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0.1 Purpose

These notes are a summary of the material covered in the Category Theory
course (C2.7) from the University of Oxford. They are primarily based on
the lecture notes for the subject in [Saf23]. Additional useful references for
the material in these notes and for basic category theory in general are
[Bor94a], [Lei14] and [Rie17]. There are no strict prerequisites required to
understand the notes. However, experience working in at least one category
is helpful (for instance, the category of groups Grp via a first course in
group theory).

2



Chapter 1

The basic language of category
theory

1.1 Definition and basic examples

The concept of a category crops up in a multitude of different fields,
ranging from group theory to algebraic topology (via 2-categories and
higher order category theory). Certain constructions such as taking
quotients or pullbacks in different contexts/categories have an elegant and
unified description in category theory. Additionally, there are many
instances of adjoint pairs of functors which appear in fields such as
representation theory (induction and restriction) and multilinear algebra
(Hom-tensor adjunction). To put it simply, category theory is very
powerful and pervasive.

Definition 1.1.1. A category C is a triple consisting of:

1. A class of objects ob(C ),

2. A class of morphisms (or arrows) between the objects Hom(C ). We
say that the morphism f : A→ B is an element of HomC (A,B),
which denotes the class of all morphisms from A to B. In this case, A
is deemed the source object and B is the target object.

3. A binary operation

◦ : Hom(B,C)×Hom(A,B) → Hom(A,C)
(g, f) 7→ g ◦ f

called composition of morphisms.
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The binary operation of composition must satisfy the following two
properties:

1. Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h),

2. Identity: If A is an object in C then there exists a morphism
1A : A→ A such that if f ∈ Hom(A,B) and g ∈ Hom(B,A) then
f ◦ 1A = f and 1A ◦ g = g. The morphism 1A is usually called the
identity morphism on A.

Here are some basic examples of categories.

Example 1.1.1. The category Set is the category whose objects are sets
and whose morphisms are functions between sets. In particular, the objects
of Set raise the issue of Russell’s paradox — there is no “set of all sets”.
Indeed, we were careful to say a “class of objects” and not a “set of objects”
in the definition of a category. This observation segues into a philosophical
discussion about the foundations of category theory which we will not
pursue here. For further details, consult [Mur06] for a brief discussion. One
way this observation is resolved is via Grothendieck universes.

Example 1.1.2. The category Grp is the category whose objects are
groups and whose morphisms are group homomorphisms. The category Ab
is the category whose objects are abelian groups and whose morphisms are
group homomorphisms (between abelian groups). The category Ab is a
subcategory of Grp — the objects/morphisms in Ab are also
objects/morphisms in Grp.

Example 1.1.3. Here are examples of categories which are topological in
nature. The category Top is the category whose objects are topological
spaces and whose morphisms are continuous functions. The category
C*-Alg is the category whose objects are C*-algebras and whose
morphisms are *-homomorphisms.

Example 1.1.4. Let k be a field. The category k-Vect is the category
whose objects are k-vector spaces and whose morphisms are linear maps.
More generally, let R be a commutative ring. The category R-Mod is the
category whose objects are R-modules and whose morphisms are R-module
homomorphisms.

It is likely that the reader has already encountered at least one of the above
examples of categories. As we progress, we will see many other examples of
categories. Here is one easy way of constructing a category.
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Definition 1.1.2. Let C be a category. The opposite category of C ,
denoted by C op, is the category whose objects are the objects of C and
whose morphisms are given by “reversing the morphisms”. That is, if A,B
are objects in C then

HomC op(A,B) = HomC (B,A).

1.2 Types of morphisms in a category

Given a category, there are three basic types of morphisms.

Definition 1.2.1. Let C be a category. Suppose that we have the
following diagram in C :

U X Y Z
g h

h′

f

We say that g equalizes the pair (h, h′) if h ◦ g = h′ ◦ g. Furthermore, f
coequalizes the pair (h, h′) if f ◦ h = f ◦ h′.

We say that f is a monomorphism when the only pairs (h, h′) which are
coequalized by f are pairs of the form (h, h). Dually, g is an epimorphism
when the only pairs (h, h′) which are equalized by g are pairs of the form
(h, h).

To state it more explicitly, a morphism f : X → Y is a monomorphism if
the following statement is satisfied: if g, h ∈ HomC (Z,X) and f ◦ g = f ◦ h
then g = h. Similarly, a morphism f : X → Y is an epimorphism if the
following statement is satisfied: if j, k ∈ HomC (Y, U) and j ◦ f = k ◦ f then
j = k.

As a first example, we will characterise the epimorphisms and
monomorphisms in Set.

Lemma 1.2.1. In the category of sets Set, a function (a morphism of sets)
f : X → Y is a monomorphism if and only if f is an injective function.
Moreover, f is an epimorphism if and only if f is a surjective function.

Proof. Assume that we have the following diagram in the category Set:

U X Y Z
g h

h′

f
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To show: (a) If g is surjective, then g is an epimorphism.

(b) If g is an epimorphism, then g is surjective.

(c) If f is injective, then f is a monomorphism.

(d) If f is a monomorphism, then f is injective.

(a) Assume that g is surjective and that h ◦ g = h′ ◦ g. Since g : U → X is
surjective then h and h′ must agree on the image g(U) = X. So h = h′ and
g is an epimorphism.

(b) We will prove this by contrapositive. Assume that g is not a surjective
function. Then, there exists an element x ∈ X such that x 6∈ g(U). The key
point here is that we can do anything with the element x. Define the
functions h, h′ : X → Y such that h(x) 6= h′(x) and if z ∈ X − {x} then
h(z) = h′(z). By construction, h 6= h′ but h ◦ g = h′ ◦ g. Hence, the
function g equalizes the pair (h, h′) with h 6= h′, which shows that g is not
an epimorphism as required.

(c) Assume that f is an injective function and that f ◦ h = f ◦ h′. If x ∈ X
then f(h(x)) = f(h′(x)) and since f is injective then h(x) = h′(x). Thus, f
is a monomorphism.

(d) We will again prove the contrapositive statement. Assume that f is not
an injective function. Then, there exists y1, y2 ∈ Y with y1 6= y2 such that
f(y1) = f(y2). Fix x ∈ X and construct the functions h, h′ : X → Y such
that h(x) = y1, h′(x) = y2 and if z ∈ X − {x} then h(z) = h′(z). By
construction, h 6= h′ but f ◦ h = f ◦ h′. Therefore, f coequalizes the pair of
functions (h, h′) with h 6= h′. So f is not a monomorphism.

Example 1.2.1. In Grp, the monomorphisms are the injective group
homomorphisms and the epimorphisms are the surjective group
homomorphisms. The same statement holds for the subcategory Ab. See
[Lei14, Example 5.1.31, Example 5.2.19].

The following properties of monomorphisms and epimorphisms under
composition are proved by applying the definitions.

Theorem 1.2.2. Let C be a category and f, g be morphisms in C .

1. If f and g are monomorphisms in C , then g ◦ f is also a
monomorphism.
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2. If g ◦ f is a monomorphism in C , then f is also a monomorphism.

3. If f and g are epimorphisms in C , then g ◦ f is also an epimorphism.

4. If g ◦ f is an epimorphism in C , then g is also an epimorphism.

The last type of morphism detects whether two objects in a category are
the “same”.

Definition 1.2.2. Let C be a category, A,B be objects in C and
f ∈ HomC (A,B) be a morphism. We say that f is an isomorphism if
there exists a morphism f−1 ∈ HomC (B,A) such that f ◦ f−1 = idB and
f−1 ◦ f = idA.

Lemma 1.2.3. Let C be a category, A,B be objects in C and f : A→ B
be an isomorphism. Then, f is a monomorphism and an epimorphism.

Proof. Assume that f : A→ B is a morphism in the category C . Suppose
that h, h′ : B → C are morphisms such that h ◦ f = h′ ◦ f . By precomposing
with the inverse map f−1, we find that h ◦ (f ◦ f−1) = h′ ◦ (f ◦ f−1) and
consequently, h = h′. So f is an epimorphism.

Now assume that g, g′ : Z → A are morphisms such that f ◦ g = f ◦ g′. By
composing with f−1, we find that g = g′ and f is a monomorphism.

Interestingly, the converse of Lemma 1.2.3 does not hold. The
counterexample we will provide is in the category of monoids and can be
found in [Awo10, Section 2].

Definition 1.2.3. The category Mon is the category whose objects are
monoids (groups without inversion) and whose morphisms are monoid
homomorphisms respecting the binary operation.

We will have to do some work in the category Mon in order to understand
the counterexample. First, we will construct a particular monoid from an
arbitrary set.

Definition 1.2.4. Let X be a set. The set of words on X, denoted by X∗,
is the set whose elements are words (of finite length) whose letters are the
elements of X. That is,

X∗ = {x1x2 . . . xn | n ∈ Z≥0, xi ∈ X}.
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If X is a set then X∗ can be turned into a monoid by defining a binary
operation which simply concatenates words.

∗ : X∗ ×X∗ → X∗

(x, y) 7→ xy.
(1.1)

One can show that the binary operation in equation (1.1) is associative and
that the empty word (the word with no letters) is the unit associated to ∗.
We denote the empty word by 1.

Definition 1.2.5. Let X be a set. The free monoid on X, denoted by
F (X), is the pair (X∗, ∗) where ∗ is the binary operation in equation (1.1).

The point of constructing the free monoid is that it has the following
universal property. We will introduce a piece of notation from [Awo10,
Section 1.7] for what follows — if M is a monoid then we denote its
underlying set by |M |.

Theorem 1.2.4. Let X be a set. The free monoid F (X) on X satisfies the
following universal property: If M is a monoid and m : X → |M | is a
function of sets then there exists a unique monoid homomorphism
µ : F (X)→M such that the following diagram in Mon commutes:

X F (X)

M

m
µ

Proof. Assume that X is a set and F (X) is the free monoid on X. Then,
we have the inclusion map of sets ι : X ↪→ |F (X)|. Assume that
m : X → |M | is a function of sets. Define the map µ by

µ : F (X) → M
x1 . . . xn 7→ m(x1)m(x2) . . .m(xn)

1 7→ 1M

Here 1M is the unit of M and we recall that 1 is the empty word in F (X).
By construction, µ is a monoid homomorphism and it is straightforward to
check that m = µ ◦ ι. To see that µ is unique, assume that φ : F (X)→M
is another monoid homomorphisms satisfying m = φ ◦ ι. If x ∈ X then

(φ ◦ ι)(x) = φ(x) = m(x) = (µ ◦ ι)(x) = µ(x).

Therefore, φ = µ and µ is unique.
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Now we will use the universal property of the free monoid to give a
characterisation of the monomorphisms in Mon.

Theorem 1.2.5. Let M,N be monoids and f : M → N be a monoid
homomorphism. Then f is a monomorphism if and only if the underlying
function of sets |f | : |M | → |N | is a monomorphism.

Proof. Assume that M and N are monoids and f : M → N is a monoid
homomorphism. Let |f | : |M | → |N | be the underlying function of sets. To
be clear, if m ∈M then |f |(m) = f(m). The map |f | behaves exactly the
same as f , but without the monoid structure on both sides.

To show: (a) If |f | is a monomorphism in Set then f is a monomorphism in
Mon.

(b) If f is a monomorphism in Mon then |f | is a monomorphism in Set.

(a) Assume that |f | is a monomorphism in Set. Assume that g, h : P →M
are distinct monoid homomorphisms. Since |f | is a monomorphism then
|f | ◦ |g| and |f | ◦ |h| are distinct morphisms in Set. So

|f ◦ g| = |f | ◦ |g| 6= |f | ◦ |h| = |f ◦ h|

and consequently, f ◦ g 6= f ◦ h. Therefore f is a monomorphism in Mon.

(b) Assume that f is a monomorphism in Mon. By Lemma 1.2.1, it
suffices to show that |f | is an injective function. To this end, assume that
x, y are distinct elements in |M |. We have two functions of sets given by

ιx : {∗} → M
∗ 7→ x

and ιy which is defined similarly. By the universal property of the free
monoid in Theorem 1.2.4, there exist unique monoid homomorphisms
φx : F ({∗})→M and φy : F ({∗})→M such that φx(∗) = x and φy(∗) = y.
Now φx 6= φy by construction and since f is a monomorphism in Mon then
f ◦ φx 6= f ◦ φy. So

f(x) = (f ◦ φx)(∗) 6= (f ◦ φy)(∗) = f(y)

and subsequently, |f | is an injective function. This completes the proof.

We are now able to give a counterexample to the converse of Lemma 1.2.3.
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Example 1.2.2. Let ι denote the monoid homomorphism

ι : Z≥0 → Z
x 7→ x.

To be clear, the binary operations on both sides are addition. By Theorem
1.2.5, ι is a monomorphism in Mon. To see that ι is an epimorphism in
Mon, let g, h : Z→M be monoid homomorphisms such that g ◦ ι = h ◦ ι.
If m ∈ Z≥0 then g(m) = h(m). Observe that

g(−m) =
m∑
i=1

g(−1).

Hence, it suffices to show that g(−1) = h(−1). Let 1M denote the identity
element of M . We compute directly that

g(−1) = g(−1)1M

= g(−1)h(0)

= g(−1)h(1)h(−1)

= g(−1)g(1)h(−1)

= g(0)h(−1)

= 1Mh(−1) = h(−1).

We conclude that g = h on Z. Therefore ι is an epimorphism in Mon.
Finally, suppose for the sake of contradiction that ι is an isomorphism in
Mon. Then there exists a monoid homomorphism µ : Z→ Z≥0 such that
ι ◦ µ = idZ and µ ◦ ι = idZ≥0

. By definition of ι,

−1 = (ι ◦ µ)(−1) = µ(−1) ∈ Z≥0

which is a blatant contradiction. Therefore, ι is not an isomorphism in Mon
and supplies the desired counterexample to the converse of Lemma 1.2.3.

We briefly remark that the free monoid on a set we discussed in this section
is a special case of a more general phenomenon in category theory — pairs
of adjoint functors. We will study adjoint functors later on in these notes.

1.3 Functors

Analogously to morphisms in a category, we can define the notion of a
“morphism between categories”.
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Definition 1.3.1. Let C ,D be categories. A (covariant) functor
F : C → D is a map which satisfies the following properties:

1. If C ∈ ob(C ), then F (C) ∈ ob(D),

2. If C ∈ ob(C ), then F (idC) = idF (C), where idC and idF (C) are the
identity morphisms on C and F (C) respectively,

3. If X, Y, Z ∈ ob(C ), f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), then
F (g ◦ f) = F (g) ◦ F (f).

Like the morphisms in well-known categories, a functor preserves the
essential structures of a category — the identity morphism on every object
and the composition operation. Usually, we simply refer to a covariant
functor as a functor.

Example 1.3.1. Let G be a group and

[G,G] = {[g, h] = ghg−1h−1 | g, h ∈ G}
be the commutator subgroup of G. The quotient Gab = G/[G,G] is the
abelianisation of G. We also have the projection map πG : G→ Gab, which
is a group morphism.

The functor ab : Grp→ Ab sends a group G to its abelianisation Gab and
a group morphism f : G→ H to the group morphism fab : Gab → Hab. The
morphism fab is the unique group morphism which makes the below
diagram commute by the universal property of the quotient:

G H

Gab Hab

f

πG πH

fab

Definition 1.3.2. Let C be a category. We say that C is small if the
classes ob(C ) and Hom(C ) are actually sets.

Example 1.3.2. Here is an example of a small category. Let G be a group.
If g ∈ G then g induces a group homomorphism

Cg : G → G
h 7→ ghg−1.

So G can be regarded as a small category with

ob(G) = {G} and Hom(G) = {Cg : G→ G | g ∈ G}.
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Using the notion of a small category, we can really make the notion of a
functor being a morphism between categories a reality with our next
example of a category.

Example 1.3.3. The category Cat is the category whose objects are small
categories and whose morphisms are functors between small categories.

Let us provide some more examples of functors.

Example 1.3.4. Let U : Mon→ Set be defined in the following manner:
if M is a monoid then U(M) = |M | is the underlying set (just the monoid
M but regarded as a set). If f : M → N is a monoid morphism then U(f)
is the underlying function of sets. The functor U forgets the monoid
structure on the objects and morphisms in Mon. Such functors are called
forgetful functors.

Example 1.3.5. Here is a well-known example of a functor from algebraic
topology. The category Top∗ is the category whose objects are pointed
topological spaces (X, x0) where x0 ∈ X is a chosen point (called the
basepoint) and whose morphisms are basepoint-preserving continuous
functions. Define a map π1 from Top∗ to Grp by

π1 : Top∗ → Grp
(X, x0) 7→ π1(X, x0)

f : (X, x0)→ (Y, y0) 7→ π1(f)

where if f : (X, x0)→ (Y, y0) is a morphism in Top∗ then π1(f) is the
group morphism

π1(f) : π1(X, x0) → π1(Y, y0)
[γ] 7→ [f ◦ γ]

where γ : [0, 1]→ X is a loop at the basepoint x0 — that is, γ is a
continuous function satisfying γ(0) = γ(1) = x0. See [Bre93, Section 3.2] for
an introduction to the fundamental group of a pointed topological space.

Example 1.3.6. Let k ∈ Z>0 and R be a commutative ring. Define∧k : R-Mod → R-Mod

M 7→
∧k(M)

φ : M → N 7→
(
m1 ∧ · · · ∧mk 7→ φ(m1) ∧ · · · ∧ φ(mk)

)
.

Here
∧k(M) is the kth exterior power of M and is defined by∧k

(M) = {m1 ∧ · · · ∧mk | m1, . . . ,mk ∈M}.
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Here, ∧ is the wedge product. If M is a R-module and m,n ∈M then the
wedge product satisfies the well-known anticommutative property
m ∧ n = −(n ∧m). There is some work required to show that

∧k is a
well-defined functor. See [Rot03, Section 9.8] and [Rot03, Proposition
9.135] in particular.

We have a notion of functors which reverse the order of composition.

Definition 1.3.3. Let C ,D be categories. A contravariant functor
F : C → D is a map which satisfies the following properties:

1. If C ∈ ob(C ), then F (C) ∈ ob(D),

2. If C ∈ ob(C ), then F (idC) = idF (C), where idC and idF (C) are the
identity morphisms on C and F (C) respectively,

3. If X, Y, Z ∈ ob(C ), f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), then
F (g ◦ f) = F (f) ◦ F (g).

A contravariant functor F : C → D can be simply thought of as a covariant
functor F : C op → D . Here is a specific case of an important class of
contravariant functors called presheaves.

Example 1.3.7. Let (X, τ) be a topological space where X is a Riemann
surface and τ is the manifold topology on X. Let C be the category whose
objects are open subsets of X and whose morphisms are given explicitly by

HomC (U, V ) =

{
{ιVU : U ↪→ V }, if U ⊆ V ,

∅, otherwise.

Here, if U ⊆ V then ιVU is the inclusion of U into V . Define

OX : C → Ab
U 7→ {f : U → C | f is holomorphic}
ιVU 7→ resVU : OX(V )→ OX(U).

where if U and V are open subsets of X satisfying U ⊆ V then resVU is the
restriction map. That is, if f ∈ OX(V ) then resVU (f) = f |U .

Note that OX is well-defined on objects of C because the set of
holomorphic functions on an open subset U of X forms a ring with addition
and multiplication defined pointwise. It is not too difficult to check that
OX is a contravariant functor, referred to as the presheaf of
holomorphic functions on X. See [For81, §6] for an introduction to
presheaves and sheaves in the context of Riemann surfaces.
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Here are types of functors we will need later on.

Definition 1.3.4. Let C and D be categories. Let H : C → D be a
functor. If X and Y are objects in C then H induces the map

HX,Y : HomC (X, Y )→ HomD(H(X), H(Y ))

We say that H is a faithful functor if the following statement is satisfied:
if X and Y are object in C then the map HX,Y is injective.

We say that H is a full functor if the following statement is satisfied: if X
and Y are object in C then the map HX,Y is surjective.

We say that H is a fully faithful functor if the following statement is
satisfied: if X and Y are object in C then the map HX,Y is bijective.

Example 1.3.8. Let U : Grp→ Set be the forgetful functor, which maps
a group to its underlying set and a group morphism to the underlying
function between the sets. We claim that U is a faithful functor. Let G,H
be groups. To see why the mapping

UG,H : HomGrp(G,H)→ HomSet(U(G), U(H))

is injective, suppose that φ1, φ2 ∈ HomGrp(G,H) and UG,H(φ1) = UG,H(φ2).
By definition of the forgetful functor U , φ1 and φ2 must agree on the
underlying set U(G) and hence, on G itself. So, φ1 = φ2 and UG,H must be
injective. This demonstrates that U is a faithful functor.

On the other hand, to see that U is not a full functor, let eH denote the
identity element of the group H. Fix h ∈ H − {eH} and define the
morphisms of sets

α : U(G) → U(H)
g 7→ h.

Since α(eG) 6= eH then α is not a group homomorphism from G to H. So,
UG,H is not surjective and consequently U is not full.

By using Lemma 1.2.1, we can identify a particular class of
monomorphisms and epimorphisms in a category C , provided that we have
a faithful functor F : C → Set.

Theorem 1.3.1. Let C be a category and F : C → Set be a faithful
functor. Let f : A→ B be a morphism in C .
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1. If F (f) is a monomorphism in Set (an injective map) then f is a
monomorphism.

2. If F (f) is an epimorphism in Set (a surjective map) then f is an
epimorphism.

Proof. Assume that C is a category and F : C → Set is a faithful functor.
Assume that f : A→ B is a morphism in C such that F (f) is a
monomorphism in Set. If C,D are objects in C then

FC,D : HomC (C,D)→ HomSet(F (C), F (D))

is injective. To see that f is a monomorphism, assume that g, h : C → A
are morphisms in C satisfying f ◦ g = f ◦ h. Then
F (f) ◦ F (g) = F (f) ◦ F (h) and since F (f) is a monomorphism then
F (g) = F (h) in HomSet(F (C), F (D)). Since FC,D is injective then g = h.
Hence f is a monomorphism in C .

Now assume that F (f) is an epimorphism in Set. To see that f is an
epimorphism, assume that p, q : B → D are morphisms in C satisfying
p ◦ f = q ◦ f . Then F (p) ◦ F (f) = F (q) ◦ F (f) and since F (f) is an
epimorphism then F (p) = F (q) in HomSet(F (C), F (D)). As before, g = h
and f is an epimorphism in C .

Example 1.3.9. As the previous example shows, the forgetful functor
Grp→ Set is faithful. Theorem 1.3.1 tells us that injective group
morphisms are monomorphisms in Grp and that surjective group
morphisms are epimorphisms in Grp. Recall from Example 1.2.1 that in
fact, the monomorphisms in Grp are exactly the injective group morphisms
and the epimorphisms in Grp are exactly the surjective group morphisms.

1.4 Natural transformations

Natural transformations can be thought of as maps between functors. The
adjective “natural” refers to the fact that natural transformations between
functors behave nicely when both functors are applied to a morphism.

