—1

st —t" = Z s"(s — )t

r=0
for bounded operators s,t € B(H). So,
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(efi%Tefi%K)nw - efzt (T+K) ,(/} ( z 71%K>nw - (efz%(TJrK))nw

—1
Z it it it —it
i 6 an)m(e znTe an_e zn(T+K))

m=0

e~ %T—FK)n 1— mw

By the triangle inequality, we find that

H(efz —id )nw e~ HT+K) ?PH < n0<max ||< z%Tefz%K)m<efi%T67i%K N efi%(T+K))

(efzn (T+K))n717mw”

< n0<max ||€ znTe z%K”m
||( %K _ e_i%(T+K))(e—i%(T+K)>n—1—m¢||
-t .t .t ¢
=n max ||(e_’ET@_’ZK — 6_1;(T+K))(e—Z;(T—i-K))n—l—me
0<m<n-—1
t t(nflfm)
[¢] , max 1||F(n) Y|
< Jf) max | F( D) T4y 5 0
[s|<[¢] n

as n — 0o. This uses the previous finding that

IE(#)e Ty — 0

uniformly as ¢t — 0 for s € [—1,1].

So, (e7inTe i)y — =T+ as n — oo for ¥ € D. Since
[(e~"wTe )| = 1 for any n € Rug, we finally conclude that

t t )
(exp(—i—T)exp(—i—K))"p — e Ty,
n n

for ¢» € H because D = D(T + K) is dense in H, as T + K is by
assumption, self-adjoint. This completes the proof. n
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