Definition 1.4.1. Let C and D be categories. Let F : C → D and
G : C → D be functors. A natural transformation α : F ⇒ G is a family
of morphisms

{αA : F (A)→ G(A) | A ∈ C }

15



such that if f : A→ A′ is a morphism in C then the following diagram in
D commutes:

F (A) F (A′)

G(A) G(A′)

F (f)

αA αA′

G(f)

If the αA are all isomorphisms in D , then α is said to be a natural
isomorphism.

We say that the functors F and G are naturally isomorphic if there
exists a natural isomorphism α : F ⇒ G. We will use the notation F ' G
to denote that F is naturally isomorphic to G.

Diagrammatically, natural transformations η : F ⇒ G are represented by

C D

F

G

η

Example 1.4.1. Recall the abelianisation functor ab : Grp→ Ab from
Example 1.3.1. If G is a group then let πG : G→ Gab denote the quotient
group morphism. Then the collection

{πG : G→ Gab | G is a group}

defines a natural transformation from the identity functor id : Grp→ Grp
to ab. This is due to the commutative square in Example 1.3.1.

The following example of a category highlights the notion that natural
transformations are morphisms of functors.

Example 1.4.2. Let C and D be categories. The category F(C ,D) is the
category whose objects are functors F : C → D and whose morphisms are
natural transformations η : F ⇒ G, where F and G are both functors from
C to D . The isomorphisms in F(C ,D) are the natural isomorphisms. A
category of the form F(C ,D) is evidently called a functor category.

Just like functors, natural transformations can be composed. However,
there are two different types of compositions.
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Vertical composition:

Let C and D be categories. Let F,G,H be functors from C to D and
η : F ⇒ G and ε : G⇒ H be natural transformations. One can check that
the collection of morphisms

{εA ◦ ηA : F (A)→ H(A) | A ∈ ob(C )}

defines a natural transformation ε ◦ η : F ⇒ H. This composition is called
vertical due to the following diagram:

C D

F

G

H

η

ε

Horizontal composition:

Let C ,D and E be categories. Let F1, G1 : C → D and F2, G2 : D → E be
functors. Let δ : F1 ⇒ G1 and ε : F2 ⇒ G2 be natural transformations.

C D E

F1

G1

δ

F2

G2

ε (1.2)

Then the collection of morphisms in E

{εG1(A) ◦ F2(δA) : (F2 ◦ F1)(A)→ (G2 ◦G1)(A) | A ∈ ob(C )}

defines a natural transformation η : F2 ◦ F1 ⇒ G2 ◦G1. To be clear, F2(δA)
is a morphism from (F2 ◦ F1)(A) to (F2 ◦G1)(A) and εG1(A) is a morphism
from (F2 ◦G1)(A) to (G2 ◦G1)(A). One can also do things in the opposite
order and take the collection of morphisms

{G2(δA) ◦ εF1(A) : (F2 ◦ F1)(A)→ (G2 ◦G1)(A) | A ∈ ob(C )}.

It turns out that by the commutative diagram in Definition 1.4.1, this still
yields the same natural transformation η : F2 ◦ F1 ⇒ G2 ◦G1 as before.
This type of composition is called horizontal because the natural
transformations in Diagram (1.2) have been composed and condensed into
the single horizontal diagram
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C E

F2◦F1

G2◦G1

η

1.5 Equivalence of categories

How do we say that two categories are isomorphic or equivalent? Thinking
of morphisms as categories, one might define an equivalence of categories in
a similar vein to an isomorphism. However in category theory, we do not
care about the individual identities of our objects. We only care if they are
isomorphic to each other or not. Extending this line of thinking to
categories, we make the following definition

Definition 1.5.1. Let C and D be categories. An equivalence of
categories between C and D is a pair of functors F : C → D and
G : D → C together with a pair of natural isomorphisms η : idC ⇒ G ◦ F
and ε : F ◦G⇒ idD . Here, idC and idD are identity functors on C and D
respectively.

Example 1.5.1. As an example of an equivalence of categories, let k be a
field and Fin-Vectk be the category of finite dimensional k-vector spaces.
Define the map

D : Fin-Vectopk → Fin-Vectk
V 7→ V ∗ = Homk(V, k)

f : V → W 7→ f ∗ : W ∗ → V ∗.
(1.3)

For clarity, if α : W → k is a k-linear functional then f ∗(α) = α ◦ f . It is
straightforward to check that D is a (contravariant) functor. We claim that
D is an equivalence of categories. The composite D ◦D is explicitly

D ◦D : Fin-Vectopk → Fin-Vectopk
V 7→ (V ∗)∗ = Homk(V

∗, k)
f : V → W 7→ (f ∗)∗ : (V ∗)∗ → (W ∗)∗.

In equation (1.3), we can also consider D as a functor from Fin-Vectk to
Fin-Vectopk . If V is a finite dimensional k-vector space then define
ηV : V → (D ◦D)(V ) by

ηV : V → (D ◦D)(V ) = (V ∗)∗

v 7→ evv
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where evv : V ∗ → k maps f ∈ V ∗ to f(v) ∈ k. It is again easy to check that
ηV is a linear transformation from V to (V ∗)∗.

To show: (a) η is a natural isomorphism from idFin-Vectopk
to D ◦D.

(a) Assume that f : V → W is a morphism in Fin-Vectopk . We compute
directly that if v ∈ V and β ∈ W ∗ then

evf(v)(β) = β(f(v)) = (β ◦ f)(v) = f ∗(β)(v) = (evv ◦ f ∗)(β)

and

(ηW ◦ idFin-Vectopk
(f))(v) = (ηW ◦ f)(v)

= ηW (f(v)) = evf(v)

= evv ◦ f ∗

= (f ∗)∗(evv)

= (D ◦D)(f)(evv)

= ((D ◦D)(f) ◦ ηV )(v).

Hence, η is a natural transformation from idFin-Vectopk
to D ◦D. To see that

η is a natural isomorphism, it suffices to show that ηV : V → (V ∗)∗ is
injective.

Assume that v1, v2 ∈ V satisfy ηV (v1) = ηV (v2). Then, evv1 = evv2 , which
means that if f ∈ V ∗ then f(v1) = f(v2). By linearity of f , we find that

v1 − v2 ∈
⋂
f∈V ∗

ker f.

So, v1 − v2 = 0 and v1 = v2. We conclude that if V is a finite dimensional
k-vector space then ηV is an injective linear transformation between two
finite dimensional k-vector spaces. Hence, it is a vector space isomorphism
and η is a natural isomorphism.

By a similar argument where we interchange the roles of Fin-Vectk and
Fin-Vectopk , we also find that ηV defines a natural isomorphism from
idFin-Vectk to D ◦D. Consequently, D,D, ηV and ηV define an equivalence
of categories between Fin-Vectk and Fin-Vectopk .

Definition 1.5.1 is often not useful in practice because constructing the
required functor G is usually difficult. The main result of this section is to
prove a useful characterisation of equivalences of categories. First, we need
the following definition.
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Definition 1.5.2. Let C and D be categories. Let F : C → D be a
functor. We say that F is essentially surjective if the following
statement is satisfied: If Y is an object in D then there exists an object X
in C such that F (X) ∼= Y .

Here is the main result on equivalence of categories.

Theorem 1.5.1. Let C and D be categories. The following are equivalent:

1. There exists an equivalence of categories between C and D consisting
of functors F : C → D , G : D → C and natural isomorphisms
η : idC ⇒ G ◦ F , ε : F ◦G⇒ idD .

2. There exists a fully faithful essentially surjective functor H : C → D .

3. There exists a fully faithful functor K : C → D , a functor L : D → C
and a natural isomorphism δ : idD ⇒ K ◦ L.

Proof. Assume that C and D are categories.

The third statement implies the second:

Assume that K : C → D is a fully faithful functor, L : D → C is a functor
and δ : idD ⇒ K ◦ L is a natural isomorphism. We claim that K is
essentially surjective. Assume that D is an object in D . Since η is a natural
isomorphism then ηD is an isomorphism from D to (K ◦ L)(D). So
D ∼= (K ◦ L)(D) = K(L(D)). Therefore K is fully faithful and essentially
surjective.

The second statement implies the first:

Assume that H : C → D is a fully faithful essentially surjective functor.
We will first build a functor F : D → C . If D is an object in D then there
exists an object CD ∈ C such that H(CD) ∼= D because H is essentially
surjective. Let ϕD : D → H(CD) denote the isomorphism between D and
H(CD). On the objects D of D , we define F (D) = CD.

Next, we have to define F on morphisms in D . Let g : D → D′ be a
morphism in D . Since H is fully faithful then there exists a unique
morphism f : F (D)→ F (D′) such that the following diagram in D
commutes:
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D D′

(H ◦ F )(D) (H ◦ F )(D′)

g

ϕD ϕD′

H(f)

Subsequently, we define F (g) = f . To see that F defines a functor from D
to C , we first note that the following square commutes in D :

D D

(H ◦ F )(D) (H ◦ F )(D)

idD

ϕD ϕD

id(H◦F )(D)

Note that id(H◦F )(D) = H(idF (D)). By construction of F , H(F (idD)) also
makes the above diagram commute. By uniqueness, we must have
H(F (idD)) = H(idF (D)). Since H is a faithful functor, we deduce that
F (idD) = idF (D).

For composition of morphisms, suppose that α ∈ HomD(D,D′) and
β ∈ HomD(D′, D′′). Then the following diagram in D commutes:

D D′′

(H ◦ F )(D) (H ◦ F )(D′′)

β◦α

ϕD ϕD′′

H(F (β◦α))

But, we also have the following commutative diagram in D :

D D′ D′′

(H ◦ F )(D) (H ◦ F )(D′) (H ◦ F )(D′′)

α

ϕD ϕD′

β

ϕD′′

H(F (α)) H(F (β))

Therefore H(F (β) ◦ F (α)) and H(F (β ◦ α)) both make the same diagram
commute. By uniqueness, H(F (β ◦ α)) = H(F (β) ◦ F (α)) and since H is
faithful, we thus have F (β) ◦ F (α) = F (β ◦ α). Hence F : D → C is a
functor and ϕ : idD ⇒ H ◦ F is a natural isomorphism.

It remains to construct a natural isomorphism from idC to F ◦H. Let C be
an object in C . Then, ϕH(C) is an isomorphism between H(C) and
(H ◦ F ◦H)(C). Now H is fully faithful. So there exists a unique morphism
ψC : C → (F ◦H)(C) such that H(ψC) = ϕH(C). However, ϕH(C) is an
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isomorphism. So, there exists a morphism γ : (H ◦ F ◦H)(C)→ H(C) such
that

γ ◦ ϕH(C) = idH(C) and ϕH(C) ◦ γ = id(H◦F◦H)(C).

Using the fact that H is fully faithful again, there exists a unique morphism
δ : (F ◦H)(C)→ C such that H(δ) = γ. Now observe that

H(δ ◦ ψC) = H(δ) ◦H(ψC)

= γ ◦ ϕH(C)

= idH(C) = H(idC)

and similarly, H(ψC ◦ δ) = H(id(F◦H)(C)). Since H is faithful then
δ ◦ ψC = idC and ψC ◦ δ = id(F◦H)(C). We conclude that if C is an object in
C then ψC is an isomorphism.

To see that ψ is a natural isomorphism between idC and F ◦H, consider
the following diagram in C :

C C ′

(F ◦H)(C) (F ◦H)(C ′)

f

ψC ψC′

(F◦H)(f)

By applying H to this diagram, we obtain a commutative diagram in D .
Since H is faithful, we deduce that the above diagram in C commutes.
Hence, ψ : idC ⇒ F ◦H is a natural isomorphism and (H,F, ϕ, ψ) defines
an equivalence of categories between C and D .

The first statement implies the third:

Assume that there exists a pair of functors H : C → D and F : D → C and
a pair of natural isomorphisms η : idC ⇒ F ◦H and ε : H ◦ F ⇒ idD . It
suffices to show that H is fully faithful. Assume that X, Y are objects in C .
Then, the functor H induces the map

HX,Y : HomC (X, Y )→ HomD(H(X), H(Y )).

To see that H is faithful, we must show that HX,Y is an injective map.
Since η is a natural isomorphism then the function

(F ◦H)X,Y : HomC (X, Y )→ HomC ((F ◦H)(X), (F ◦H)(Y ))
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is bijective. Observe that (F ◦H)X,Y is the composite FH(X),H(Y ) ◦HX,Y .
Since (F ◦H)X,Y is injective then HX,Y must also be injective.

To see that H is fully faithful, the natural isomorphism ε : H ◦ F ⇒ idD

tells us that the following induced map is bijective:

HomD(H(X), H(Y ))→ HomD((H ◦ F ◦H)(X), (H ◦ F ◦H)(Y ))

But this map is the composite H(F◦H)(X),(F◦H)(Y ) ◦ FH(X),H(Y ). Arguing in a
similar manner to before, we deduce that the map H(F◦H)(X),(F◦H)(Y ) is
surjective. Since H is also faithful then H(F◦H)(X),(F◦H)(Y ) defines the
bijection

HomC ((F ◦H)(X), (F ◦H)(Y )) ∼= HomD((H ◦F ◦H)(X), (H ◦F ◦H)(Y )).

But the LHS is isomorphic to HomC (X, Y ), whereas the RHS is isomorphic
to HomD(H(X), H(Y )). Thus, HomC (X, Y ) ∼= HomD(H(X), H(Y )) and
HX,Y is a bijection. Hence H is fully faithful as required. This completes
the proof.
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Chapter 2

Adjoint pairs of functors

2.1 Definition and examples

Adjoint pairs of functors show up in a variety of different fields in
mathematics. Hence, this notion is one of the foundational constructions in
basic category theory. With the examples in this section, we will attempt to
demonstrate to the reader the ubiquity of adjoint functors in mathematics.

Definition 2.1.1. Let C and D be categories. Let F : C → D and
G : D → C be functors. We say that the pair of functors (F,G) is an
adjoint pair if the following is satisfied:

If X is an object in C and Y is an object in D then there exists a bijection

τ = τX,Y : HomD(F (X), Y )→ HomC (X,G(Y )). (2.1)

Furthermore, the bijection is natural in A and B. This means that if
f : A→ A′ is a morphism in C and g : B → B′ is a morphism in D then
the following diagram commutes:

HomD(F (A′), B) HomD(F (A), B) HomD(F (A), B′)

HomC (A′, G(B)) HomC (A,G(B)) HomC (A,G(B′))

F (f)∗

τ

g∗

τ τ

f∗ G(g)∗

(2.2)

The map f ∗ denotes precomposition by f whereas g∗ denotes composition
by g. The LHS square states that the isomorphism τA,B is natural in A,
whereas the RHS square states that τA,B is natural in B.
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If (F,G) is an adjoint pair of functors then F is called a left adjoint
functor and G is called a right adjoint functor.

In Definition 2.1.1, the name “adjoint pair” originates from the fact that
equation (2.1) looks like the inner product characterisation of the adjoint of
a bounded linear operator on a Hilbert space. Our first example of an
adjoint pair of functors is one we have already encountered via the
construction of a free monoid (see Definition 1.2.5).

Example 2.1.1. Let U : Mon→ Set denote the forgetful functor. The
functor U is part of an adjoint pair as a left adjoint functor. Let us describe
its corresponding right adjoint. Recall from Definition 1.2.5 that if X is a
set then F (X) is the free monoid on X. We will turn F into a functor from
Set to Mon.

Let X and Y be sets and f : X → Y be a morphism of sets. In order to
make F a functor, we have to construct a monoid morphism from F (X) to
F (Y ) using f . The key to this is the universal property of the free monoid
in Theorem 1.2.4. Let ι : Y ↪→ F (Y ) be the inclusion of sets. Then ι ◦ f is a
morphism of sets from X to F (Y ) and by the universal property of the free
monoid, there exists a unique monoid morphism F (f) : F (X)→ F (Y ) such
that the following diagram in Set commutes:

X F (X)

F (Y )

ι◦f F (f)

We will now show that F : Set→Mon is a functor. Let idX : X → X
denote the identity function on X. Then, F (idX) is the unique monoid
morphism making the following diagram commute:

X F (X)

F (X)

F (idX)

By uniqueness, F (idX) = idF (X). Now let Z be another set and g : Y → Z
be a morphism of sets. Then F (g ◦ f) : F (X)→ F (Z) is the unique monoid
morphism making the following diagram commute:
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X F (X)

F (Z)

ιZ◦g◦f
F (g◦f)

Here, ιZ is the inclusion of sets Z ↪→ F (Z). By using Theorem 1.2.4, one
can show that F (g) ◦ F (f) is another monoid morphism making the above
diagram commute. By uniqueness, F (g) ◦ F (f) = F (g ◦ f) and therefore,
F : Set→Mon is a functor. The pair (U, F ) is an example of an adjoint
pair of functors and a proof of this fact is just careful verification of
Definition 2.1.1

Similarly, the forgetful functor V : Grp→ Set is part of the adjoint pair
(V, F ) where F : Set→ Grp is the free group functor, which is constructed
in a very similar fashion to free monoid functor. See [Lei14, Example 1.2.4
(a)] for a few details on the free group functor.

Example 2.1.2. Our next example of a pair of adjoint functors is from
representation theory. Let k be a field and G be a group. Let H ≤ G be a
subgroup of G. Let RepG be the category whose objects are
representations of G (on a k-vector space) and whose morphisms are
G-equivariant linear maps. Let (W, ρW ) be a representation of H. We
define the induced representation of W to be the k-vector space

IndGHW = {f : G→ W | If g ∈ G and h ∈ H then f(hg) = ρW (h)f(g)}

together with the group morphism

π : G → Aut(IndGHW )
g 7→

(
α 7→ (h 7→ α(hg))

)
.

(2.3)

The point that the construction of induced representations defines a functor

IndGH : RepH → RepG
W 7→ IndGHW

φ : W1 → W2 7→ (f 7→ φ ◦ f).

We also have a restriction functor

ResGH : RepG → RepH
(V, ρ) 7→ (V, ρ|H)

φ : V1 → V2 7→ φ
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We claim that the pair (ResGH , Ind
G
H) is an adjoint pair of functors. Assume

that (V, ρ) is a representation of G over a field k and (W, ν) is a
representation of H over k. We define the map ΦV,W by

ΦV,W : HomG(V, IndGHW ) → HomH(ResGHV,W )
α 7→

(
v 7→ α(v)(eG)

)
where eG is the identity element of G. To see that ΦV,W is well-defined,
assume that π is the group morphism in equation (2.3). If v ∈ ResGHV then

ΦV,W (α)(ρ(h)v) = α(ρ(h)v)(eG) = (π(h)α(v))(eG)

= α(v)(eG · h) = α(v)(h · eG)

= ν(h)α(v)(eG) (since α(v) ∈ IndGHW )

= ν(h)ΦV,W (α)(v).

This demonstrates that ΦV,W (α) is H-equivariant. Next define the map

ΨV,W : HomH(ResGHV,W ) → HomG(V, IndGHW )
β 7→

(
v 7→ (g 7→ β(ρ(g)v))

)
Again, we need to show that ΨV,W is well-defined. To this end, assume that
β ∈ HomH(ResGHV,W ), v ∈ V and g ∈ G. If h ∈ H then

ΨV,W (β)(v)(hg) = β(ρ(hg)v) = β(ρ(h)ρ(g)v)

= ν(h)β(ρ(g)v) (β is H-equivariant)

= ν(h)ΨV,W (β)(v)(g).

So, ΨV,W (β)(v) ∈ IndGHW . Now if g2 ∈ G then

ΨV,W (β)(ρ(g)v)(g2) = β(ρ(g2)ρ(g)v)

= β(ρ(g2g)v)

= ΨV,W (β)(v)(g2g)

= π(g)ΨV,W (β)(v)(g2).

The last line follows from the fact that ΨV,W (β)(v) ∈ IndGHW . Hence,
ΨV,W (β) must be G-equivariant. We conclude that ΨV,W is well-defined.

Next, we will show that ΨV,W and ΦV,W are inverses of each other. Firstly,
assume that α ∈ HomG(V, IndGHW ). If v ∈ V and g ∈ G then
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ΨV,W (ΦV,W (α))(v)(g) = ΦV,W (α)(ρ(g)v) = α(ρ(g)v)(eG)

= π(g)α(v)(eG) = α(v)(eG).

So, (ΨV,W ◦ ΦV,W )(α) = α. Secondly, if β ∈ HomH(ResGHV,W ) then

ΦV,W (ΨV,W (β))(v) = ΨV,W (β)(v)(eG) = β(ρ(eG)v) = β(v).

So, (ΦV,W ◦ΨV,W )(β) = β and thus, ΨV,W is a bijective map.

Now we will show that the bijection ΦV,W is natural as in Definition 2.1.1.
To be clear, in Definition 2.1.1, F = IndGH and G = ResGH . First, assume
that φ : V → V ′ is a morphism of representations of G. If v ∈ V and
η ∈ HomG(V ′, IndGHW ) then

ΦV,W (η ◦ φ(v)) = ΦV,W (η(φ(v)))

= η(φ(v))(eG) = ΦV ′,W (η)(φ(v))

= (ΦV ′,W (η) ◦ResGHφ)(v).

Hence, the RHS square in equation 2.2 commutes. Next, if ψ : W → W ′ is
a morphism of representations of H, δ ∈ HomG(V, IndGHW ) and
v ∈ ResGHV then

ΦV,W ′(Ind
G
Hψ ◦ δ(v)) = (IndGHψ ◦ δ(v))(eG)

= (ψ ◦ δ(v))(eG)

= ψ ◦ (δ(v)(eG))

= ψ ◦ (ΦV,W (δ(v))).

So, the entire rectangle in equation 2.2 commutes. We conclude that ΦV,W

is a natural bijection as in Definition 2.1.1 and consequently, the pair
(ResGH , Ind

G
H) is an adjoint pair of functors. The fact that this pair is an

adjoint pair of functors is called Frobenius reciprocity.

Example 2.1.3. This example of an adjoint pair of functors is from
homological algebra. Assume that A is a commutative ring and M,N,K
are A-modules. The functor HomA(N,−) is defined by

HomA(N,−) : A-Mod → A-Mod
M 7→ HomA(N,M)

f : M → K 7→ HomA(N, f).
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In turn, the A-module morphism HomA(N, f) is defined by

HomA(N, f) : HomA(N,M) → HomA(N,K)
h 7→ f ◦ h.

We define the functor (−)⊗A N by

(−)⊗A N : A-Mod → A-Mod
M 7→ M ⊗A N

f : M → K 7→ f ⊗A N.
In turn, the A-module morphism f ⊗A N is defined by

f ⊗A N : M ⊗A N → K ⊗A N
m⊗ n 7→ f(m)⊗ n.

To see that the functors HomA(N,−) and (−)⊗A N form an adjoint pair,
first observe that by direct computation, the map

∆ : HomA(M ⊗A N,K) → HomA(M,HomA(N,K))
f 7→

(
m 7→ (f ◦ φ)(m,−)

)
is bijective where φ is the bilinear map

φ : M ×N → M ⊗A N
(m,n) 7→ m⊗ n

and the A-module homomorphism (f ◦ φ)(m,−) sends n ∈ N to
(f ◦ φ)(m,n) = f(m⊗ n).

To see that (−)⊗A N and HomA(N,−) is a pair of adjoint functors, we
must show that the rectangle in equation (2.2) commutes with
F = (−)⊗A N and G = HomA(N,−) in Definition 2.1.1. Assume that
f : M →M ′ is a morphism in A-Mod. If h ∈ HomA(M ′ ⊗A N,K) then

∆ ◦ (f ⊗A N)∗(h) = m 7→ h(f(m)⊗−)

= f ∗ ◦ (m′ 7→ h(m′ ⊗−))

= f ∗ ◦ (m′ 7→ (h ◦ φ)(m′,−))

= (f ∗ ◦∆)(h).

Hence, f ∗ ◦∆ = ∆ ◦ (f ⊗A N)∗ and the LHS square in equation (2.2)
commutes. Next assume that g : K → K ′ is a A-module morphism. If
j ∈ HomA(M ⊗A N,K) and m ∈M then
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(∆ ◦ g∗)(j)(m) = (g ◦ j ◦ φ)(m,−)

= g∗((j ◦ φ)(m,−))

= HomA(N, g)∗((j ◦ φ)(m,−))

= (HomA(N, g)∗ ◦∆)(j)(m).

So, ∆ ◦ g∗ = HomA(N, g)∗ ◦∆ and ((−)⊗A N,HomA(N,−)) is a pair of
adjoint functors from A-Mod to A-Mod. This adjoint pair is known as
the Hom-tensor adjunction.

In order to gain experience with the definition of an adjoint pair, let us
prove the following property regarding adjoint pairs of functors.

Theorem 2.1.1. Let C and D be categories. Let F : C → D and
G : D → C be functors such that (F,G) is an adjoint pair.

1. If f is an epimorphism in C then F (f) is an epimorphism in D .

2. If g is a monomorphism in D then G(g) is a monomorphism in C .

Proof. Assume that C and D are categories. Assume that (F,G) is a pair
of adjoint functors. Since (F,G) is an adjoint pair of functors, if A ∈ C and
B ∈ D then we have a bijection

τA,B : HomD(F (A), B)→ HomC (A,G(B))

which is natural in both A and B. Recall that this means that the following
diagram commutes:

HomD(F (A′), B) HomD(F (A), B) HomD(F (A), B′)

HomC (A′, G(B)) HomC (A,G(B)) HomC (A,G(B′))

F (f)∗

τA′,B

g∗

τA,B τA,B′

f∗ G(g)∗

where f ∗ is defined by

f ∗ : HomC (A′, G(B)) → HomC (A,G(B))
j 7→ j ◦ f

and g∗ is defined by
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g∗ : HomC (F (A), B) → HomC (F (A), B′)
k 7→ g ◦ k.

The maps F (f)∗ and G(g)∗ are defined similarly. Now assume that
f : C → C ′ is an epimorphism in C and g : D → D′ is a monomorphism in
D .

To show: (a) The morphism F (f) is an epimorphism in D .

(b) The morphism G(g) is a monomorphism in C .

(a) Assume that u, v : F (C ′)→ K are morphisms in D . Assume that
u ◦ F (f) = v ◦ F (f). So, F (f)∗(u) = F (f)∗(v) and by naturality of τ , the
following diagram must commute:

HomD(F (C ′), K) HomD(F (C), K)

HomC (C ′, G(K)) HomC (C,G(K))

F (f)∗

τC′,K τC,K

f∗

So,

τC′,K(v) ◦ f = (f ∗ ◦ τC′,K)(v)

= (τC,K ◦ F (f)∗)(v)

= (τC,K ◦ F (f)∗)(u)

= (f ∗ ◦ τC′,K)(u)

= τC′,K(u) ◦ f.

Since f is an epimorphism, τC′,K(v) = τC′,K(u). By applying the inverse
τ−1
C′,K to both sides, we deduce that u = v. Therefore, F (f) is an

epimorphism in D .

(b) Assume that w, z : L→ G(D) are morphisms in C . Assume that
G(g) ◦ w = G(g) ◦ z. Then, G(g)∗(w) = G(g)∗(z). By naturality of τ , the
following diagram must commute:

HomD(F (L), D) HomD(F (L), D′)

HomC (L,G(D)) HomC (L,G(D′))

g∗

τL,D τL,D′

G(g)∗
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Since G(g)∗(w) = G(g)∗(z) then (τ−1
L,D′ ◦G(g)∗)(w) = (τ−1

L,D′ ◦G(g)∗)(z) and
by commutativity of the above diagram

(g∗ ◦ τ−1
L,D)(w) = (τ−1

L,D′ ◦G(g)∗)(w) = (τ−1
L,D′ ◦G(g)∗)(z) = (g∗ ◦ τ−1

L,D)(z).

So, g ◦ τ−1
L,D(w) = g ◦ τ−1

L,D(z) and since g is a monomorphism,

τ−1
L,D(w) = τ−1

L,D(z). By applying the map τL,D, we obtain w = z. Therefore,
G(g) is a monomorphism as required.

2.2 The unit and counit of adjunction

In the next two sections, we will give two different characterisations of
adjoint pairs of functors. The first one uses the unit and counit of
adjunction. As the name suggests, we will begin by constructing the unit
and counit of adjunction from a pair of adjoint functors.

Theorem 2.2.1. Let C and D be categories. Let L : C → D and
R : D → C be functors so that (L,R) is an adjoint pair of functors. If
A ∈ C and B ∈ D are objects then we have an isomorphism

τA,B : HomD(L(A), B)→ HomC (A,R(B)).

1. There exists a natural transformation η : idC ⇒ R ◦ L such that if
f ∈ HomD(L(A), B) then τA,B(f) = R(f) ◦ ηA.

2. There exists a natural transformation ε : L ◦R⇒ idD such that if
g ∈ HomC (A,R(B)) then τ−1

A,B(g) = εB ◦ L(g).

3. The composites

L(A) L((R ◦ L)(A)) = (L ◦R)(L(A)) L(A)
L(ηA) εL(A)

(2.4)

and

R(B) (R ◦ L)(R(B)) = R((L ◦R)(B)) R(B)
ηR(B) R(εB)

(2.5)

are the identity morphisms on L(A) and R(B) respectively.
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Proof. Assume that C and D are categories. Assume that (L,R) is the
adjoint pair of functors defined as above. Assume that if A ∈ C and B ∈ D
are objects then the bijection τA,B is defined as above.

If A is an object in C then define

ηA = τA,L(A)(idL(A)) : A→ (R ◦ L)(A).

To show: (a) η is a natural transformation from idC to R ◦ L.

(a) Assume that f : A→ A′ is a morphism in C . We will show that the
following diagram in C commutes:

A A′

(R ◦ L)(A) (R ◦ L)(A′).

f

ηA ηA′

(R◦L)(f)

We compute directly that

ηA′ ◦ f = τA′,L(A′)(idL(A′)) ◦ f
= f ∗ ◦ τA′,L(A′)(idL(A′))

= (τA,L(A′) ◦ L(f)∗)(idL(A′))

= (τA,L(A′))(idL(A′) ◦ L(f))

= (τA,L(A′))(L(f) ◦ idL(A))

= (τA,L(A′) ◦ L(f)∗)(idL(A))

= R(L(f))∗ ◦ τA,L(A)(idL(A))

= (R ◦ L)(f) ◦ ηA.
In the above computation, we used the naturality of τ encoded in the
following diagrams:

D(L(A′), L(A′)) D(L(A), L(A′))

C (A′, (R ◦ L)(A′)) C (A, (R ◦ L)(A′))

L(f)∗

τA′,L(A′) τA,L(A′)

f∗

D(L(A), L(A)) D(L(A), L(A′))

C (A, (R ◦ L)(A)) C (A, (R ◦ L)(A′))

τA,L(A)

L(f)∗

τA,L(A′)

R(L(f))∗
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So, η is a natural transformation from idC to R ◦ L. Furthermore if
f ∈ HomD(L(A), B) then

τA,B(f) = τA,B(f ◦ idL(A))

= (τA,B ◦ f∗)(idL(A))

= (R(f)∗ ◦ τA,L(A))(idL(A))

= R(f)∗(ηA) = R(f) ◦ ηA.

Next if B is an object in D then define

εB = τ−1
R(B),B(idR(B)) : (L ◦R)(B)→ B.

To show: (b) ε is a natural transformation.

(b) Assume that g : B → B′ is a morphism in D . We will show that the
following diagram commutes:

(L ◦R)(B) (L ◦R)(B′)

B B′

(L◦R)(g)

εB εB′

g

Using the naturality of τ , we compute directly that

g ◦ εB = g ◦ τ−1
R(B),B(idR(B))

= (g∗ ◦ τ−1
R(B),B)(idR(B))

= (τ−1
R(B),B′ ◦R(g)∗)(idR(B))

= τ−1
R(B),B′(R(g) ◦ idR(B))

= τ−1
R(B),B′(idR(B′) ◦R(g))

= (τ−1
R(B),B′ ◦R(g)∗)(idR(B′))

= (L(R(g))∗ ◦ τ−1
R(B′),B′)(idR(B′))

= εB′ ◦ (L ◦R)(g).

Hence, ε is a natural transformation. Furthermore, if g ∈ HomC (A,R(B))
then
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τ−1
A,B(g) = τ−1

A,B(idR(B) ◦ g)

= (τ−1
A,B ◦ g

∗)(idR(B))

= (L(g)∗ ◦ τ−1
R(B),B)(idR(B))

= εB ◦ L(g).

Finally if A is an object in C then

εL(A) ◦ L(ηA) = τ−1
A,L(A)(ηA) = (τ−1

A,L(A) ◦ τA,L(A))(idL(A)) = idL(A)

and if B is an object in D then

R(εB) ◦ ηR(B) = τR(B),B(εB) = (τR(B),B ◦ τ−1
R(B),B)(idR(B)) = idR(B).

This completes the proof.

Definition 2.2.1. Let C and D be categories. Let L : C → D and
R : D → C be functors so that (L,R) is an adjoint pair of functors. The
natural transformation η : idC ⇒ R ◦ L constructed in Theorem 2.2.1 is
called the unit of adjunction. The natural transformation ε : L ◦R⇒ idD

constructed in Theorem 2.2.1 is called the counit of adjunction

The point of the unit and counit of adjunction is that the existence of
natural transformations such that the composites in equations (2.5) and
(2.4) are identities is enough to produce an adjoint pair of functors, due to
the following theorem.

Theorem 2.2.2. Let C and D be categories. Let L : C → D and
R : D → C be functors. Let η : idC ⇒ R ◦ L and ε : L ◦R⇒ idD be natural
transformations such that if A ∈ C and B ∈ D are objects then

R(εB) ◦ ηR(B) = idR(B) and εL(A) ◦ L(ηA) = idL(A).

Then, (L,R) is an adjoint pair of functors.

Proof. Assume that C and D are categories. Assume that L,R, η and ε are
defined as above. Assume that A ∈ C and B ∈ D are categories. We must
construct a bijection between HomD(L(A), B) and HomC (A,R(B)).

Assume that g ∈ HomD(L(A), B). Define the morphism g : A→ R(B) as
the composite

A (R ◦ L)(A) R(B).
ηA R(g)
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Next, define the map

τ : HomD(L(A), B) → HomC (A,R(B))
g 7→ g.

Assume that h ∈ HomC (A,R(B)). Define h̃ ∈ HomD(L(A), B) to be the
composite

L(A) (L ◦R)(B) B.
L(h) εB

Analogously to before, we define

φ : HomC (A,R(B)) → HomD(L(A), B)

h 7→ h̃.

We claim that τ and φ are inverses of each other. If g ∈ HomD(L(A), B)
then

(φ ◦ τ)(g) = φ(g) = φ(R(g) ◦ ηA)

= εB ◦ L(R(g) ◦ ηA)

= εB ◦ (L ◦R)(g) ◦ L(ηA)

= g ◦ εL(A) ◦ L(ηA) = g ◦ idL(A) = g.

Also if h ∈ HomC (A,R(B)) then

(τ ◦ φ)(h) = τ(h̃) = τ(εB ◦ L(h))

= R(εB ◦ L(h)) ◦ ηA
= R(εB) ◦ (R ◦ L)(h) ◦ ηA
= R(εB) ◦ ηR(B) ◦ h
= idR(B) ◦ h = h.

We conclude that if A is an object in C and B is an object in D then τ is a
bijection from HomD(L(A), B) to HomC (A,R(B)).

Now, we will show that τ is natural in A and B. Let f : A→ A′ be a
morphism in C . We have to show that f ∗ ◦ τA′,B = τA,B ◦ L(f)∗. If
α ∈ HomD(L(A′), B) then

36



(f ∗ ◦ τA′,B)(α) = f ∗ ◦R(α) ◦ ηA′
= R(α) ◦ ηA′ ◦ f
= R(α) ◦ (R ◦ L)(f) ◦ ηA
= R(α ◦ L(f)) ◦ ηA
= R(L(f)∗(α)) ◦ ηA
= (τA,B ◦ L(f)∗)(α).

Now let g : B → B′ be a morphism in D . To see that
τA,B′ ◦ g∗ = R(g)∗ ◦ τA,B, we compute directly that if β ∈ HomD(L(A), B)
then

(τA,B′ ◦ g∗)(β) = τA,B′(g ◦ β)

= R(g ◦ β) ◦ ηA
= R(g) ◦R(β) ◦ ηA
= R(g)∗ ◦R(β) ◦ ηA
= (R(g)∗ ◦ τA,B)(β).

Hence, τ is natural in A and B. So (L,R) is an adjoint pair of functors as
required.

As an application of the unit and counit of adjunction, we will prove the
following theorem concerning uniqueness of left and right adjoint functors.

Theorem 2.2.3. Let C and D be categories and F : C → D be a functor.
If there exists G : D → C such that (F,G) is an adjoint pair of functors
then G is the unique right adjoint of F up to unique natural isomorphism.
An analogous statement holds for the left adjoint.

Proof. Assume that C and D are categories and F : C → D is a functor.
Assume that G1 and G2 are right adjoints of F .

To show: (a) There exists a natural isomorphism η : G1 ⇒ G2.

(b) The natural isomorphism constructed in part (a) is unique.

(a) Assume that A is an object in C and B is an object in D . If i ∈ {1, 2}
then there exist bijections
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τi : HomD(F (A), B)→ HomC (A,Gi(B)).

The map τ2 ◦ τ−1
1 is then a bijection from HomC (A,G1(B)) to

HomC (A,G2(B)). To be explicit, we will call this bijection ψA,B. If B is an
object in D then define

ηB = ψG1(B),B(idG1(B)) ∈ HomC (G1(B), G2(B)).

To see that the family of morphisms {ηB}B∈ob(D) defines a natural
transformation η : G1 ⇒ G2, assume that f : X → X ′ is a morphism in D .
By the naturality of τ1 and τ2, we have

ηX′ ◦G1(f) = ψG1(X′),X′(idG1(X′)) ◦G1(f)

= G1(f)∗((τ2 ◦ τ−1
1 )(idG1(X′)))

= (τ2 ◦ (F ◦G1)(f)∗)(τ−1
1 (idG1(X′)))

= (τ2 ◦ τ−1)(G1(f)∗(idG1(X′)))

= (τ2 ◦ τ−1
1 )(G1(f))

= (τ2 ◦ τ−1
1 )(G1(f)∗(idG1(X)))

= τ2(f∗(τ
−1
1 (idG1(X))))

= G2(f)∗((τ2 ◦ τ−1
1 )(idG1(X)))

= G2(f) ◦ ψG1(X),X(idG1(X))

= G2(f) ◦ ηX .

Hence η : G1 ⇒ G2 is a natural transformation. To see that η is a natural
isomorphism, we interchange the roles of 1 and 2 in the preceding
argument. The map τ1 ◦ τ−1

2 is a bijection from HomC (A,G2(B)) to
HomC (A,G1(B)). To be explicit, we will call this bijection ϕA,B. If B is an
object in D then define

εB = ϕG2(B),B(idG2(B)) ∈ HomC (G2(B), G1(B)).

By the same argument as before, ε : G2 ⇒ G1 is a natural transformation.
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If f ∈ HomC (A,G1(B)) then

εB ◦ ηB ◦ f = ϕG2(B),B(idG2(B)) ◦ ψG1(B),B(idG1(B)) ◦ f
= (ψG1(B),B(idG1(B)) ◦ f)∗(ϕG2(B),B(idG2(B)))

= ((f ∗ ◦ τ2 ◦ τ−1
1 )(idG1(B)))

∗(ϕG2(B),B(idG2(B)))

= ((τ2 ◦ τ−1
1 )(f))∗(ϕG2(B),B(idG2(B)))

= ((τ2 ◦ τ−1
1 )(f))∗((τ1 ◦ τ−1

2 )(idG2(B)))

= (τ1 ◦ τ−1
2 )((τ2 ◦ τ−1

1 )(f))

= f.

Since f is arbitrary, we deduce that εB ◦ ηB = idG1(B). By a similar
computation, ηB ◦ εB = idG2(B). Therefore η : G1 ⇒ G2 is a natural
isomorphism as required.

(b) Before we show that η : G1 ⇒ G2 is unique, we first observe a particular
property about η. If i ∈ {1, 2} then let βi : idC ⇒ Gi ◦ F be the unit of
adjunction associated to the pair (F,Gi). Let γi : F ◦Gi ⇒ idD be the
counit of adjunction associated to the pair (F,Gi). If A is an object in C
and B is an object in D then

ηF (A) ◦ (β1)A = (τ2 ◦ τ−1
1 )(id(G1◦F )(A)) ◦ (β1)A

=
(
(β1)∗A ◦ τ2 ◦ τ−1

1

)
(id(G1◦F )(A))

=
(
τ2 ◦ τ−1

1 ◦ (β1)∗A
)
(id(G1◦F )(A))

= (τ2 ◦ τ−1
1 )((β1)A)

= G2(τ−1
1 ((β1)A)) ◦ (β2)A

= G2((γ1)F (A) ◦ F ((β1)A)) ◦ (β2)A

= G2(idF (A)) ◦ (β2)A = (β2)A

and

(γ2)B ◦ F (ηB) = (γ2)B ◦ F ((τ2 ◦ τ−1
1 )(idG1(B)))

= (τ−1
2 ◦ τ2 ◦ τ−1

1 )(idG1(B))

= τ−1
1 (idG1(B))

= (γ1)B ◦ F (idG1(B)) = (γ1)B.

Now since τ1 and τ2 are both bijections then the natural transformations
β1, β2, γ1, γ2 are all natural isomorphisms. So
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ηF (A) = (β2)A ◦ (β1)−1
A and F (ηB) = (γ2)−1

B ◦ (γ1)B.

In particular, G2F (ηB) = G2((γ2)B)−1 ◦G2((γ1)B) and since β2 is a natural
transformation,

(β2)G2(B) ◦ ηB = G2F (ηB) ◦ (β2)G1(B) = G2((γ2)B)−1 ◦G2((γ1)B) ◦ (β2)G1(B).

Therefore

G2((γ1)B) ◦ (β2)G1(B) = G2((γ2)B) ◦ (β2)G2(B) ◦ ηB
= idG2(B) ◦ ηB = ηB.

Hence, the natural transformation η : G1 ⇒ G2 is unique because it is
created from the units and counits of adjunctions associated to G1 and
G2.

2.3 Adjoint pair of functors via initial

objects

Definition 2.3.1. Let C be a category and X be an object in C . We say
that X is an initial object of C if the following statement is satisfied: If Y
is an object in C then the set HomC (X, Y ) has a unique element.

Dually, we say that X is an terminal object of C if the following
statement is satisfied: If Y is an object in C then the set HomC (Y,X) has
a unique element.

By definition, initial and terminal objects in a category, if they exist, are
unique up to a unique isomorphism. In a later section, we will see that the
initial object is a special case of a colimit and dually, that the terminal
object is a special case of a limit.

In this section, we will focus on initial objects and how they are used to
give another characterisation of an adjoint pair of functors. To do this, we
need the following construction of a category from [Bor94a, Section 1.6].

Definition 2.3.2. Let C ,D and E be categories. Let F : C → E and
G : D → E be functors. The comma category (F,G) is defined in the
following manner:

1. The objects of (F,G) are triples (A, f,B) where A is an object in C ,
B is an object in D and f ∈ HomC (F (A), G(B)).
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2. Let (A, f,B) and (A′, g, B′) be objects in (F,G). A morphism from
(A, f,B) to (A′, g, B′) is a pair (α, β) where α ∈ HomC (A,A′),
β ∈ HomD(B,B′) and g ◦ F (α) = G(β) ◦ f . That is, the morphism
(α, β) in (F,G) makes the following diagram commute:

F (A) G(B)

F (A′) G(B′).

f

F (α) G(β)

g

Composition in the comma category (F,G) is given by

(α′, β′) ◦ (α, β) = (α′ ◦ α, β′ ◦ β).

Definition 2.3.3. Let C be a category and 1 be the category with the
single object ∗ and the single morphism id∗ (the identity morphism on ∗).
Let A be an object in C . Define the functor

1A : 1 → C
∗ 7→ A
id∗ 7→ idA.

(2.6)

We will use the functor defined in equation (2.6) to state the next
characterisation of an adjoint pair of functors.

Theorem 2.3.1. Let C and D be categories and 1 be the category with the
single object ∗. Let F : C → D and G : D → C be functors. The pair
(F,G) is an adjoint pair of functors if and only if there exists a natural
transformation ε : idC ⇒ G ◦ F such that if X is an object in C then the
triple (∗, εX , F (X)) is an initial object in the comma category (1X , G).

Proof. Assume that C and D are categories and that 1 is the category with
single object ∗. Assume that F : C → D and G : D → C are functors.

To show: (a) If (F,G) is an adjoint pair of functors then there exists a
natural transformation ε : idC ⇒ G ◦ F such that if X is an object in C
then (∗, εX , F (X)) ∈ (1X , G) is an initial object.

(b) If there exists a natural transformation ε : idC ⇒ G ◦ F such that if X
is an object in C then (∗, εX , F (X)) ∈ (1X , G) is an initial object then
(F,G) is an adjoint pair of functors.
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(a) Assume that (F,G) is an adjoint pair of functors and X is an object in
C . Let η : idC ⇒ G ◦ F be the unit of adjunction associated to the adjoint
pair (F,G). Let (∗, f, B) be an object in the comma category (1X , G).
Then f is a morphism in C from 1X(∗) = X to G(B). We have a bijection

τ : HomD(F (X), B)→ HomC (X,G(B)).

Let g ∈ HomD(F (X), B) be such that τ(g) = f . By construction of the
unit of adjunction in Theorem 2.2.1,

f = τ(g) = G(g) ◦ ηX .

Since τ is a bijection, g is the unique morphism making the following
diagram commute:

X (G ◦ F )(X)

X G(B).

ηX

idX G(g)

f

In other words, (id∗, g) is the unique morphism in the comma category
(1X , G) from (∗, ηX , F (X)) to (∗, f, B). Since the object (∗, f, B) was
arbitrary then (∗, ηX , F (X)) is an initial object in (1X , G) as required.

(b) Conversely, assume that there exists a natural transformation
η : idC ⇒ G ◦ F such that if X is an object in C then
(∗, ηX , F (X)) ∈ (1X , G) is an initial object. By Theorem 2.2.2, it suffices to
construct a counit of the adjunction for the pair of functors (F,G) and then
show that it is unique.

Let Y be an object in D . The object (∗, ηG(Y ), F (G(Y ))) ∈ (1G(Y ), G) is
initial by assumption. So there exists a unique morphism (id∗, εY ) from
(∗, ηG(Y ), F (G(Y ))) to (∗, idG(Y ), Y ) such that the following diagram
commutes:

G(Y ) GFG(Y )

G(Y ) G(Y )

ηG(Y )

idG(Y ) G(εY )

idG(Y )

(2.7)

To see that ε is a natural transformation from F ◦G to idD , assume that
f : Y → Z is a morphism in D . Using the commutative square in equation
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(2.7) and the naturality of η, we obtain the following commutative
diagrams:

G(Y ) G(Y ) G(Y )

GFG(Y ) G(Y ) G(Z)

idG(Y )

ηG(Y )

idG(Y )

idG(Y ) G(f)

G(εY ) G(f)

G(Y ) G(Y ) G(Y )

GFG(Y ) GFG(Z) G(Z)

idG(Y )

ηG(Y )

idG(Y )

ηG(Z)◦G(f) G(f)

GFG(f) G(εZ)

So, we have two morphisms (id∗, f ◦ εY ) and (id∗, εZ ◦ FG(f)) in (1G(Y ), G)
from (∗, ηG(Y ), F (G(Y ))) to (∗, G(f), Z) which make the respective
diagrams commute. Since the object (∗, ηG(Y ), F (G(Y ))) in (1G(Y ), G) is
initial then by uniqueness, f ◦ εY = εZ ◦ FG(f) and thus ε : F ◦G⇒ idD is
a natural transformation.

By equation (2.7), ε and η satisfy the property in equation (2.5). To see
that ε and η satisfy the property in equation (2.4), assume that X is an
object in C . We work with the following diagram in C :

X GF (X) GF (X)

GF (X) GFGF (X) GF (X)

ηX

ηX

idGF (X)

GF (ηX) idGF (X)

ηGF (X) G(εF (X))

The LHS square commutes because η is a natural transformation. The
bottom side of the rectangle is the identity of GF (X), since equation (2.5)
is satisfied by ε and η. Consequently, the three paths from the top left X to
the bottom right GF (X) are all equal.

We find that (id∗, idF (X)) and (id∗, εF (X) ◦ F (ηX)) are morphisms from
(∗, ηX , F (X)) to (∗, ηX , F (X)). Again since (∗, ηX , F (X)) is an initial
object in (1X , G) then idF (X) = εF (X) ◦ F (ηX). Since X is an arbitrary
object in C then equation (2.4) is satisfied by ε and η. We conclude that
ε : F ◦G⇒ idD is a counit of adjunction associated to (F,G).

Finally, we will show that ε is the unique counit of adjunction. Assume that
ν : F ◦G⇒ idD is another counit of adjunction. If Y is an object in D then
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we have two morphisms in the comma category (1G(Y ), G) from
(∗, ηG(Y ), FG(Y )) to (∗, idG(Y ), Y ) — (id∗, εY ) and (id∗, νY ). This is because
the pairs of natural transformations (η, ε) and (η, ν) satisfy equation (2.5).
Since (∗, ηG(Y ), FG(Y )) is an initial object in (1G(Y ), G) then εY = νY and
ε = ν. Hence, ε is the unique counit of adjunction associated to (F,G) and
by Theorem 2.2.2, (F,G) is an adjoint pair of functors as required.

Example 2.3.1. Let k be a field, k-Vect be the category of k-vector
spaces and k-Alg be the category of algebras over k. We have an adjoint
pair of functors (T, F ) where F : k-Alg→ k-Vect is the forgetful functor
and T : k-Vect→ k-Alg is the tensor algebra functor.

Let 1 denote the category with the single object ∗. Let ε : idk-Vect ⇒ F ◦ T
be the unit of adjunction associated to (T, F ). By Theorem 2.3.1, if V is a
k-vector space then the triple (∗, εV , T (V )) is an initial object in the comma
category (1V , F ). This means that if A is a k-algebra and f : V → F (A) is
a vector space morphism then there exists a unique k-algebra morphism
f : T (V )→ A such that the diagram

V (F ◦ T )(V )

V F (A)

idV

εV

F (f)

f

In other words, maps out of tensor algebras are uniquely determined by the
images of their generators.

The following result is proved in a similar manner to Theorem 2.3.1. We
will use it later.

Theorem 2.3.2. Let C and D be categories and F : C → D be a functor.
Let 1 be the category with a single object ∗.

1. F has a left adjoint if and only if the following statement is satisfied:
If X is an object in D then the comma category (1X , F ) has an initial
object.

2. F has a right adjoint if and only if the following statement is
satisfied: If X is an object in D then the comma category (F,1X) has
a terminal object.
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Chapter 3

The Yoneda embedding

3.1 Definition and the Yoneda lemma

Definition 3.1.1. Let C be a category. We say that C is locally small if
the following statement is satisfied: If X and Y are objects in C then the
class of morphisms HomC (X, Y ) is actually a set.

If C is a locally small category then all of the classes of morphisms are sets.
This makes it possible to define the following functor.

Definition 3.1.2. Let C be a locally small category. Define the Yoneda
embedding to be the functor

Y : C → F(C op,Set)
X 7→ Y (X) = HomC (−, X)

f : X → X ′ 7→ Y (f)
(3.1)

If f : X → X ′ is a morphism in C then Y (f) is a natural transformation
defined by the family of maps

{Y (f)A : HomC (A,X)→ HomC (A,X ′) | A ∈ C }

where if A is an object in C then we have the morphism of sets

Y (f)A : HomC (A,X) → HomC (A,X ′)
g 7→ f ◦ g.

For two functors F : C → D and F ′ : C → D , we write Nat(F, F ′) to
denote the set of natural transformations from F to F ′. This notation is
adopted from [Mur16]. In Definition 3.1.2, there is a quite a bit of checking
to do. One has to check that the Yoneda embedding is a functor, that the
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Yoneda embedding maps objects in C to functors and that it maps
morphisms in C to natural transformations. We will omit all the tedious
details here.

The Yoneda lemma is an important result about the Yoneda embedding.
We state and prove this below.

Lemma 3.1.1 (Yoneda lemma). Let C be a locally small category,
F : C op → Set be a functor and C be an object in C . Define the map

ΦC,F : Nat(Y (C), F ) → F (C)
α 7→ αC(idC)

Explicitly, Y is the functor from equation (3.1), αC is a morphism of sets
from Y (C)(C) = HomC (C,C) to F (C) and idC is the identity map on the
object C. Then, ΦC,F is a bijection, which satisfies the following two
properties:

1. If f : C → C ′ is a morphism in C then the following square in Set
commutes:

Nat(Y (C), F ) F (C)

Nat(Y (C ′), F ) F (C ′)

ΦC,F

ΦC′,F

(−)◦Y (f) F (f) (3.2)

2. If β : F → F ′ is a natural transformation then the following diagram in
Set commutes:

Nat(Y (C), F ) F (C)

Nat(Y (C), F ′) F ′(C)

ΦC,F

β◦(−) βC

ΦC,F ′

(3.3)

Proof. Assume that C is a locally small category and C ∈ C is an object.
Assume that F : C op → Set is a functor.

To show: (a) The map ΦC,F is surjective.

(b) The map ΦC,F is injective.
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(c) Diagram (3.2) commutes.

(d) Diagram (3.3) commutes.

(a) Assume that X ∈ F (C) and D is an object in C op. Define the map
N(X)D by

N(X)D : Y (C)(D) = HomC (D,C) → F (D)
g 7→ F (g)(X)

(3.4)

Recall that F is a contravariant functor by assumption so that F (g) is a
morphism in Set from F (C) to F (D).

To show: (aa) N(X) ∈ Nat(Y (C), F ).

(aa) We will show that if h : D → D′ is a morphism in C op then the
following diagram in Set commutes:

Y (C)(D′) Y (C)(D)

F (D′) F (D)

Y (C)(h)

N(X)D′ N(X)D

F (h)

Assume that ξ ∈ Y (C)(D′) = HomC (D′, C). We compute directly that

(N(X)D ◦ Y (C)(h))(ξ) = (N(X)D ◦HomC (h,C))(ξ)

= N(X)D(ξ ◦ h)

= F (ξ ◦ h)(X)

= (F (h) ◦ F (ξ))(X)

= (F (h) ◦N(X)D′)(ξ).

Hence, the above diagram in Set commutes and N(X) ∈ Nat(Y (C), F ).

(a) We claim that ΦC,F (N(X)) = X. Using the definitions of ΦC,F and
N(X), we find that

ΦC,F (N(X)) = N(X)C(idC) = F (idC)(X) = idF (C)(X) = X.

Therefore, the map ΦC,F is surjective.
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(b) Assume that α, β ∈ Nat(Y (C), F ) such that ΦC,F (α) = ΦC,F (β).
Assume that D is an object in C and f ∈ HomC (D,C). By naturality of α,
the following diagram in Set commutes:

Y (C)(C) Y (C)(D)

F (C) F (D)

Y (C)(f)

αC αD

F (f)

We then have

(F (f) ◦ ΦC,F )(α) = F (f)(αC(idC))

= (αD ◦ Y (C)(f))(idC)

= αD(HomC (f, C)(idC))

= αD(idC ◦ f) = αD(f).

Since ΦC,F (α) = ΦC,F (β) by assumption, αC(idC) = βC(idC). But, β is also
a natural transformation between the functors Y (C) and F . So, the
following diagram in Set commutes:

Y (C)(C) Y (C)(D)

F (C) F (D)

Y (C)(f)

βC βD

F (f)

If f ∈ HomC (D,C) = Y (C)(D) then

αD(f) = αD(idC ◦ f)

= αD(HomC (f, C)(idC))

= (αD ◦ Y (C)(f))(idC)

= F (f)(αC(idC))

= F (f)(βC(idC)) (since αC(idC) = βC(idC))

= (βD ◦ Y (C)(f))(idC)

= βD(HomC (f, C)(idC)) = βD(f).

Therefore, αD = βD. Since the object D ∈ C was arbitrary, we deduce that
α = β as natural transformations from Y (C) to F . Therefore, ΦC,F is
injective.
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Combining parts (a) and (b), we deduce that ΦC,F is indeed a bijective
map. Its inverse is given explicitly by

Φ−1
C,F : F (C) → Nat(Y (C), F )

X 7→ N(X)

where N(X) is the natural transformation in equation (3.4).

(c) Now assume that f : C → C ′ is a morphism in C . We want to show
that Diagram (3.2) commutes. Assume that α ∈ Nat(Y (C ′), F ). We
compute directly that

(ΦC,F ◦ (−) ◦ Y (f))(α) = ΦC,F (α ◦ Y (f))

= (α ◦ Y (f))C(idC)

= (αC ◦ Y (f)C)(idC)

= αC(Y (f)C(idC))

= αC(f ◦ idC) = αC(f)

and

(F (f) ◦ ΦC′,F )(α) = F (f)(αC′(idC′)

= (F (f) ◦ αC′)(idC′)
= (αC ◦ Y (C ′)(f))(idC′) (Naturality of α)

= αC(HomC (f, C ′)(idC′))

= αC(f).

So, Diagram (3.2) commutes.

(d) Assume that β ∈ Nat(F, F ′). We want to show that Diagram (3.3)
commutes. Assume that χ ∈ Nat(Y (C), F ). We compute directly that

(βC ◦ ΦC,F )(χ) = βC(χC(idC))

= (βC ◦ χC)(idC)

= (β ◦ χ)C(idC)

= ΦC,F ′(β ◦ χ)

= (ΦC,F ′ ◦ β ◦ (−))(χ).

Therefore, Diagram (3.3) commutes. This completes the proof.
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In the proof of the Yoneda lemma (Lemma 3.1.1), commutativity of
Diagram (3.2) tells us that ΦC,F is natural with respect to the object
C ∈ C . Correspondingly, commutativity of Diagram (3.3) tells us that ΦC,F

is natural with respect to the functor F : C op → Set.

Here is a particularly important consequence of the Yoneda lemma.

Theorem 3.1.2. Let C be a locally small category. The Yoneda embedding

Y : C → F(C op,Set)
X 7→ Y (X) = HomC (−, X)

f : X → X ′ 7→ Y (f)

defined in Definition 3.1.2 is a fully faithful functor.

Proof. Assume that C is a locally small category and that Y is the Yoneda
embedding. Let X,X ′ be objects in C . Then, the functor Y induces the
mapping

YX,X′ : HomC (X,X ′)→ HomF(C op,Set)(Y (X), Y (X ′)) = Nat(Y (X), Y (X ′)).

To show: (a) YX,X′ is bijective.

(a) By Lemma 3.1.1, it suffices to show that YX,X′ is the inverse to the
bijection ΦX,Y (X′) : Nat(Y (X), Y (X ′))→ Y (X ′)(X). Assume that
f ∈ HomC (X,X ′). Then,

(ΦX,Y (X′) ◦ YX,X′)(f) = ΦX,Y (X′)(Y (f))

= Y (f)X(idX)

= f ◦ idX = f.

Hence, YX,X′ is a bijection and the Yoneda embedding is fully faithful as
required.

3.2 Representable functors

In this section, we will apply the Yoneda embedding to provide a
characterisation of representable functors.

Definition 3.2.1. Let C be a locally small category and X : C op → Set be
a (contravariant) functor. Let Y be the Yoneda embedding in equation
(3.1). A representation of the functor X is a choice of object A ∈ C and
an isomorphism from Y (A) to X in F(C op,Set). We say that X is
representable if there exists a representation of X.
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The Yoneda lemma in Lemma 3.1.1 provides us with another
characterisation of a representable Set-valued contravariant functor.

Theorem 3.2.1. Let C be a locally small category and X : C op → Set be a
functor. Then, X is a representable functor if and only if there exist an
object A ∈ C and an element p ∈ X(A) such that if B ∈ C and q ∈ X(B)
then there exists a unique morphism νq : B → A such that X(νq)(p) = q.

Proof. Assume that C is a locally small category and X is an object in the
functor category F(C op,Set). Assume that Y is the Yoneda embedding in
equation (3.1).

To show: (a) If X is representable then there exist an object A ∈ C and an
element p ∈ X(A) such that if B ∈ C and q ∈ X(B) then there exists a
unique morphism νq : B → A such that X(νq)(p) = q.

(b) If there exist an object A ∈ C and an element p ∈ X(A) such that if
B ∈ C and q ∈ X(B) then there exists a unique morphism νq : B → A such
that X(νq)(p) = q. then X is representable.

(a) Assume that X is a representable functor. Then, there exists an object
A ∈ C and an isomorphism α : Y (A)⇒ X. Applying the map ΦA,X from
Lemma 3.1.1, we obtain an element ΦA,X(α) = αA(idA) ∈ X(A).

Now assume that B is an object in C and q ∈ X(B). Since α is an
isomorphism in F(C op,Set) then the morphism of sets

αB = Y (A)(B) = HomC (B,A)→ X(B)

is an isomorphism. Thus, there exists a unique morphism ρ : B → A such
that αB(ρ) = q. So

X(ρ)(αA(idA)) = X(ρ)(ΦA,X(α))

= (X(ρ) ◦ ΦA,X)(α)

= ΦB,X(α ◦ Y (ρ)) (by commutativity of Diagram (3.3))

= (α ◦ Y (ρ))B(idB)

= (αB ◦ Y (ρ)B)(idB)

= αB(ρ ◦ idB) = q.

We conclude that the object A in C and the element αA(idA) ∈ X(A)
satisfy the property in the statement of the theorem.
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(b) Assume that there exist an object A in C and an element p ∈ X(A)
which satisfy the property in the statement of the theorem. We need to
construct an isomorphism from Y (A) to X. If B is an object in C then
define

N(X)B : Y (A)(B) = HomC (B,A) → X(B)
f 7→ X(f)(p).

This morphism of sets is defined exactly as in equation (3.4). By the proof
of Lemma 3.1.1, the family of morphisms {N(X)B}B∈ob(C ) defines a natural
transformation N(X) : Y (A)⇒ X. To see that it is a natural isomorphism,
assume that q ∈ X(B). By the assumption in the statement of the theorem,
there exists a unique morphism νq : B → A such that

N(X)B(νq) = X(νq)(p) = q.

Hence, if B is an object in C then N(X)B is an isomorphism of sets and
N(X) : Y (A)⇒ X is a natural isomorphism. Therefore the object A in C
and the natural isomorphism N(X) together demonstrate that the functor
X is representable. This completes the proof.

To round this section off, we will apply representable functors to adjoint
pairs of functors.

Definition 3.2.2. Let C and D be locally small categories. Let
F : C → D be a functor. The formal right adjoint of F is the functor

Gform : D → F(C op,Set)
Y 7→

(
X 7→ HomD(F (X), Y )

)
f : Y → Y ′ 7→ Gform(f) : Gform(Y )⇒ Gform(Y ′).

If Y and Y ′ are objects in D and X is an object in C then the natural
transformation Gform(f) is defined explicitly by

Gform(f)X : HomD(F (X), Y ) → HomD(F (X), Y ′)
g 7→ f ◦ g.

Before we delve into how representable functors are applied to adjoint pairs
of functors, we make the following remark. Let C be a locally small
category. Let F(C op,Set)Rep denote the category of representable functors,
which is a subcategory of F(C op,Set). By the definition of a representable
functor, F(C op,Set)Rep is the essential image of the Yoneda embedding Y
on C . By combining Theorem 1.5.1 and Theorem 3.1.2, we deduce that the
functor C → F(C op,Set)Rep (the Yoneda embedding with restricted
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codomain) is an equivalence of categories.

In particular, there exists a functor

P : F(C op,Set)Rep → C (3.5)

such that the pair (Y, P ) is an adjoint pair of functors.

Theorem 3.2.2. Let C and D be locally small categories. Let F : C → D
be a functor. Let Gform : D → F(C op,Set) be the formal right adjoint of F .
Then, F has a right adjoint if and only if the following statement is
satisfied: If Y is an object in D then Gform(Y ) is a representable functor.

Proof. Assume that C and D are locally small categories. Assume that
F : C → D is a functor and that Gform is the formal right adjoint of F .

To show: (a) If F has a right adjoint then if Y is an object in D then
Gform(Y ) is a representable functor.

(b) If Gform(Y ) is a representable functor for an object Y in D then F has
a right adjoint.

(a) Assume that F has a right adjoint functor G : D → C . If X is an
object in C and Y is an object in D then we have a bijection

τX,Y : HomD(F (X), Y )→ HomC (X,G(Y ))

which is natural in both X and Y . Let Y : C → F(C op,Set) denote the
Yoneda embedding in equation (3.1). Then, the object G(Y ) ∈ C together
with the natural isomorphism of sets

τ−1
(−),Y : Y(G(Y ))⇒ Gform(Y )

demonstrate that if Y is an object in D then Gform(Y ) is a representable
functor.

(b) Assume that if Y is an object in D then Gform(Y ) is a representable
functor. Then Gform(Y ) is an element of F(C op,Set)Rep. Let P be the
functor defined in equation (3.5). Define G = P ◦Gform. By definition, G is
a functor from D to C .

If X is an object in C then observe that
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HomC (X,G(Y )) = HomC (X, (P ◦Gform)(Y ))
∼= HomF(C op,Set)(Y(X), Gform(Y ))
∼= Gform(Y )(X)

= HomD(F (X), Y ).

In the second line, we used the fact that (Y , P ) is an adjoint pair of
functors and in the third line, we used the fact that Gform(Y ) is a
representable functor. The isomorphism in the second line is a natural
isomorphism. Hence, we have constructed a natural isomorphism of sets
from HomC (X,G(Y )) to HomD(F (X), Y ). So, (F,G) is an adjoint pair of
functors and G is right adjoint to F as required.
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Chapter 4

Limits and colimits

4.1 Cones and cocones

It is likely that the reader is familiar with constructions such as pullbacks,
pushouts, products and coproducts in particular categories such as Grp
and Top. In category theory, such constructions are generalised by the
notions of limits and colimits. A limit is a cone satisfying a universal
property and similarly, a colimit is a cocone satisfying a universal property.

Definition 4.1.1. Let C be a category and I be a small category. A
functor I→ C is called a diagram in C of shape I.

Definition 4.1.2. Let C be a category, I be a small category and
D : I→ C be a diagram in C . A cone on D is an object A ∈ C , called the
vertex of the cone, together with a family(

fI : A→ D(I)
)
I∈I

of morphisms in C such that if u : I → J is a morphism in I then the
triangle in C below commutes:

A D(I)

D(J)

fI

fJ
D(u)

Dually, we also have the definition of a cocone.

Definition 4.1.3. Let C be a category and I be a small category. Let
D : I→ C be a functor. A cocone on D is an object A ∈ C , together with
a collection of morphisms
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(
fI : D(I)→ A

)
I∈I

such that if u : I → J is a morphism in I then the following diagram in C
commutes:

A D(I)

D(J)

D(u)

fI

fJ

Example 4.1.1. Let C be a category and P be the small category
depicted pictorially by

•

• •
Let D : P→ C denote the diagram in C which sends P to

A1

A2 A3

f

g

A cone on D : P→ C is an object V ∈ C (the vertex), together with a
family of morphisms f1 : V → A1, f2 : V → A2 and f3 : V → A3 such that
the following triangles in C commute:

V A1

A3

f1

f3
f

V

A2 A3

f2
f3

g

We can combine these two commutative triangles to find that the cone of D
is the commutative square in C
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V A1

A2 A3

f2

f1

f

g

Below, we define limits and colimits.

Definition 4.1.4. Let C be a category, I be a small category and
D : I→ C be a diagram in C . A limit of D is a cone(

pI : L→ D(I)
)
I∈I

satisfying the following universal property: If we have another cone(
fI : V → D(I)

)
I∈I on D then there exists a unique morphism f̃ : V → L

such that if I ∈ I then the following diagram in C commutes:

V L

D(I)

f̃

fI
pI

In a common abuse of notation, we refer to L as the limit of D. We write
the limit L as lim

←−I
D.

Let D : I→ C be a diagram in a category C . The universal property
associated with a limit L of D can be interpreted as the bijective
correspondence

{Morphisms A→ L} ↔ {Cones on D with vertex A}
g : A→ L 7→

(
pI ◦ g : A→ D(I)

)
I∈I

f̃ : A→ L ← [
(
fI : A→ D(I)

)
I∈I

(4.1)

The maps pI : L→ D(I) are the morphisms accompanying the limit L.
The universal property of the limit provides the direction from “right to
left” in the above correspondence — from a cone on D with vertex A to a
unique morphism from A to L.

Definition 4.1.5. Let C be a category, I be a small category and
D : I→ C be a diagram in C . A colimit of D is a cocone(

iI : D(I)→ C
)
I∈I
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which satisfies the following universal property: If
(
fI : D(I)→ A

)
I∈I is

another cone of D then there exists a unique morphism f̃ : C → A such
that if I ∈ I then the following diagram in C commutes:

A C

D(I)

f̃

iI
fI

4.2 Examples of limits and colimits in an

arbitrary category

This section is dedicated to well-known examples of limits and colimits.

Example 4.2.1. Let us return to Example 4.1.1. The cone of D in the
example is the following commutative square in C :

V A1

A2 A3

f2

f1

f

g

A limit of the diagram D : P→ C in C is another cone, which consists of
an object L ∈ C and morphisms pj : L→ Aj for j ∈ {1, 2, 3}. By its
universal property, there exists a unique morphism f̃ : V → L such that if
j ∈ {1, 2, 3} then pj ◦ f̃ = fj. This is equivalent to saying that the following
diagram in C commutes:

V

L A1

A2 A3

f̃

f1

f2

p2

p1 f

g

Note that the equation p3 ◦ f̃ = f3 is extraneous data and can be deduced
from the commutativity of the above diagram. Indeed, we have

f3 = f ◦ f1 = f ◦ (p2 ◦ f̃) = (f ◦ p2) ◦ f̃ = p3 ◦ f̃ .
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The specific limit constructed in Example 4.2.1 is a well-known
construction which merits the following definition.

Definition 4.2.1. Let C be a category. Suppose that we have the
following diagram in C :

Y

X Z

t

s

A pullback of the above diagram is an object P of C , together with
morphisms p1 : P → X and p2 : P → Y such that firstly, the square below
commutes:

P Y

X Z

p2

p1 t

s

Secondly, the pullback satisfies the following universal property: If we have
a commutative square in C of the form

A Y

X Z

f2

f1 t

s

then there exists a unique morphism f ′ : A→ P such that the two triangles
in the below diagram commute:

A

P Y

X Z

f ′

f2

f1

p2

p1 t

s

Here is our next specific example of a limit.

Example 4.2.2. Let C be a category and E be the small category
depicted pictorially by

• •
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Let D : E→ C denote the diagram in C which sends E to

A1 A2

f1

f2

A cone on D : E→ C is an object V ∈ C , together with morphisms
v1 : V → A1 and v2 : V → A2 such that f1 ◦ v1 = v2 and f2 ◦ v1 = v2. Hence,
a cone on D is a morphism v1 : V → A1 satisfying f1 ◦ v1 = f2 ◦ v1.

A limit of the diagram D : E→ C is another cone L ∈ C with
accompanying morphisms p1 : L→ A1 and p2 : L→ A2 such that there
exists a unique morphism f̃ : V → L making the following diagram in C
commute:

V

L A1 A2

v1
f̃

p1

f1

f2

Similarly to the construction of a pullback in Example 4.2.1, the equation
p2 ◦ f̃ = v2 is an extraneous condition, which can be determined from the
commutative diagram above. We have

v2 = f2 ◦ v1 = f2 ◦ (p1 ◦ f̃) = (f2 ◦ p1) ◦ f̃ = p2 ◦ f̃ .

In Example 4.2.2, we have successfully constructed another specific example
of limit — the equalizer.

Definition 4.2.2. Let C be a category and consider the following diagram
in C :

I X Yi h

h′

We say that the morphism i : I → X is an equalizer of the pair (h, h′) if
firstly, h ◦ i = h′ ◦ i and secondly, i satisfies the following universal property:
If g : U → X is a morphism satisfying h ◦ g = h′ ◦ g then there exists a
unique morphism γ : U → I such that the the triangle in the below diagram
commutes:

U

I X Y

g
γ

i

h

h′

60



The equalizer i of (h, h′) is often denoted by eq(h, h′).

Our next example of a limit is likely the most recognisable.

Example 4.2.3. Let C be a category and T be the small category
depicted pictorially by

• •

Let D : T→ C denote the diagram in C which sends T to

A1 A2

A cone on D : T→ C is an object V ∈ C , together with morphisms
v1 : V → A1 and v2 : V → A2. There are no commutative diagrams to deal
with here because there are no morphisms in T.

A limit of the diagram D : T→ C is another cone L ∈ C with
accompanying morphisms p1 : L→ A1 and p2 : L→ A2 such that there
exists a unique morphism f̃ : V → L making the following diagram in C
commute:

L

A1 V A2

p1 p2

v1

f̃

v2

Similarly to pullbacks and equalizers, Example 4.2.3 leads us to the next
definition.

Definition 4.2.3. Let C be a category and A,B be objects in C . The
product of A and B is a triple (P, pA, pB) consisting of an object P in C
and two morphisms pA : P → A and pB : P → B. Furthermore, the triple
satisfies the following universal property: If C is an object in C and
vA : C → A and vB : C → B are morphisms then there exists a unique
morphism f : C → P such that the following diagram in C commutes:

P

A C B

pA pB

vA

f

vB

We remark that if C has products then it has all finite products. If
n ∈ Z>0 then a finite product is a limit of a diagram from the category with
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n objects and no non-identity morphisms. This assertion is straightforward
to check by the universal property of a limit.

Now in the following example, we will show that a terminal object can also
be thought of as a specific example of a limit.

Example 4.2.4. Let C be a category and 0 be the empty category, with
no morphisms or objects. Let D : 0→ C denote the diagram in C which
sends 0 to the empty subcategory of C .

A cone on D : 0→ C is just an object V ∈ C . This time, there are no
accompanying morphisms because there are no objects in the empty
subcategory D(0) of C .

A limit of the diagram D : 0→ C is another object L ∈ C such that there
exists a unique morphism t : V → L. Therefore, the limit L of the diagram
D is a terminal object in C .

By similar arguments to the specific limits constructed in Examples 4.2.1,
4.2.2, 4.2.3 and 4.2.4, we also obtain important examples of colimits which
directly parallel the limits we know so far. For instance, the notion of an
initial object is a colimit of a diagram stemming from the empty category 0.

Since said arguments are similar, we will end this section by defining the
analogous colimits to pullbacks, equalizers and products.

Definition 4.2.4. Let C be a category. Suppose that we have the
following diagram in C :

Y

X Zv

u

A pushout of the above diagram is an object P of C , together with
morphisms p1 : X → P and p2 : Y → P such that firstly, the square below
commutes:

P Y

X Z

p2

p1

v

u
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Secondly, the pushout must satisfy the following universal property: If we
have a commutative square in C of the form

B Y

X Z

g2

g1

v

u

there exists a unique morphism g′ : P → B such that the two triangles in
the below diagram commute:

B

P Y

X Z

g′

p2

g2

p1
g1

v

u

Definition 4.2.5. Let C be a category and consider the following diagram
in C :

X Y Q
h

h′

q

We say that the morphism q : Y → Q is a coequalizer of the pair (h, h′) if
firstly, q ◦ h = q ◦ h′ and secondly, q satisfies the following universal
property: If f : Y → Z is a morphism in C satisfying f ◦ h = f ◦ h′ then
there exists a unique morphism φ : Q→ Z such that the the triangle in the
below diagram commutes:

Z

X Y Q
h

h′
q

f
φ

The coequalizer q of (h, h′) is often denoted by coeq(h, h′).

Definition 4.2.6. Let C be a category and X, Y be objects in C . The
coproduct of X and Y is a triple (Q, ιX , ιY ) consisting of an object Q and
two morphisms ιX : X → Q and ιY : Y → Q. Furthermore, the triple
satisfies the following universal property: If we have two morphisms
f : X → W and g : Y → W in C then there exists a unique morphism
α : Q→ W such that the following diagram commutes:
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Q

X W Y

α
ιX

f

ιY

g

4.3 Examples of limits and colimits in

particular categories

How does one show that pullbacks exist in the category Set? According to
the definition of a pullback, one would construct a set and two functions
and then show that the resulting triple satisfies the universal property of
the pullback. In the previous section, we gave well-known examples of
limits and colimits in an arbitrary category. To complement this, we will
now provide examples of limits and colimits in well-known categories.

Example 4.3.1. To begin, we will show that equalizers exist in Set.
Suppose that we have the following diagram in Set:

X Y
f

g

Define the set I by

I = {x ∈ X | f(x) = g(x)}.

We claim that the inclusion map ι : I ↪→ X is the equalizer of the pair of
functions (f, g). By definition of I, if x ∈ I then

f(ι(x)) = f(x) = g(x) = g(ι(x))

and f ◦ ι = g ◦ ι. Now suppose that we have a morphism of sets k : U → X
satisfying f ◦ k = g ◦ k. Then, im k ⊆ I. So, the morphism k : U → I,
which is k with codomain restricted to I makes the following diagram in
Set commute:

U

I X Y

k
k

ι

f

g

To see that k : U → I is unique, suppose that ` : U → I is another
morphism such that k = ι ◦ `. If u ∈ U then
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k(u) = (ι ◦ `)(u) = `(u)

and k = `. Hence, ι : I → X is the equalizer of the pair (f, g) in Set.

Example 4.3.2. In this example, we will show that coproducts exist in the
category Grp. Assume that G and H are groups. The free product of G
and H, denoted by G ? H, is the set of all reduced words of the form

g1h1g2h2 . . . gkhk

where g1, . . . , gk ∈ G and h1, . . . , hk ∈ H. The group operation on G ? H is
the concatenation of words, followed by reduction.

We will describe how to reduce a word. Let eG and eH be the identity
elements of G and H respectively. Suppose that g1h1 . . . gkhk ∈ G ? H. If
there exists i ∈ {1, 2, . . . k} such that gi = eG or hi = eH then we remove eG
or eH from the word. If there is an instance of gjgj+1 or hihi+1 then we
reduce the word by considering the product gjgj+1 as one element of G
(rather than two) or the product hihi+1 as one element of H (rather than
two).

The words eG, eH ∈ G ?H are the empty words (words of length zero). This
is the identity element eG?H of G ? H.

Now define the inclusion maps ιG : G→ G ? H and ιH : H → G ? H by
ιG(g) = g and ιH(h) = h. Suppose that we have the following diagram in
Grp:

G ? H

G K H

ιG

φG φH

ιH

We want to construct a unique morphism ψ : G ? H → K such that the
following diagram commutes:

G ? H

G K H

ψ
ιG

φG φH

ιH

Define the map ψ by
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ψ : G ? H → K
g1h1 . . . gkhk 7→ φG(g1)φH(h1) . . . φG(gk)φH(hk)

As a preliminary observation, we have

ψ(eG?H) = φG(eG) = φH(eH) = eK .

To see that ψ is a group morphism, assume that g1h1 . . . gkhk and
g′1h

′
1 . . . g

′
lh
′
l are two reduced words in G ? H. If the concatenation

g1h1 . . . g
′
lh
′
l is already a reduced word then

ψ(g1h1 . . . gkhkg
′
1h
′
1 . . . g

′
lh
′
l) = φG(g1)φH(h1) . . . φG(g′l)φH(h′l)

= (φG(g1)φH(h1) . . . φG(gk)φH(hk))

(φG(g′1)φH(h′1) . . . φG(g′l)φH(h′l))

= ψ(g1h1 . . . gkhk)ψ(g′1h
′
1 . . . g

′
lh
′
l).

If the concatenation g1h1 . . . g
′
lh
′
l is not a reduced word then there are two

cases which can occur.

Case 1: If eG or eH appears in our word, we remove it by the reduction
process. Since φG(eG) = φH(eH) = eK , any terms of the form φG(eG) and
φH(eH) in ψ(g1h1 . . . g

′
lh
′
l) are removed from the product.

Case 2: If gigi+1 or hihi+1 appears in our word, we consider them as a single
element of G and H respectively in the word. Since φG and φH are group
morphisms then φG(gigi+1) = φG(gi)φG(gi+1) and
φH(hihi+1) = φH(hi)φH(hi+1). So we simply rewrite the product
ψ(g1h1 . . . g

′
lh
′
l) by replacing φG(gi)φG(gi+1) with φG(gigi+1) and similarly

for φH(hi)φH(hi+1).

These two cases show that ψ respects the reduction process in G ? H.
Hence,

ψ(g1h1 . . . gkhkg
′
1h
′
1 . . . g

′
lh
′
l) = ψ(g1h1 . . . gkhk)ψ(g′1h

′
1 . . . g

′
lh
′
l)

even if the concatenation g1h1 . . . gkhkg
′
1h
′
1 . . . g

′
lh
′
l is not a reduced word. So

ψ is a group morphism which satisfies by direct computation, ψ ◦ ιG = φG
and ψ ◦ ιH = φH .

Finally to see that ψ is a unique group morphism, assume that
ψ′ : G ? H → K is another group morphism such that ψ′ ◦ ιG = φG and
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ψ′ ◦ ιH = φH . If g ∈ G and h ∈ H then ψ′(g) = φG(g) = ψ(g) and
ψ′(h) = φH(h) = ψ(h). Since ψ′ and ψ are group morphisms then ψ′ = ψ
on all of G ? H. Hence, ψ must be unique and the triple (G ? H, ιG, ιH)
defines a coproduct in Grp.

Free products of groups and free products with amalgamation (which are
pushouts in Grp) feature prominently in the Seifert-Van Kampen theorem,
a useful tool for computing the fundamental group of a wide variety of
topological spaces. See [Bre93, Chapter III, Section 9] for details on the
Seifert-Van Kampen theorem.

Example 4.3.3. In this example, we will construct pushouts in the
category Top. Suppose we have the following diagram in Top:

Y

X Zv

u

Consider the disjoint union X t Y of the topological spaces X and Y . We
define an equivalence relation on X t Y by saying that if x ∈ X and y ∈ Y
then x ∼ y if and only if there exists a z ∈ Z such that v(z) = x and
u(z) = y. In other words, ∼ is the smallest equivalence relation generated
by pairs of the form (v(z), u(z)) where z ∈ Z.

Next, we define X tZ Y to be the quotient topological space (X t Y )/ ∼.
We have continuous functions ιX : X → X tZ Y and ιY : Y → X tZ Y
defined by ιX(x) = [x] and ιY (y) = [y]. From the definition of X tZ Y , it is
straightforward to verify that the following diagram commutes:

X tZ Y Y

X Z

ιY

ιX

v

u

To see that the universal property of the pushout is satisfied, suppose that
we have the following commutative square in Top:

W Y

X Z

g2

g1

v

u

Define the map β : X tZ Y → W by
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β : X tZ Y → W
[x] 7→ g1(x)
[y] 7→ g2(y).

How do we know that β is a well-defined continuous map? By the universal
property of the quotient in Top, it suffices to construct a continuous map
β′ : X t Y → W such that if z ∈ Z then β′(u(z)) = β′(v(z)). We will make
use of the homeomorphism

Cts(X t Y,W ) ∼= Cts(X,W )× Cts(Y,W ) (4.2)

where Cts(X,W ) is the space of continuous functions from X to W . Now
g1 ∈ Cts(X,W ) and g2 ∈ Cts(Y,W ). By the homeomorphism in equation
(4.2), the pair (g1, g2) induces the continuous function β′ : X t Y → W
which has the desired property because g1 ◦ v = g2 ◦ u. Thus,
β : X tZ Y → W is a well-defined continuous function.

If x ∈ X and y ∈ Y then

β(ιX(x)) = β([x]) = g1(x) and β(ιY (y)) = β([y]) = g2(y).

It remains to show uniqueness. Suppose that β∗ : X tZ Y → W is another
continuous function which satisfies β∗ ◦ ιX = g1 and β∗ ◦ ιY = g2. If x ∈ X
and y ∈ Y then

β([x]) = β∗([x]) and β([y]) = β∗([y]).

So β = β∗ and therefore, the triple (X tZ Y, ιX , ιY ) is a pushout in Top.

Pushouts in Top play an important role in the construction of finite
CW-complexes, which are fundamental objects of study in algebraic
topology. See [Mur21] for a brief discussion of this.

4.4 Finitely (co)complete categories

Many of the categories we know, such as Set, Grp and Top, are examples
of finitely complete and finitely cocomplete categories; the main subject of
this section.

Definition 4.4.1. Let C be a category, I be a small category and
D : I→ C be a diagram in C . We say that a (co)limit of D is finite if the
small category I is a finite category — I has finitely many objects and
morphisms.
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Definition 4.4.2. Let C be a category. We say that C is finitely
complete if it has all finite limits. Similarly, we say that C is finitely
cocomplete if it has all finite colimits.

By definition, it seems impossible to check that a given category is finitely
complete or finitely cocomplete. Fortunately, there are equivalent
characterisations of finitely complete/cocomplete categories which rectify
this issue.

Theorem 4.4.1. Let C be a category. The following are equivalent:

1. C is finitely complete,

2. C has pullbacks and a terminal object,

3. C has equalizers and products.

Proof. Assume that C is a category. If C is finitely complete then it has
finite limits and hence, pullbacks and a terminal object. Next, assume that
C has pullbacks and a terminal object. By using pullbacks and the
terminal object, we will construct equalizers and products in C .

Assume that h, h′ : X → Y is a pair of morphisms in C . Since C has
products, we can consider the following diagram in C :

X

Y Y × Y

(h, h′)

∆

where ∆ = (idY , idY ) is the diagonal map. Since C has pullbacks, we can
form the pullback square of the above diagram:

I X

Y Y × Y

i

g (h, h′)

∆

We claim that i is the equalizer of the pair (h, h′). First note that

(h ◦ i, h′ ◦ i) = (h, h′) ◦ i = ∆ ◦ g = (g, g).

So, h ◦ i = g = h′ ◦ i. Now assume that f : Z → X is another morphism in
C satisfying h ◦ f = h′ ◦ f . By the universal property of the pullback, there
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exists a unique morphism h : Z → I such that the following diagram
commutes:

Z

I X

Y Y × Y

h

f

h◦f

i

g (h, h′)

∆

The commutativity of the top triangle in the above diagram tells us that
i = eq(h, h′). Therefore, C has equalizers.

To see that C has products, let ∗ be the terminal object in C . Let X and
Y be objects in C . Recall that αX : X → ∗ is the terminal map. Form the
pullback square

P Y

X ∗

pY

pX αY

αX

We claim that the triple (P, pX , pY ) is a product in C . To this end, assume
that Z is an object in C and vX : Z → X and vY : Z → Y are morphisms
in C . By the universal property of the pullback, there exists a unique
morphism q : Z → P such that the following diagram commutes:

Z

P Y

X ∗

q

vY

vX

pY

pX αY

αX

Therefore, (P, pX , pY ) is the product of X and Y and we have constructed
products in C . We conclude that C has equalizers and products.

Finally, assume that C has equalizers and products. We need to show that
C has all finite limits. Assume that I is a finite category and D : I→ C be
a diagram in C . Since C has products then it has all finite products. This
will be used to construct a limit of D.
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If u : J → K is a morphism in I then define Co(u) = K to be the
codomain/target of u. Since C has all finite products then we can form the
products ∏

I∈ob(I)

D(I) and
∏
u∈I

D(Co(u)).

These objects in C have accompanying morphisms(
πJ :

∏
I∈ob(I)

D(I)→ D(J)
)
J∈ob(I)

and (
ρv :

∏
u∈I

D(Co(u))→ D(Co(v))
)
v∈I

respectively. Now if u : J → K is a morphism in I then define the
morphisms

su = D(u) ◦ πJ and tu = πK = πCo(u).

The universal property of the product
∏

u∈ID(Co(u)) yields two
morphisms s, t :

∏
I∈ob(I) D(I)→

∏
u∈ID(Co(u)). Since C has equalizers

then let p : L→
∏

I∈ob(I) D(I) be the equalizer of s and t. If J is an object
in I then define pJ = πJ ◦ p. We claim that the family of morphisms(

pJ : L→ D(J)
)
I∈ob(I)

is a limit of D. To see that (pI) is a cone on D, assume that u : J → K is a
morphism in I. Then

D(u) ◦ pJ = D(u) ◦ πJ ◦ p
= su ◦ p = ρu ◦ s ◦ p
= ρu ◦ t ◦ p = tu ◦ p
= πK ◦ p = pK .

Hence, (pI)I∈I is a cone on D. To see that it is a limit, assume that(
fI : Z → D(I)

)
I∈I

is another cone on D. By definition of the cone, if u is a morphism in I
then we have su ◦ f = tu ◦ f and subsequently s ◦ f = t ◦ f . By the
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universal property of the equalizer, there exists a unique morphism
q : Z → L such that the following diagram commutes:

Z

L
∏

I∈ob(I) D(I)
∏

u∈ID(Co(u))

f
q

p

s

t

Therefore if J is an object in I then

pJ ◦ q = πJ ◦ p ◦ q = πJ ◦ f = fJ .

So (pI)I is a limit on D. Since D was an arbitrary diagram on an arbitrary
finite category I then C has all finite limits and is finitely complete. This
completes the proof.

We also have a dual characterisation of a finitely cocomplete category,
which is proved in a similar fashion to Theorem 4.4.1.

Theorem 4.4.2. Let C be a category. The following are equivalent:

1. C is finitely cocomplete,

2. C has pushouts and an initial object,

3. C has coequalizers and coproducts.

4.5 Cofiltered limits and filtered colimits

Of course, the notion of finitely complete and finitely cocomplete categories
can be generalised to include all limits.

Definition 4.5.1. Let C be a category. We say that C is complete if it
has all limits. Similarly, we say that C is cocomplete if it has all colimits.

A similar proof to the one in Theorem 4.4.1 yields the following
characterisation of complete categories.

Theorem 4.5.1. Let C be a category. Then C is a complete category if
and only if C has equalizers and all arbitrary products.

To be clear, when we say arbitrary products, we mean that if I is the small
category with no non-zero identity morphisms and whose objects are
indexed by a set then the limit of a diagram D : I→ C always exists. As
usual, we the dual characterisation of cocomplete categories also holds.
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Theorem 4.5.2. Let C be a category. Then C is a cocomplete category if
and only if C has coequalizers and all arbitrary coproducts.

Now, we will give a second characterisation of complete and cocomplete
categories, which proceeds through the notions of cofiltered limits and
filtered colimits.

Definition 4.5.2. Let I be a small category. We say that I is filtered if
the following three properties are satisfied:

1. I 6= ∅.

2. If i, j ∈ I are objects then there exists an object k ∈ I such that the
hom-sets HomI(i, k) and HomI(j, k) are non-empty.

3. If f, g : i→ j are morphisms in I then there exists a morphism
h : j → k such that h ◦ f = h ◦ g (h equalizes f and g).

We say that I is cofiltered if the opposite category Iop is filtered.

Figure 4.1: A diagram of a filtered small category. Points represent ob-
jects and solid lines represent hom-sets. Doubled lines represent a pair of
parallel morphisms and dotted lines represent the existence of an equalizing
morphism.

Example 4.5.1. As an example of a filtered small category, consider the
poset (Z>0,≤). This poset can be thought of as a category Θ with
ob(Θ) = Z>0 and if x, y ∈ Z>0 then the hom-sets are given by
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HomΘ(x, y) =

{
{∗x,y}, if x ≤ y,

∅, if x 6≤ y.

First, we have Z>0 6= ∅. The third condition is satisfied because if
α, β ∈ Z>0 then the cardinality of HomΘ(α, β) is at most 1. Therefore, if
f, g : α→ β then f = g and any morphism from β must equalize f and g.

For the second condition, take γ ∈ Z>0 such that γ ≥ max{α, β}. By
definition of Θ, the hom-sets HomΘ(α, γ) and HomΘ(β, γ) are non-empty.
Therefore, Θ is a filtered small category.

Definition 4.5.3. Let I be a small category and C be a category. Let
F : Iop → C be a functor. A limit of F is called a cofiltered limit if I is
filtered. The limit is denoted by

lim←−
I

F.

Definition 4.5.4. Let I be a small category and C be a category. Let
F : I→ C be a functor. A colimit of F is called a filtered colimit if I is
filtered. The colimit is denoted by

colim−−−→
I

F.

Before we proceed, we will give a few examples of filtered colimits and
cofiltered limits.

Example 4.5.2. As an example of a filtered colimit, let I be a filtered
small category and F : I→ Set be a functor. We claim that the filtered
colimit as a set is

colim−−−→
I

F = (
∐
i∈I

F (i))/ ∼

where
∐

i∈I F (i) is a disjoint union and ∼ is an equivalence relation on∐
i∈I F (i) defined in the following manner: If x ∈ F (i) and y ∈ F (j) then

x ∼ y if and only if there exist α : i→ k and β : j → k such that
F (α)(x) = F (β)(y).

A priori, we have the cocone(
πI : F (I)→ colim−−−→

I

F
)
I∈I
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where πI is the projection map. Now suppose that we have another cocone(
fI : F (I)→ S

)
I∈I

of F . We would like to construct a function from colim−−−→
I

F to S.

The disjoint union
∐

I∈I F (I) is a coproduct in Set. This means that the
following map

ψ :
∐

I∈I F (I) → S
x ∈ F (I) 7→ fI(x)

is the unique function such that if I ∈ I is an object then fI = ψ ◦ ιI , where
ιI : F (I)→

∐
I∈I F (I) is the inclusion map.

Let Π :
∐

I∈I F (I)→ colim−−−→
I

F be the canonical projection map. Assume

that x ∈ F (I) and y ∈ F (J) are such that x ∼ y in
∐

I∈I F (I). Then, there
exist morphisms α : I → K and β : J → K in I such that
F (α)(x) = F (β)(y) in F (K). Since fK ◦F (α) = fI and fK ◦F (β) = fJ then

fI(x) = fK(F (α)(x)) = fK(F (β)(y)) = fJ(y).

So, ψ(x) = ψ(y). By the universal property of the quotient, there exists a
unique function Ψ : colim−−−→

I

F → S such that the following diagram

commutes: ∐
I∈I F (I) colim−−−→

I

F

S

Π

ψ Ψ

By the constructions of Ψ, Π and ψ, if I is an object in I then the following
diagram must also commute:

F (I) colim−−−→
I

F

S

πI

fI Ψ

This is because πI = Π ◦ ιI and fI = ψ ◦ ιI . Thus, the collection of
morphisms
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(
πI : F (I)→ colim−−−→

I

F
)
I∈I

is a filtered colimit of F .

Example 4.5.3. As an example of a cofiltered limit, let I be a filtered
small category and F : Iop → Set be a functor. We claim that the cofiltered
limit of F is the set

lim←−
I

F = {(xi)i∈I | F (α)(xi) = xj for some α : j → i} ⊆
∏
i∈I

F (i).

Initially, we have the cone(
πI : lim←−

I

F → F (I)
)
I∈I

where πI((xi)i∈I) = xI . Now suppose that we have another cone of F(
hI : H → F (I)

)
I∈I.

Define a map ρ from H to lim←−
I

F by sending a ∈ H to (hI(a))I∈I. Note that

(hI(a))I∈I ∈ lim←−
I

F because if α : j → i is a morphism in I then

F (α) ◦ hi = hj. By definition, it is straightforward to check that if I is an
object in I then πI ◦ ρ = hI . Hence, the cone(

πI : lim←−
I

F → F (I)
)
I∈I

is a cofiltered limit in the category Set.

So far, we have concrete characterisations of cofiltered limits and filtered
colimits in Set. In the next example, we will give a specific example of a
filtered colimit stemming from a particular filtered category.

Example 4.5.4. Let (Z>0,�) be the poset, where a � b if and only if a|b.
In a similar manner to Example 4.5.1, (Z>0,�) is a filtered category. Define
the functor F : (Z>0,�)→ Ab such that F (n) = Z/nZ and

F (n|m) : Z/nZ → Z/mZ
[1]n 7→ [m

n
]m.

We will demonstrate that the filtered colimit colim−−−→ F is isomorphic to the

abelian group Q/Z.
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If n ∈ Z>0 then define the abelian group morphisms

αn : F (n) = Z/nZ → Q/Z
[1]n 7→ [ 1

n
].

To show: (a) {αn}n∈Z>0 is a cocone of F .

(a) Assume that m,n ∈ Z>0 such that n|m. We compute directly that

(αm ◦ F (n|m))([1]n) = αm([
m

n
]m) = [

1

n
] = αn([1]n).

So αm ◦ F (n|m) = αn and consequently, {αn}n∈Z>0 is a cocone of F .

Now let {pn : F (n)→ colim−−−→ F}n∈Z>0 be a colimit of F . Then there exists a

unique morphism f : colim−−−→ F → Q/Z such that if n ∈ Z>0 then f ◦ pn = αn.

To show: (b) f is an isomorphism of abelian groups.

(b) Define the map g by

g : Q/Z → colim−−−→ F

[ 1
n
] 7→ pn([1]n)

Note that if m ∈ Z>0 then

g([
m

n
]) = mg([

1

n
]) = mpn([1]n) = pn([m]n).

To see that m ∈ Z>0, suppose that [m1

n1
] = [m2

n2
] in Q/Z. Then, n1 = n2 and

m2 = m1 + kn1 for some k ∈ Z. We compute directly that

g([
m2

n2

]) = pn1([m1 + kn1]n1) = pn1([m1]n1) = g([
m1

n1

]).

Therefore g is well-defined.

To see that g is an abelian group morphism, assume that [a1
b1

], [a2
b2

] ∈ Q/Z.
Then,
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g([
a1

b1

] + [
a2

b2

]) = g([
a1b2 + a2b1

b1b2

])

= pb1b2([a1b2 + a2b1]b1b2)

= pb1b2([a1b2]b1b2) + pb1b2([a2b1]b1b2)

= g([
a1b2

b1b2

]) + g([
a2b1

b1b2

])

= g([
a1

b1

]) + g([
a2

b2

]).

Hence, g is an abelian group morphism.

To see that g is the inverse of f , we compute directly that

((g ◦ f) ◦ pn)([1]n) = (g ◦ αn)([1]n) = g([
1

n
]) = pn([1]n).

So, (g ◦ f) ◦ pn = idcolim−−−→ F ◦ pn. By the universal property of the colimit, we

find that g ◦ f = idcolim−−−→ F . We also have

(f ◦ g)([
m

n
]) = (f ◦ pn)([m]n) = αn([m]n) = [

m

n
].

Hence, f ◦ g = idQ/Z. Therefore, f is an isomorphism of abelian groups.

From part (b), we conclude that colim−−−→ F is isomorphic to Q/Z.

Tying all the concepts introduced in this section is the following
characterisation of complete categories.

Theorem 4.5.3. Let C be a category. Then C is complete if and only if C
is finitely complete and has cofiltered limits.

Proof. Assume that C is a category. If C is complete then it has all limits,
including finite limits and cofiltered limits. Conversely, assume that C is
finitely complete and has cofiltered limits. By Theorem 4.5.1, it suffices to
show that C has all arbitrary products.

To do this, let I be a set (which can be thought of as a category with no
non-identity morphisms) and F : I→ C be a functor. Let I+ be the
category whose objects are finite subsets of I and whose morphisms are
inclusions of finite subsets. By definition, I+ is a small category.

To show: (a) I+ is filtered.
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(a) First note that I+ is non-empty because it contains the set I. Next
assume that J and K are finite subsets of I (objects in I+). Then
L = J ∪K is a finite subset of I such that

HomI+(J, L) 6= ∅ and HomI+(K,L) 6= ∅.

Finally, if we have two morphisms f, g : S1 → S2 in I+ then f = g because
they are both equal to the inclusion map S1 ↪→ S2. Hence any morphism
h : S2 → T in I+ must satisfy h ◦ f = h ◦ g. So I+ is filtered.

Since I+ is a filtered category then the opposite category (I+)op is
cofiltered. Define the functor F+ by

F+ : (I+)op → C
J 7→ lim←−

J

F |J

This is well-defined on objects because C has finite limits. Now let
u : J → K be a morphism in (I+)op. By definition of I+, K ⊆ J and we
have associated limits (

σJ,i : lim←−
J

F |J → F (i)
)
i∈J

and (
σK,i : lim←−

K

F |K → F (i)
)
i∈K .

Since K ⊆ J then (σJ,i)i∈K is a cone on the restricted functor F |K . The
morphism F+(u) is created by the universal property of the limit (σK,i)i∈K
— F+(u) is the unique morphism in C such that if i ∈ K then

σK,i ◦ F+(u) = σJ,i.

It is straightforward but tedious to check that F+ is a functor.

To show: (b) The cofiltered limit lim←−
(I+)op

F+ is the product associated to the

set I.

(b) Firstly, observe that if K is a finite subset of I then we have limits(
pJ : lim←−

(I+)op

F+ → lim←−
J

F |J
)
J∈(I+)op
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and (
σK,i : lim←−

K

F |K → F (i)
)
i∈K

of F+ and F |K respectively. These limits exist because C has cofiltered
limits and finite limits respectively. We want to show that lim←−

(I+)op

F+ is also

the limit of F . If i ∈ I then we have the family of morphisms.(
σ{i},i ◦ p{i} : lim←−

(I+)op

F+ → F (i)
)
i∈I. (4.3)

To see that this is a cone of F , assume that v : {i} → {j} is a morphism in
I. Since I is a set then it has no non-identity morphisms. So i = j, v = id{i}
and σ{i},i = F (v) ◦ σ{i},i.

To see that the cone in equation (4.3) is a limit of F , assume that(
fi : V → F (i)

)
i∈I

is another cone of F . If J is a finite subset of I then by the universal
property of the limit (σJ,i)i∈J , there exists a unique morphism
αJ : V → lim←−

J

F |J such that if i ∈ J then σJ,i ◦ αJ = fi.

Next, form the following family of morphisms:(
αJ : V → lim←−

J

F |J
)
J∈(I+)op

.

To see that this is a cone of F+, assume that u : J → K is a morphism in
(I+)op so that K ⊆ J . By definition of the morphism
F+(u) : F+(J)→ F+(K), we compute directly that if i ∈ K then

σK,i ◦ (F+(u) ◦ αJ) = σJ,i ◦ αJ = fi.

By uniqueness, we find that F+(u) ◦ αJ = αK . Therefore the family of
morphisms (αJ)J is a cone of F+.

By the universal property of the limit once again, there exists a unique
morphism β : V → lim←−

(I+)op

F+ such that if J is a finite subset of I then

pJ ◦ β = αJ . Now if i ∈ I then {i} is a finite subset of I and

σ{i},i ◦ p{i} ◦ β = σ{i},i ◦ αi = fi.
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We conclude that the cone of F in equation (4.3) is the desired limit of F .
Since I was an arbitrary set then we have constructed arbitrary products in
C and by Theorem 4.5.1, C is a complete category.

Dually, we have the following characterisation of cocomplete categories.

Theorem 4.5.4. Let C be a category. Then C is cocomplete if and only if
C is finitely cocomplete and has filtered colimits.

4.6 Interpreting limits as functors

It is not difficult to show from the definition of a limit that it is unique up
to a unique isomorphism, provided that it exists.

Theorem 4.6.1. Let I be a small category and C be a category. Let
D : I→ C be a diagram and(

pI : L1 → D(I)
)
I∈I and

(
qI : L2 → D(I)

)
I∈I

be two limits of D. Then there exists a unique isomorphism ψ : L1 → L2.

Proof. Assume that I is a small category, C is a category and D : I→ C is
a diagram. Assume that (pI)I∈I and (qI)I∈I are both limits of D, defined as
in the statement of the theorem. By the universal property of the limit,
there exist unique morphisms ψ : L1 → L2 and ϕ : L2 → L1 such that if
I ∈ I then

qI ◦ ψ = pI and pI ◦ ϕ = qI .

Again by the universal property of the limit, the identity morphisms idL1

and idL2 are the unique morphisms such that if I ∈ I then pI ◦ idL1 = pI
and qI ◦ idL2 = qI . But pI ◦ (ϕ ◦ ψ) = pI and qI ◦ (ψ ◦ ϕ) = qI . By
uniqueness, ϕ ◦ ψ = idL1 and ψ ◦ ϕ = idL2 . This demonstrates that ψ is a
unique isomorphism from L1 to L2, completing the proof.

By a very similar proof, a colimit, if it exists, is unique up to a unique
isomorphism.

Theorem 4.6.2. Let I be a small category and C be a category. Let
D : I→ C be a diagram and(

iI : D(I)→ C1

)
I∈I and

(
jI : D(I)→ C2

)
I∈I

be two colimits of D. Then there exists a unique isomorphism ψ : C1 → C2.
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The universal property of the limit can also be used to construct unique
morphisms between limits of different diagrams from the same small
category.

Lemma 4.6.3. Let C be a category and I be a small category. Let
D : I→ C be a diagram and(

pI : L→ D(I)
)
I∈I

be a limit on D. If h, h′ : A→ L are morphisms satisfying pI ◦ h = pI ◦ h′
for I ∈ I then h = h′.

Proof. Assume that C is a category and I is a small category. Assume that
D : I→ C is a diagram and (pI)I∈I is a limit on D. Assume that h, h′ are
morphisms from A to L such that if I ∈ I then pI ◦ h = pI ◦ h′. By the
universal property of the limit L, there exists a unique morphism f : A→ L
such that if I ∈ I then pI ◦ f = pI ◦ h = pI ◦ h′. By uniqueness of f ,
h = h′.

Theorem 4.6.4. Let I be a small category and C be a category. Let
D,D′ : I→ C be diagrams and α : D ⇒ D′ be a natural transformation. Let(

pI : lim
←−I

D → D(I)
)
I∈I and

(
p′I : lim

←−I
D′ → D′(I)

)
I∈I

be the limits of D and D′ respectively. Then, there exists a unique
morphism lim

←−I
α : lim

←−I
D → lim

←−I
D′ such that if I ∈ I then the following

diagram in C commutes:

lim
←−I

D D(I)

lim
←−I

D′ D′(I)

pI

lim
←−I

α αI

p′I

Moreover, if we have two cones(
fI : A→ D(I)

)
I∈I and

(
f ′I : A′ → D′(I)

)
I∈I

and a morphism s : A→ A′ which makes the following diagram commute
for I ∈ I

A D(I)

A′ D′(I)

fI

s αI

f ′I
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then the square below also commutes:

A lim
←−I

D

A′ lim
←−I

D′

f

s lim
←−I

α

f ′

Proof. Assume that I is a small category and C is a category. Assume that
D,D′ : I→ C be diagrams and α : D ⇒ D′ is a natural transformation.

We will construct a unique morphism from lim
←−I

D to lim
←−I

D′. Making use of

the natural transformation αI , observe that we have the following cone on
D′: (

αI ◦ pI : lim
←−I

D → D′(I)
)
I∈I

By the universal property of the limit lim
←−I

D′, there exists a unique

morphism lim
←−I

α : lim
←−I

D → lim
←−I

D′ such that if I ∈ I then the following

diagram in C commutes:

lim
←−I

D D(I)

lim
←−I

D′ D′(I)

pI

lim
←−I

α αI

p′I

Next, assume that we have two cones(
fI : A→ D(I)

)
I∈I and

(
f ′I : A′ → D′(I)

)
I∈I

and a morphism s : A→ A′ satisfying f ′1 ◦ s = αI ◦ fI . By the universal
property of the limit, we obtain unique morphisms f : A→ lim

←−I
D and

f ′ : A′ → lim
←−I

D′. Now observe that if I ∈ I then

p′I ◦ (lim
←−I

α) ◦ f = (p′I ◦ lim
←−I

α) ◦ f

= αI ◦ pI ◦ f
= αI ◦ fI = f ′I ◦ s
= p′I ◦ f ′ ◦ s.

By Lemma 4.6.3, we find that f ′ ◦ s = lim
←−I

α ◦ f as required.
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With Theorem 4.6.4, we can now define limits of diagrams from a small
category as a functor.

Definition 4.6.1. Let I be a small category and C be a category which
has all limits of shape I. The limit functor limI is defined as follows:

limI : F(I,C ) → C
D 7→ lim

←−I
D

φ : D ⇒ D′ 7→ lim
←−I

φ.

Here, the morphism lim
←−I

φ is the unique morphism constructed in Theorem

4.6.4.

The fact that limit functors are actually functors follows from Theorem
4.6.4. We will now show that a limit functor is a right adjoint functor. The
reason we might expect this is due to the original definition of a limit as a
collection of morphisms.

Definition 4.6.2. Let I be a small category and C be a category with all
limits of shape I. Define the diagonal functor ∆ : C → F(I,C ) as follows:
If A is an object in C then ∆(A) is the constant functor

∆(A) : I → C
I → A

α : I → J 7→ idA.

If f : A→ B is a morphism in C then ∆(f) : ∆(A)⇒ ∆(B) is the natural
transformation given by the collection of morphisms(

∆(f)I : A→ B
)
I∈I =

(
f : A→ B

)
I∈I.

Theorem 4.6.5. Let I be a small category and C be a category with all
limits of shape I. Let limI : F(I,C )→ C and ∆ : C → F(I,C ) be the limit
functor and the diagonal functor respectively. Then the pair (∆, limI) is an
adjoint pair of functors.

Proof. Assume that I is a small category and C is a category with all limits
of shape I. Let A be an object in C and F : I→ C be an object in the
functor category F(I,C ). Assume that

α ∈ HomF(I,C )(∆(A), F ).

Then α is a natural transformation from ∆(A) to F . This is a collection of
morphisms
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(
αI : ∆(A)(I) = A→ F (I)

)
I∈I.

such that if f : I → J is a morphism in I then

αJ = αJ ◦ idA = αJ ◦∆(A)(f) = F (f) ◦ αI .
Therefore (αI)I∈I is a cone on F . Now let(

pI : lim
←−I

F → F (I)
)
I∈I.

be the limit on F . By the universal property of the limit, there exists a
unique morphism α̃ : A→ lim

←−I
F such that if I is an object in I then

pI ◦ α̃ = αI . Now define the map

τA,F : HomF(I,C )(∆(A), F ) → HomC (A, limI F )
α 7→ α̃

We will now show that τA,F is a bijection. To see that τA,F is injective,
assume that α, β : ∆(A)⇒ F are natural transformations satisfying
τA,F (α) = τA,F (β). By construction of α̃ and β̃, if I is an object in I then

αI = pI ◦ τA,F (α) = pI ◦ τA,F (β) = βI .

Hence α = β and τA,F is injective. Next assume that we have a morphism
g : A→ limI F . We have a natural transformation γ : ∆(A)⇒ F given by
the collection of morphisms(

γI = pI ◦ g : A→ F (I)
)
I∈I.

Note that τA,F (γ) is the unique morphism such that if I is an object in I
then pI ◦ τA,F (γ) = γI = pI ◦ g. By uniqueness, τA,F (γ) = g and τA,F is
surjective. Consequently, τA,F is bijective and (∆, limI) is an adjoint pair of
functors.

Dually, we can repeat what was done in this section so far for colimits and
obtain the colimit functor. Analogously to Theorem 4.6.5, the colimit
functor colimI : F(I,C )→ C is left adjoint to the diagonal functor
∆ : C → F(I,C ).

We will end this section with one particular application of Theorem 4.6.5;
we will show that limits commute and thus can be interchanged. In the
proof we will use the fact that the category of small categories Cat is
finitely complete without proof. By Theorem 4.4.1, one can prove this by
constructing products and equalizers in Cat.
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Theorem 4.6.6. Let I, J be small categories and C be a category which
has limits of shapes I and J. Then C has limits of shape I× J and if
F : I× J→ C is a diagram then

lim
←−I×J

F ∼= lim
←−I

lim
←−J

F ∼= lim
←−J

lim
←−I

F.

Proof. Assume that I, J and C are the categories defined in the statement
of theorem. Let F : I× J→ C be a diagram. We will think of F as a
functor from I to the functor category F(J,C ).

Define the diagonal functors

∆1 : C → F(I,C ),

∆2 : F(I,C )→ F(J,F(I,C ))

and

∆3 : C → F(I× J,C ).

If A is an object in C then by Theorem 4.6.5, we have the sequence of
natural isomorphisms

HomC (A, lim
←−I

lim
←−J

F ) ∼= HomF(I,C )(∆1(A), lim
←−J

F )

∼= HomF(J,F(I,C ))((∆2 ◦∆1)(A), F )
∼= HomF(I×J,C )(∆3(A), F ).

By Theorem 4.6.5, the limit lim
←−I×J

F exists and

lim
←−I

lim
←−J

F ∼= lim
←−I×J

F.

However by interchanging the roles of I and J in the above argument, we
deduce that

lim
←−J×I

F ∼= lim
←−I

lim
←−J

F ∼= lim
←−I×J

F.

as required.

Once again, a dual result to Theorem 4.6.6 also holds.
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Theorem 4.6.7. Let I, J be small categories and C be a category which
has colimits of shapes I and J. Then C has colimits of shape I× J and if
F : I× J→ C is a diagram then

colimI×JF ∼= colimI colimJF ∼= colimJ colimIF.

In general, limits do not commute with colimits.
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Chapter 5

Adjoint pairs and (co)limits

5.1 Preservation and reflection

This chapter is dedicated to examining the interactions between adjoint
pairs of functors and limits/colimits. Our first result tells us that left
adjoint functors preserve colimits whereas right adjoint functors preserve
limits.

Theorem 5.1.1. Let C and D be categories. Let F : C → D and
G : D → C be functors such that (F,G) is an adjoint pair. Then, F
preserves colimits and G preserves limits.

Proof. Assume that C and D are categories. Assume that (F,G) is a pair
of adjoint functors. If A is an object in C and B is an object in D then we
have the bijection

τA,B : HomD(F (A), B)→ HomC (A,G(B))

which is natural in both A and B. Recall that this means that the following
diagram commutes:

HomD(F (A′), B) HomD(F (A), B) HomD(F (A), B′)

HomC (A′, G(B)) HomC (A,G(B)) HomC (A,G(B′))

F (f)∗

τA′,B

g∗

τA,B τA,B′

f∗ G(g)∗

By duality, it suffices to show that F preserves colimits. Suppose that I is a
small category and D : I→ C is a functor. Suppose that
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(
iI : D(I)→ C

)
I∈I

is a colimit of D. We claim that(
F (iI) : F (D(I))→ F (C)

)
I∈I

is a colimit of F ◦D. Note that (F (iI))I∈I is a cocone of F ◦D because
(iI)I∈I is a cocone of D. Now suppose that(

kI : F (D(I))→ T
)
I∈I

is another cocone of F ◦D. If u : I → J is a morphism in I then
kJ ◦ F (D(u)) = kI and F (D(u))∗(kJ) = kI . If we apply the bijection τD(I),T ,
we find that

τD(I),T (kI) = (τD(I),T ◦ F (D(u))∗)(kJ) = (D(u)∗ ◦ τD(J),T )(kJ)

= τD(J),T (kJ) ◦D(u).

This tells us that the collection of morphisms(
τD(I),T (kI) : D(I)→ G(T )

)
I∈I

is a cocone of D. By the universal property of the colimit, there exists a
unique morphism k̃ : C → G(T ) such that if I ∈ I then k̃ ◦ iI = τD(I),T (kI).

So, (iI)
∗(k̃) = τD(I),T (kI). By taking the inverse τ−1

D(I),T , we obtain

kI = τ−1
D(I),T (τD(I),T (kI)) = τ−1

D(I),T ((iI)
∗(k̃))

= (τ−1
D(I),T ◦ (iI)

∗)(k̃) = (F (iI)
∗ ◦ τ−1

C,T )(k̃)

= τ−1
C,T (k̃) ◦ F (iI).

So τ−1
C,T (k̃) : F (C)→ T is the desired unique morphism and consequently(

F (iI) : F (D(I))→ F (C)
)
I∈I

is a colimit of F ◦D. We conclude that F preserves colimits.

Definition 5.1.1. Let C and D be categories and F : C → D be a
functor. Let I be a small category. We say that F preserves limits if the
following statement is satisfied: If D : I→ C is a diagram and(

pI : L→ D(I)
)
I∈I
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defines a limit of D then (F (pI))I∈I is a limit of F ◦D.

We say that F reflects limits if the following statement is satisfied: If
D : I→ C is a diagram, (

qI : L→ D(I)
)
I∈I

is a cone of D and (F ◦ qI)I∈I is a limit of F ◦D then (qI)I∈I is a limit of D.

The dual definitions apply to functors preserving and reflecting colimits.

Example 5.1.1. Let C be a locally small category. Recall the Yoneda
embedding from Definition 3.1.2. Assume that I is a small category and
J : I→ C is a diagram. Let ∆ : C → F(I,C ) and ∆′ : Set→ F(I,Set) be
diagonal functors.

Let ∗ = {∗} denote the singleton set. Define the contravariant functor

HomC (J,X) : I → Set
I 7→ HomC (J(I), X)

j : I → K 7→ J(j)∗

where J(j)∗ is a map from HomC (J(K), X) to HomC (J(I), X) defined by
precomposition by J(j). Then, a morphism β : ∆′(∗)⇒ HomC (J,X) in the
functor category F(Iop,C ) is the family of morphisms(

β′I : ∗ = ∆′(∗)(I)→ HomC (J(I), X) = HomC (J,X)(I)
)
I∈I.

This is equivalent to having the family of morphisms(
βI : J(I)→ ∆(X)(I) = X

)
I∈I

in C where βI = β′I(∗). One can verify that this gives rise to the natural
isomorphism

HomF(I,C )(J,∆(X)) ∼= HomF(Iop,Set)(∆
′(∗), HomC (J,X)).

Now observe that we have the following chain of isomorphisms which are
natural in X:

HomSet(HomC (colimI J,X), ∗) ∼= HomC (colimI J,X)
∼= HomF(I,C )(J,∆(X))
∼= HomF(Iop,Set)(∆

′(∗), HomC (J,X))
∼= HomSet(lim

←−I
HomC (J,X), ∗).
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In the second line, we used the fact that (colimI,∆) form an adjoint pair of
functors (the dual result to Theorem 4.6.5). In the last line, we used
Theorem 4.6.5. From this, we conclude that

Y (X)(colimI J) = HomC (colimI J,X) ∼= lim
←−I

HomC (J,X).

The functor Y (X) from the Yoneda embedding sends colimits in C to
limits in Set. We remark that by a dual argument, the functor
HomC (X,−) ∈ F(C ,Set) preserves limits in C — it sends a limit in C to
a limit in Set.

Now will give a condition necessary for a functor to both preserve and
reflect limits. This result explains the name given to the definition below.

Definition 5.1.2. Let C ,D be categories and F : C → D be a functor.
We say that F creates limits if the following statement is satisfied: If I is
a small category, J : I→ C is a diagram and(

pI : L→ (F ◦ J)(I)
)
I∈I

is a limit of F ◦ J then there exists a limit of J(
qI : M → J(I)

)
I∈I

such that if I is an object in I then F (qI) = pI .

Theorem 5.1.2. Let C ,D be categories and F : C → D be a functor.
Assume that I is a small category and that D has all limits of shape I.
Assume that F creates limits. Then limits of shape I exist in C and F
preserves and reflects limits.

Proof. Assume that C ,D are categories and F : C → D is a functor.
Assume that I is a small category and J : I→ C is a diagram. Firstly, to
see that a limit of F exists, we have the limit lim

←−I
(F ◦ J) because D has all

limits of shape I. Since F creates limits then there exists a limit of J(
qI : lim

←−I
F → J(I)

)
I∈I

such that if I is an object in I then (F (qI))I∈I is the limit of F ◦ J . Hence
C has all limits of shape I.

Next we will show that F reflects limits. So assume that (rI : L→ J(I))I∈I
is a cone of J and (F (rI) : F (L)→ (F ◦ J)(I))I∈I is a limit of F ◦ J . By
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Theorem 4.6.1, F (L) ∼= lim
←−I

(F ◦ J) and since F creates limits, L ∼= lim
←−I

J

and the cone (rI)I∈I is a limit of J . Therefore F reflects limits.

To see that F preserves limits, let (sI : M → J(I))I∈I be a limit of J . We
want to show that (F (sI) : F (M)→ (F ◦ J)(I))I∈I is a limit of F ◦ J .
Again there exists a limit of F ◦ J given explicitly by(

pI : lim
←−I

(F ◦ J)→ (F ◦ J)(I)
)
I∈I.

Since F creates limits then there exists a limit of J(
tI : L→ (F ◦ J)(I)

)
I∈I

such that F (tI) = pI . But by uniqueness of the limit in Theorem 4.6.1,
L ∼= M and subsequently

F (M) ∼= F (L) = lim
←−I

(F ◦ J).

Therefore (F (sI))I∈I is a limit of F ◦ J and F preserves.

5.2 Limits and colimits in functor categories

If limits and colimits exist in a functor category F(C ,D) then how are they
computed? First, we remark that if the categories C and D are locally
small then it is not true in general that the functor category F(C ,D) is
also locally small. However, if we assume that C is a small category and D
is locally small then F(C ,D) is also locally small.

We begin with the following lemma.

Lemma 5.2.1. Let C and D be categories and I be a small category.
Assume that D has limits of shape I. Let limI : F(I,D)→ D be the limit
functor in Definition 4.6.1 and ∆ : D → F(I,D) be the diagonal functor in
Definition 4.6.2. Define the functors

Ψ : F(C ,D) → F(C ,F(I,D))
H 7→ ∆ ◦H

ξ : H1 ⇒ H2 7→
(
∆(ξC)

)
C∈C

and
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Φ : F(C ,F(I,D)) → F(C ,D)
G 7→ limI ◦G

η : G1 ⇒ G2 7→
(

limI(ηC)
)
C∈C

.

Then (Ψ,Φ) is an adjoint pair of functors.

Proof. Assume that Φ and Ψ are the functors defined in the statement of
the lemma. We will use Theorem 2.2.2 to show that Φ and Ψ define an
adjoint pair of functors.

We know from Theorem 4.6.5 that the pair (∆, limI) is an adjoint pair of
functors. By Theorem 2.2.1, we obtain the unit and counit of adjunction

η : idD ⇒ limI ◦∆ and ε : ∆ ◦ limI ⇒ idF(I,D)

respectively. Now define

µ : idF(C ,D) ⇒ Φ ◦Ψ and ν : Ψ ◦ Φ⇒ idF(C ,F(I,D))

in the following manner: If F ∈ F(C ,D) then µF : F ⇒ (Φ ◦Ψ)(F ) is the
natural transformation given by the family of morphisms(

µF,C = ηF (C) : F (C)⇒ (lim
I
◦∆)(F (C))

)
C∈C

If K ∈ F(C ,F(I,D)) then νK : (Ψ ◦ Φ)(K)⇒ K is the natural
transformation given by the family of morphisms(

νK,C = εK(C) : (∆ ◦ lim
I

)(K(C))⇒ K(C)
)
C∈C

.

It is a tedious exercise to check that µ and ν are natural transformations.
Now if H ∈ F(C ,F(I,D)) and C ∈ C then by Theorem 2.2.1,

(Φ(νH) ◦ µΦ(H))C = (Φ(νH))C ◦ µΦ(H),C

= (Φ(νH))C ◦ ηΦ(H)(C)

= lim
I

(νH,C) ◦ ηΦ(H)(C)

= lim
I

(εH(C)) ◦ ηlimIH(C)

= idlimIH(C).

Since C is an arbitrary object in C then

Φ(νH) ◦ µΦ(H) = idlimI ◦H = idΦ(H).
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Also if F ∈ F(C ,D) and C ∈ C then by Theorem 2.2.1,

(νΨ(F ) ◦Ψ(µF ))C = νΨ(F ),C ◦ (Ψ(µF ))C

= εΨ(F )(C) ◦∆(µF,C)

= ε∆(F (C)) ◦∆(ηF (C))

= id∆(F (C)).

Again since C is an arbitrary object in C ,

νΨ(F ) ◦Ψ(µF ) = id∆◦F = idΨ(F ).

By Theorem 2.2.2, the pair (Ψ,Φ) is an adjoint pair of functors.

Now we will describe limits in a functor category.

Theorem 5.2.2. Let C and D be categories and I be a small category.
Assume that D has limits of shape I. Let Φ be the right adjoint functor in
Lemma 5.2.1. The composite of functors

F(I,F(C ,D)) F(C ,F(I,D)) F(C ,D)
∼= Φ (5.1)

is the limit functor lim
F(C ,D)
I : F(I,F(C ,D))→ F(C ,D). Dually, if D has

colimits of shape I then F(C ,D) has colimits and hence a colimit functor.

Proof. Assume that C and D are categories. Assume that I is a small
category and D has limits of shape I. By Lemma 5.2.1, the pair of functors
(Ψ,Φ) is an adjoint pair of functors. Let

τ : F(C ,F(I,D))→ F(I,F(C ,D))

denote the isomorphism. The composite τ ◦Ψ sends a functor F : C → D
to the functor

I → F(C ,D)
i 7→

(
C 7→ (∆ ◦ F )(C)(i)

)
But (∆ ◦ F )(C)(i) = F (C) by definition of the diagonal functor ∆ in
Definition 4.6.2. We conclude that the composite τ ◦Ψ is the diagonal
functor

∆F(C ,D) : F(C ,D)→ F(I,F(C ,D))

Since (Ψ,Φ) is an adjoint pair of functors then the associated right adjoint
functor to ∆F(C ,D) is
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Φ ◦ τ−1 : F(I,F(C ,D))→ F(C ,D)

which is the composite in equation (5.1). By Theorem 4.6.5, Φ ◦ τ−1 is the

limit functor lim
F(C ,D)
I : F(I,F(C ,D))→ F(C ,D).

The dual statement for colimits is proved in a similar manner.

Example 5.2.1. The construction in Theorem 5.2.2 tells us that limits in
functor categories are computed pointwise. Here is a significant example to
demonstrate this. Let C be a small category. The category Set is finitely
complete and finitely cocomplete. By Theorem 5.2.2, the category of
(set-valued) presheaves F(C op,Set) must also admit small limits and
colimits.

Now recall the Yoneda embedding Y : C → F(C op,Set) from Definition
3.1.2. Suppose that C is a complete category and let L be a limit in C .
Then L is a colimit in C op. By Example 5.1.1, Y (L) is a limit in Set.
Therefore the Yoneda embedding preserves limits.

On the contrary, we do not expect the Yoneda embedding to preserve
colimits. Let us now analyse how it interacts with colimits. Recall the
definition of a comma category from Definition 2.3.2. Let C be a category
and F : C op → Set be a presheaf. Let X be an object in C , 1 be the
category with the single object • and 1{∗} : 1→ Set be the functor in
equation (2.6). The category (1{∗}, F )op has objects given by triples
(A, f,B) where A ∈ 1, B ∈ C and f ∈ HomSet({∗}, F (B)). Hence an
object (A, f,B) is equivalent to a pair (B, b) where B ∈ C and b ∈ F (B).

In order to describe the morphisms in (1{∗}, F )op, let us first describe them
in the comma category (1{∗}, F ). A morphism α : (A, f,B)→ (P, g,Q) in
(1{∗}, F ) is a pair (β, γ) where β ∈ Hom1(A,P ), γ ∈ HomC (B,Q) and
g ◦ 1{∗}(β) = F (γ) ◦ f . This is equivalent to a morphism γ : B → Q in C
which induces a function F (γ) : F (B)→ F (Q) which sends the specific
element f(∗) ∈ F (B) to the specific element g(∗) ∈ F (Q).

Not only is F (γ) a morphism of sets, it also maps a specific element to
another specific element. The way we make sense of this is through the
category of pointed sets.

Definition 5.2.1. The category of pointed sets, denoted by Set∗, is the
category whose objects are pairs (X, x) consisting of a set X and a point
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x ∈ X. A morphism φ : (X, x)→ (Y, y) in Set∗ is simply a morphism of
sets such that φ(x) = y.

Therefore a morphism α : (A, f,B)→ (P, g,Q) in the opposite category
(1{∗}, F )op can be thought of as a morphism γ : B → Q in C which induces
a morphism of pointed sets F (γ) : (F (Q), g(∗))→ (F (B), f(∗)). In the
statement of the following lemma, we will implicitly make use of the fact
that if C is a small category then (1{∗}, F )op is also small.

Lemma 5.2.3. Let C be a small category. Let F,G ∈ F(C op,Set) be
presheaves. Let Y : C → F(C op,Set) be the Yoneda embedding in
Definition 3.1.2,

∆ : F(C op,Set)→ F((1{∗}, F )op,F(C op,Set))

be the diagonal functor (see Definition 4.6.2) and P be the functor

P : (1{∗}, F )op → F(C op,Set)
(X ∈ C , x ∈ F (X)) 7→ Y (X).

Then there is a natural isomorphism

τF,G : HomF(C op,Set)(F,G)→ HomF((1{∗},F )op,F(C op,Set))(P,∆(G)).

Proof. Assume that C is a small category and F,G ∈ F(C op,Set) are
presheaves. Assume that ∆ and P are the functors defined as above. Let
η ∈ HomF(C op,Set)(F,G). Then η is a natural transformation from F to G.
If (X, y) is an object in the category (1∗, F )op and X ′ is an object in C
then define the morphism

ζ(X,y),X′ : P (X, y)(X ′) = HomC (X ′, X) → ∆(G)(X, y)(X ′) = G(X ′)
g 7→ G(g)(ηX(y)).

The family (ζ(X,y),X′)X′∈C yields a natural transformation
ζ(X,y) : P (X, y)⇒ ∆(G)(X, y). One can also check that this gives a natural
transformation ζ : P ⇒ ∆(G) and hence an element of the class

HomF((1{∗},F )op,F(C op,Set))(P,∆(G)).

The construction of ζ from η gives us a map

τF,G : HomF(C op,Set)(F,G)→ HomF((1{∗},F )op,F(C op,Set))(P,∆(G)).

To see that τF,G is bijective, assume that ζ : P ⇒ ∆(G) is a natural
transformation. We will show that there exists a unique η : F ⇒ G such
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that τF,G(η) = ζ.

Assume that γ : (X, y)→ (X ′, y′) is a morphism in (1{∗}, F )op. If Z is an
object in C then the following diagram in Set commutes

P (X, y)(Z) P (X ′, y′)(Z)

∆(X, y)(Z) ∆(X ′, y′)(Z)

P (γ)(Z)

ζ(X,y),Z ζ(X′,y′),Z

∆(G)(γ)(Z)

because ζ is a natural transformation. By definition of the functors P and
∆, the above diagram simplifies to

HomC (Z,X) HomC (Z,X ′)

G(Z) G(Z)

Y (γ)=γ∗

ζ(X,y),Z ζ(X′,y′),Z

idZ

where we recall that γ∗ denotes composition with γ. In the above diagram,
if we set Z = X then commutativity gives us

ζ(X,y),X(idX) = (ζ(X′,y′),Z ◦ γ∗)(idX) = ζ(X′,y′),X(γ).

In particular, the above equation holds in the set G(X). Hence if X is an
object in C then define the functions

ηX : F (X) → G(X)
y 7→ ζ(X,y),X(idX).

To see that (ηX)X∈C defines a natural transformation from F to G, let
φ : A→ B be a morphism in C op. If b ∈ F (B) then by thinking of F (φ) as
a morphism of pointed sets from (F (B), b) to (F (A), F (φ)(b)), we can think
of φ as a morphism in (1∗, F )op from (A,F (φ)(b)) to (B, b). So

(ηA ◦ F (φ))(b) = ηA(F (φ)(b))

= ζ(A,F (φ)(b)),A(idA)

= ζ(B,b),A(φ)

= G(φ) ◦ ζ(B,b),B(idB)

= (G(φ) ◦ ηB)(b).

In the second last line, we used the fact that ζ(B,b) is itself a natural
transformation from P (B, b) = Y (B) to ∆(G)(B, b) = G. We conclude that
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η is a natural transformation from F to G.

Now if g ∈ HomC (X ′, X) and (X, y) ∈ (1∗, F )op then

ζ(X,y),X′(g) = ζ(X′,F (g)(y)),X′(idX′)

= ηX′(F (g)(y))

= (ηX′ ◦ F (g))(y) = G(g)(ηX(y)).

Since g and (X, y) were arbitrary then τF,G(η) = ζ. It is also
straightforward to check that η is unique because ηX must send y to
ζ(X,y),X(idX) for the entire construction to work. This shows that τF,G is a
bijection. We omit the plethora of computations required to show that τF,G
is natural in both F and G.

We know that colimit functors are left adjoint to diagonal functors. Hence,
we have the following corollary of Lemma 5.2.3.

Corollary 5.2.4. Let C be a small category. Let F ∈ F(C op,Set) be a
presheaf. Let Y : C → F(C op,Set) be the Yoneda embedding in Definition
3.1.2,

∆ : F(C op,Set)→ F((1{∗}, F )op,F(C op,Set))

be the diagonal functor (see Definition 4.6.2) and P be the functor

P : (1{∗}, F )op → F(C op,Set)
(X ∈ C , x ∈ F (X)) 7→ Y (X).

Then we have an isomorphism

F ∼= colim(1{∗},F )opP.

Corollary 5.2.4 tells us that any presheaf is a colimit of representable
functors. We say that the functor category of presheaves F(C op,Set) is the
free cocompletion of C .

Corollary 5.2.5. Let C be a small category and D be a category which has
small colimits. Let F colim(F(C op,Set),D) be the full subcategory of functors
which preserve small colimits. Then there is an equivalence of categories

F colim(F(C op,Set),D) ∼= F(C ,D).
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Proof. Assume that C is a small category and D be a category which has
small colimits. Let F : F(C op,Set)→ D be a functor. By restricting F to
representable presheaves (see Definition 3.2.1), we obtain a functor from C
to D .

On the other hand, let G : C → D be a functor. We will define a small
colimit-preserving functor Ĝ ∈ F colim(F(C op,Set),D). If H is a presheaf
then by Corollary 5.2.4,

H ∼= colim(1{∗},H)opP

where P is the functor in Lemma 5.2.3. Now define Ĝ to be the functor

Ĝ : F(C op,Set) → D
colim(1{∗},H)opP 7→ colim(1{∗},H)op(G ◦ P ).

We remark here that the image of the functor P is the set of representable
presheaves in F(C op,Set). This means that the composite G ◦ P makes
sense.

Now we will show that Ĝ preserves small colimits. Let I be a small category
and D : I→ F(C op,Set) be a diagram of presheaves. By definition of Ĝ,

Ĝ(colimID) = colim(1{∗},colimID)op(G ◦ P ).

But if I is an object in I then we also have

colimIĜ(DI) = colimI colim(1{∗},DI)op(G ◦ P )

Both of these colimits are isomorphic. So, Ĝ preserves small colimits. Now
suppose that H ∈ F(C op,Set) is a representable presheaf. Then there
exists an object X in C such that Y (X) ∼= H. So

Ĝ(H) = Ĝ(Y (X)) = colim(1{∗},Y (X))op(G ◦ P ).

The category (1{∗}, Y (X))op has a terminal object given by the pair

(X, idX). Consequently, Ĝ(Y (X)) ∼= G(X). This means that if

ν : F(C ,D)→ F colim(F(C op,Set),D) is the map G 7→ Ĝ and
ρ : F colim(F(C op,Set),D)→ F(C ,D) is restriction to representable
presheaves then the composite

F(C ,D) F colim(F(C op,Set),D) F(C ,D)ν ρ
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is naturally isomorphic to the identity.

Now assume that F ∈ F colim(F(C op,Set),D). By Corollary 5.2.4, F is
uniquely determined on the subcategory of representable presheaves in
F(C op,Set) because every presheaf is a colimit of representable presheaves.
So the composite

F colim(F(C op,Set),D) F(C ,D) F colim(F(C op,Set),D)
ρ ν

is naturally isomorphic to the identity. This completes the proof.

5.3 Adjoint functor theorem

Recall from Theorem 5.1.1 that if F : C → D is a left adjoint functor then
it must preserve colimits. Is there a converse to this statement? In general,
even if C has small limits and F preserves colimits, a right adjoint to F
may not exist. The point of the adjoint functor theorem is that it supplies
the extra conditions on F required for it to admit a right adjoint (and
hence be a left adjoint functor).

First, we remind the reader of Definition 3.2.2 and Theorem 3.2.2, which
gives us an equivalent condition for F : C → D to have a right adjoint.
Succinctly, F has a right adjoint functor if its formal right adjoint
Gform : D → F(C op,Set) can be lifted along the Yoneda embedding.

Definition 5.3.1. Let C be a category and Y be the Yoneda embedding in
equation (3.1). We say that C is total if Y has a left adjoint, which we
denote by Y L : F(C op,Set)→ C .

Now if Q ∈ F(C op,Set) is a presheaf and P is the functor in Corollary
5.2.4 then by Corollary 5.2.4 and Theorem 5.1.1,

Y L(Q) ∼= Y L(colim(1{∗},Q)opP ) = colimx∈C , z∈P (x)Y
L(Y (x)) ∼= colimx∈C , z∈P (x)x.

Hence, a category C is total if the above colimit exists.

Example 5.3.1. Let k be a field. The categories Set and k-Vect are both
total categories.

Theorem 5.3.1 (Adjoint functor theorem V1). Let C and D be locally
small categories. Assume that C is total. Let F : C → D be a functor.
Then F preserves colimits if and only if F has a right adjoint.
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Proof. Assume that C and D are locally small categories and that C is
total. Assume that F : C → D is a functor. We know from Theorem 5.1.1
that if F is a left adjoint functor then it preserves colimits.

Conversely, assume that F preserves colimits. Let Gform : D → F(C op,Set)
be the formal right adjoint of F (see Definition 3.2.2). Since C is total then
it has a left adjoint Y L : F(C op,Set)→ C . Define the functor

G = Y L ◦Gform.

What does G do explicitly? If y is an object in D then

Gy = (Y L ◦Gform)(y) = Y L(Gform(y)) = colimx∈C , z∈HomD(Fx,y)x.

The colimit colimx∈C , z∈HomD(Fx,y)x is explicitly a family of morphisms in C
given by (

χ(x,z) : x→ Gy
)

(x,z)∈(1{∗},Gform(y))op

Hence if x is an object in C and y is an object in D then we have a family
of maps

ψ(x,y) : HomD(Fx, y) → HomC (x,Gy)
z 7→ χ(x,z).

To show: (a) ψ(x,y) is natural in both x and y.

(a) Assume that f : x1 → x2 is a morphism in C and y is an object in D . If
z ∈ HomD(Fx2, y) then

(ψ(x1,y) ◦ F (f)∗)(z) = ψ(x1,y)(z ◦ F (f))

= χ(x1,z◦F (f))

= χ(x2,z) ◦ f
= f∗(χ(x2,z))

= (f∗ ◦ ψ(x2,y))(z).

In the third line, we used the universal property of the colimit. Hence ψ(x,y)

is natural in x. Now assume that g : y1 → y2 is a morphism in D . If
z ∈ HomD(Fx, y1) then
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(G(g)∗ ◦ ψ(x,y1))(z) = G(g)∗(χ(x,z))

= G(g) ◦ χ(x,z)

= χ(x,g◦z) = ψ(x,y2)(g ◦ z)

= (ψ(x,y2) ◦ g∗)(z)

So ψ(x,y) is natural in y.

By repeating the proof of Theorem 2.2.1, we use the map ψ(x,y) to construct
a unit of adjunction η : idC ⇒ G ◦ F . Next, we want to construct a counit
of adjunction. By definition of the counit, it suffices to show that if y ∈ D
then there exists t ∈ HomD(FGy, y) such that ψ(x,y)(t) = idGy.

Observe that

HomD(FGy, y) ∼= HomD(F (colim(x,z)x), y)
∼= HomD(colim(x,z)F (x), y)
∼= lim

x∈C , z∈Hom(Fx,y)
HomD(Fx, y).

In the second line, we used the assumption that F preserves colimits. In
the final line, we used the fact that the functor Y (y) = HomD(−, y) maps
colimits in D to limits in Set.

Now if (x, z) ∈ (1{∗}, G
form(y))op then we have a family of morphisms

σ(x,z) : HomD(Fx, y) → HomD(Fx, y) = Gform(y)(x)
r 7→ z.

Now consider the composite

lim(x,z) HomD(Fx, y) lim(x,z) HomD(x,Gy) HomC (Gy,Gy).
∼=

One can check that this composite sends (σ(x,z))(x,z) to idGy. So by the
isomorphism HomD(FGy, y) ∼= lim(x,z) HomD(Fx, y), there exists
t ∈ HomD(FGy, y) such that ψ(x,y)(t) = idGy. By Theorem 2.2.2, (F,G) is
an adjoint pair of functors.

The main issue with the formulation of the adjoint functor theorem in
Theorem 5.3.1 is that generally, it is not easy to check if a given category is
total. Our next formulation of the adjoint functor theorem uses the more
palatable definition of a locally presentable category.
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Definition 5.3.2. Let C be a category. We say that C is essentially
small if there exists a small category D and an equivalence F : C → D .

For the next definition, if D is a category then we let Flex(D ,Set) be the
subcategory of F(D ,Set) of functor which preserve finite limits.

Definition 5.3.3. Let C be a locally small category. We say that C is
locally presentable if there exists an essentially small subcategory
C c ↪→ C of compact objects such that if Y : C → F(C op,Set) is the Yoneda
embedding in equation (3.1) then its restriction

Y |Flex((C c)op,Set) : C → Flex((C c)op,Set)

is an equivalence.

Example 5.3.2. We will now state some well-known examples of locally
presentable categories. The category Set is locally presentable; the
compact objects in Set are the finite sets. Similarly, if k is a field then
k-Vect is locally presentable with its compact objects being finite
dimensional k-vector spaces. The category Grp is locally presentable with
its compact objects being finitely presented groups.

In [ABLR02, Theorem 5.5], we have the following alternative
characterisation of a locally presentable category.

Theorem 5.3.2. Let C be a category. Then C is locally presentable if and
only if the following statement is satisfied: there exists an essentially small
category D and a fully faithful functor i : C ↪→ F(Dop,Set) such that i has
a left adjoint and commutes with filtered colimits.

A particular consequence of Theorem 5.3.2 is that if C is locally
presentable then the fully faithful functor i in the statement of Theorem
5.3.2 is just the embedding Flex((C c)op,Set) ↪→ F((C c)op,Set). Theorem
5.3.2 tells us that the category of presheaves F((C c)op,Set) is obtained
from C ∼= Flex((C c)op,Set) by freely adding colimits of compact objects.

Now we state and prove our second variant of the adjoint functor theorem.

Theorem 5.3.3 (Adjoint functor theorem V2). Let C be a locally
presentable category and D be a locally small category. Let F : C → D be a
functor. Then F has a right adjoint if and only if it preserves colimits.

Proof. Assume that C is a locally presentable category and D is a locally
small category. Assume that F : C → D is a functor. We know from
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Theorem 5.1.1 that if F is a left adjoint functor then it preserves colimits.

To show: (a) If F preserves colimits then F has a right adjoint.

(a) By assumption, C is a locally presentable category. So let C c denote
the subcategory of compact objects in C . Then we have a functor

G : D → F((C c)op,Set)
Y 7→

(
X 7→ HomD(F (X), Y )

)
.

If Y is an object in D then the functor G(Y ) preserves finite limits because
F preserves colimits in C (which are limits in the opposite category).
Therefore the image of G is the subcategory Flex((C c)op,Set) which is
equivalent to C by the definition of local presentability.

By Lemma 3.1.1, if X is an object in C c, Z is an object in D and Y is the
Yoneda embedding in equation (3.1) then

HomD(F (X), Z) = G(Z)(X) ∼= Y |Flex((C c)op,Set)(G(Z))(X) = HomC (X,G(Z)).

To see that the above bijection holds for any X ∈ C , first note that if X is
an object in C then it is a colimit of compact objects because C is locally
presentable. Now F preserves colimits and the presheaf G(Z) is a colimit of
representable functors by Corollary 5.2.4, which also preserve colimits in C
(see Example 5.1.1). Together, this demonstrates that the bijection
HomC (F (X), Z) ∼= HomD(X,G(Z)) holds for arbitrary objects X ∈ C and
Z ∈ D as required.

The most general form of the adjoint functor theorem is attributed to Freyd
and makes use of Theorem 2.3.2. Recall that if F : C → D is a functor and
1 is the category with a single object ∗ then F has a right adjoint functor if
and only if the following statement is satisfied: If X is an object in D and
1X is the functor defined in equation (2.6) then the comma category (F,1X)
has a terminal object, which we know is a limit of the empty diagram.

However, we can also express this terminal object as a colimit over the
identity functor. This colimit is not small unless the category itself is small.
The point here is that we can construct this terminal object of (F,1X) if we
reduce the colimit to a small colimit. The way this is done is to play
around with the set-theoretic issues which arise. This leads to the definition
of the solution set condition.
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Definition 5.3.4. Let C be a category. We say that C satisfies the
solution set condition if there exist a (small) set I and a family of
objects {ci}i∈I in C such that if x ∈ C then there exists i ∈ I such that
HomC (x, ci) 6= ∅.

Theorem 5.3.4. Let C be a locally small category with small colimits (a
locally small, cocomplete category). Then C has a terminal object if and
only if it satisfies the solution set condition.

Proof. Assume that C is a locally small category with small colimits.

To show: (a) If C has a terminal object then C satisfies the solution set
condition.

(b) If C satisfies the solution set condition then it has a terminal object.

(a) Assume that ∗ is a terminal object in C . If X is an object in C then
HomC (X, ∗) 6= ∅ because it contains the terminal map from X to ∗. The
set {∗}, together with the family of objects {∗} in C , demonstrates that C
satisfies the solution set condition.

(b) Assume that C satisfies the solution set condition with the set I and
the family of objects {Ci}i∈I in C . Since C is cocomplete, let W be the
coproduct

W =
∐
i∈I

Ci.

Since C is a locally small category, the class HomC (W,W ) is actually a set.
Now let W be the small category with one object and the same number of
morphisms (on the single object) as elements in HomC (W,W ). We have a
diagram D : W→ C which maps the single object in W to W . Let

C = colimWD

The object C in C can be thought of as the coequalizer of all the morphisms
from W to W . We claim that C is in fact the terminal object in C .

First we make use of the fact that W is a coproduct and C is a
“coequalizer”. Let X be an object in C . Then there exists i(X) ∈ I and a
morphism fX : X → Ci(X) because C satisfies the solution set condition. If
i ∈ I then let pi : Ci → W be the morphism associated to the coproduct W .
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Let q : W → C be the morphism associated to the colimit C = colimWD.
By composing, we obtain a morphism

X Ci(X) W C.
fX pi(X) q

Now, we will show that this is the unique element in HomC (X,C). To this
end, assume that f, g ∈ HomC (X,C). Let h = coeq(f, g) : C → P be the
coequalizer of f and g. By the same construction as before, we have a
morphism fP : P → Ci(P ) and subsequently the composite

W C P Ci(P ) W.
q h fP pi(P )

Now apply the universal property of the colimit C to the above composite
and idW . We find that

q = q ◦ (pi(P ) ◦ fP ◦ h ◦ q).

Since q is a “coequalizer” then it is a epimorphism in C (one can check this
directly) and consequently

idC = (q ◦ pi(P ) ◦ fP ) ◦ h.

Composing both sides with h and then using the fact that h = coeq(f, g) is
an epimorphism in C , we deduce that idP = h ◦ (q ◦ pi(P ) ◦ fp). So
h = coeq(f, g) is an isomorphism and thus, f = g. We conclude that if X is
an object in C then HomC (X,C) has a unique element and C is a terminal
object in C as required.

The condition in Theorem 5.3.4 should remind us of the terminal object
charactersation of an adjoint pair of functors in Theorem 2.3.2. As a result,
the third and most general form of the adjoint functor theorem we will
state and prove should not be too surprising.

Theorem 5.3.5 (Adjoint functor theorem V3). Let C and D be locally
small categories. Assume that C is also cocomplete (has small colimits).
Let F : C → D be a functor. Then F has a right adjoint if and only if the
following statement is satisfied: F preserves colimits and if X is an object
in D then the comma category (F,1X) (see equation (2.6)) satisfies the
solution set condition.

Proof. Assume that C and D are locally small categories, with C being
cocomplete. Assume that F : C → D is a functor. Firstly, assume that F
has a right adjoint and is hence a left adjoint functor. Assume that X is an
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object in D . By Theorem 5.1.1, F preserves colimits and by Theorem 2.3.2,
the comma category (F,1X) has a terminal object. By definition of the
solution set condition, (F,1X) satisfies the solution set condition (see part
(a) of the proof of Theorem 5.3.4).

Conversely, assume that F preserves colimits and that if X is an object in
D then the comma category (F,1X) satisfies the solution set condition. By
Theorem 5.3.4 and Theorem 2.3.2, it suffices to show that if X is an object
in D then (F,1X) has colimits. By Theorem 4.5.2, it suffices to show that
(F,1X) has coequalizers and arbitrary coproducts.

By Definition 2.3.2, the comma category (F,1X) is the category whose
objects are pairs (A, f) where A is an object in C and f ∈ HomD(F (A), X).
A morphism α : (A, f)→ (A′, g) is simply a morphism α : A→ A′ in C
which satisfies g ◦ F (α) = f . Hence, we have the projection functor

P : (F,1X) → C
(A, f) 7→ A

α : (A, f)→ (A′, g) 7→ α : A→ A′

In order to show that (F,1X) has coequalizers and arbitrary coproducts, it
suffices to show that P creates colimits by the dual result to Theorem 5.1.2.
By Theorem 4.5.2, it suffices to show that P creates coequalizers and
arbitrary coproducts.

First, we will show that P creates arbitrary coproducts. Assume that I is a
small category with no non-identity morphisms and that we have a family
{(Ai, fi)}i∈I of objects in (F,1X). Let c = ti∈IAi be the coproduct of
{Ai}i∈I in C . Since F preserves colimits, F (c) = ti∈IF (Ai) is a coproduct
in D . By invoking its universal property, there exists a unique morphism
g : F (c)→ X such that if i ∈ I then the following diagram commutes:

F (Ai) F (c)

X

ιF (Ai)

fi

g

From this, it is straightforward to show that (c, g) ∈ (F,1X) is the
coproduct of {(Ai, fi)}i∈I by using the fact that c itself is a coproduct in C .
Noting that P ((c, g)) = c, we deduce that P creates arbitrary coproducts.
By a similar argument, P also creates coequalizers, completing the
proof.
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Example 5.3.3. Here is an application of the dual result to Theorem 5.3.5
for limits. Let F : Grp→ Set. We will show that its associated left adjoint
exists (the free group functor). First observe that Grp is a cocomplete
category and that both Grp and Set are locally small categories. It is also
easy to check that the forgetful functor F preserves limits.

By the dual result to Theorem 5.3.5, it suffices to show that if X is a set
then the comma category (1X , F ) satisfies the solution set condition. The
objects in this category are pairs (G, φ) where G is a group and
φ : X → F (G) is a morphism of sets. So let (G, φ) be an object in (1X , F ).
The morphism of sets φ : X → F (G) factors through the subgroup of G
generated by the set {φ(x) | x ∈ X}. Note that the cardinality of the
subgroup must be bounded in terms of the cardinality of X.

Following this observation, we let I be the set of representatives of each
isomorphism class of these subgroups. If (G, φ) ∈ (1X , F ) then we take the
representative Rφ associated to the isomorphism class of the subgroup
〈{φ(x) | x ∈ X}〉 of G. If ιφ is a group isomorphism from 〈{φ(x) | x ∈ X}〉
to Rφ and rφ : X → F (Rφ) satisfies F (ιφ) ◦ φ = rφ then

Hom(1X ,F )((G, φ), (Rφ, rφ)) 6= ∅

Therefore (1X , F ) satisfies the solution set condition and the left adjoint to
F must exist.
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Chapter 6

Monads

6.1 Motivation and definitions

There is a large amount of data to keep track of in a category (objects,
morphisms, composition) and in some cases, it is difficult to understand,
especially in the case where the category in question is not constructed in
an explicit manner; for instance by a universal property. In this chapter, we
will study the Barr-Beck theorem, which realises certain categories as
categories of modules. The effect of this is that in order to understand the
entire category, one only needs to understand the simpler category of
modules and the algebra which acts on it. The algebra acting on it is called
a monad, the central object of study in this chapter.

Let us begin by defining a monad.

Definition 6.1.1. Let C be a category. A monad acting on C is a triple
(T, µ, η) consisting of the following data:

1. A functor T : C → C .

2. A natural transformation µ : T ◦ T ⇒ T called multiplication,

3. A natural transformation η : idC ⇒ T called a unit.

Furthermore, the multiplication and unit must satisfy the following
conditions:

1. Associativity: The following diagram commutes:
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T ◦ T ◦ T T ◦ T

T ◦ T T

id◦µ

µ◦id µ

µ

2. Unit: The following diagrams commute:

T ◦ idC T ◦ T

T

id◦η

=
µ

idC ◦ T T ◦ T

T

η◦id

=
µ

In Definition 6.1.1, one is essentially imposing the conditions of a monoid
on an element T ∈ F(C ,C ). We remark here that Definition 6.1.1 is very
similar to that of an internal monoid. In the definition of an internal
monoid, one takes an element A of a finitely complete category D and
imposes the conditions of a monoid on it. As one would expect,
multiplication is a morphism m : A× A→ A and the unit is a morphism
e : ∗ →M where ∗ is the terminal object in D . See [Bou17, Section 2.1] for
more information on internal monoids.

Example 6.1.1. Let A be a unital associative algebra. The tensor functor

T : C-Vect → C-Vect
V 7→ A⊗ V

is a monad. The multiplication and the unit in this case arise from the
multiplication map and the multiplicative unit in the algebra A
respectively. Since A was conveniently assumed to be unital and associative
then the multiplication and the unit must satisfy the properties outlined in
the definition of a monad.

As usual, we can dualise the notion of a monad.

Definition 6.1.2. Let C be a category. A comonad acting on C is a
triple (T,∆, ε) consisting of the following data:
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1. A functor T : C → C .

2. A natural transformation ∆ : T ⇒ T ◦ T called comultiplication,

3. A natural transformation ε : T ⇒ idC called a counit.

Furthermore, the comultiplication and counit must satisfy the following
conditions:

1. Coassociativity: The following diagram commutes:

T T ◦ T

T ◦ T T ◦ T ◦ T

∆

∆ ∆◦id

id◦∆

2. Counit: The following diagrams commute:

T T ◦ T

T ◦ idC

∆

= id◦ε

T T ◦ T

idC ◦ T

∆

= ε◦id

By definition, it is easy to see that comonads on a category C are monads
on the opposite category C op. The next result provides us with a plentiful
supply of monads and comonads and links the theory to adjoint pairs of
functors.

Theorem 6.1.1. Let C and D be categories and F : C → D and
G : D → C be functors. Suppose that the pair (F,G) is an adjoint pair of
functors. Then F ◦G has the structure of a comonad on D and G ◦ F has
the structure of a monad on C .

Proof. Assume that C and D are categories. Assume that F : C → D and
G : D → C are functors such that (F,G) is an adjoint pair of functors. We
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will show that G ◦ F : C → C has the structure of a monad on C .

Since (F,G) is an adjoint pair then by Theorem 2.2.2, we have the unit of
adjunction η : idC ⇒ G ◦ F and the counit of adjunction ε : F ◦G⇒ idD .
Using the counit of adjunction, we obtain a natural transformation

µ = idG ◦ ε ◦ idF : G ◦ (F ◦G) ◦ F ⇒ G ◦ F.
We claim that the triple (G ◦ F, η, µ) is a monad on C . To see that
associativity holds, first observe that we have the following commutative
diagram:

FGFG FG

FG idD

idF◦G◦ε

ε◦idF◦G ε

ε

(6.1)

To see that the above diagram is commutative, it suffices to check it on an
arbitrary object X ∈ D . The resulting diagram in the category D is
commutative because ε is a natural transformation.

Now take the diagram in equation (6.1), precompose with F and compose
with G. We obtain the following commutative diagram:

GFGFGF GFGF

GFGF GF

idGFG◦ε◦idF

ε◦idF◦G idFG◦ε

idG◦ε◦idF

Hence associativity is satisfied. To see that the unit properties are satisfied,
we compute directly that if Y is an object in C then

(µ ◦ (idG◦F ◦ η))((G ◦ F )(Y )) = (idG ◦ ε ◦ idF ) ◦ (idG◦F ◦ η)((G ◦ F )(Y ))

= (idG ◦ ε ◦ idF ) ◦ ηGF (Y )

= G(εY ) ◦ ηGF (Y ) = idGF (Y ).

The last line utilises one of the two properties satisfied by η and ε in
Theorem 2.2.2. Similarly, if Y is an object in C then

(µ ◦ (η ◦ idG◦F ))((G ◦ F )(Y )) = (idG ◦ ε ◦ idF ) ◦ (η ◦ idG◦F )((G ◦ F )(Y ))

= (idG ◦ ε ◦ idF ) ◦ ηGF (Y )

= G(εY ) ◦ ηGF (Y ) = idGF (Y ).
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Hence, the unit properties in Definition 6.1.1 are satisfied and the triple
(G ◦ F, η, µ) is a monad on C . Defining a comonad structure on F ◦G
proceeds via a very similar argument.

6.2 Algebras over a monad

Just like how one can study a module over a monoid, one can define and
study the analogous notion of an algebra over a monad.

Definition 6.2.1. Let C be a category and (T, η, µ) be a monad over C .
An algebra over T is a pair (X,αX) consisting of the following data:

1. An object X in C ,

2. A morphism αX : T (X)→ X in C .

Moreover, the pair (X,αX) must satisfy the following two properties:

1. Associativity: The following diagram in C commutes:

T 2(X) T (X)

T (X) X

T (αX)

µX αX

αX

2. Unit: We have the equality

idX = αX ◦ ηX .

Definition 6.2.2. Let C be a category and (T, η, µ) be a monad over C .
The category of T -algebras in C , denoted by AlgT (C ), is the category
whose objects are algebras over T . If (X,αX) and (Y, αY ) are objects in
AlgT (C ) then a morphism f : (X,αX)→ (Y, αY ) is simply a morphism
f : X → Y in C which makes the following diagram in C commute:

T (X) X

T (Y ) Y

αX

T (f) f

αY
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Dually, we also have the notion of a coalgebra over a comonad.

Definition 6.2.3. Let C be a category and (T,∆, ε) be a comonad over C .
A coalgebra over T is a pair (X, βX) consisting of the following data:

1. An object X in C ,

2. A morphism βX : X → T (X) in C .

Moreover, the pair (X,αX) must satisfy the following two properties:

1. Coassociativity: The following diagram in C commutes:

X T (X)

T (X) T 2(X)

βX

βX ∆X

T (βX)

2. Counit: We have the equality

idX = εX ◦ βX .

Definition 6.2.4. Let C be a category and (T,∆, ε) be a comonad over C .
The category of T -coalgebras in C , denoted by CoAlgT (C ), is the
category whose objects are coalgebras over T . If (X, βX) and (Y, βY ) are
objects in CoAlgT (C ) then a morphism f : (X, βX)→ (Y, βY ) is simply a
morphism f : X → Y in C which makes the following diagram in C
commute:

X T (X)

Y T (Y )

βX

f T (f)

βY

Example 6.2.1. Recall from Example 6.1.1 that if A is a unital associative
algebra then the tensor functor

T : C-Vect → C-Vect
V 7→ A⊗ V

is a monad over the category C-Vect. The category AlgT (C-Vect) turns
out to be equivalent to the category A-Alg of A-algebras.
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Example 6.2.2. Let X be a set and X∗ be the set of finite length words
whose letters are in X. The functor

W : Set → Set
X 7→ X∗

turns out to be a monad. If X is a set then we have a map

µX : (W ◦W )(X) → W (X)
w1w2 . . . wn 7→ w1 . . . wn

given simply by concatenation of words. A word whose letters are
themselves words from X is still a word in X. The family (µX)X∈Set
endows W with multiplication µ : W ◦W ⇒ W .

We also have a map ηX : X → W (X) which is the inclusion X ↪→ X∗,
thinking of X as one letter words. The family of maps (ηX)X∈Set endows W
with the unit η : idSet ⇒ W . It is straightforward to check that the triple
(W,µ, η) is a monad over Set.

Now what is an algebra over the monad W? By definition, it is a pair
(X,αX) where X is a set and αX : W (X)→ X is a morphism of sets
satisfying associativity and the unit properties. To be clear, this means that

αX ◦ µX = αX ◦W (αX) and idX = αX ◦ ηX .
From this, the algebra (X,αX) is simply the free monoid on X (see
Definition 1.2.5).

The next theorem reveals that a (co)monad is always part of an adjunction.

Theorem 6.2.1. Let C be a category and (T, µ, η) be a monad over C .
Then the forgetful functor F : AlgT (C )→ C has a left adjoint
G : C → AlgT (C ) and the monad F ◦G from Theorem 6.1.1 is naturally
isomorphic to T .

Dually, let (U,∆, ε) be a comonad over C . Then the forgetful functor
F ′ : CoAlgU(C )→ C has a right adjoint G′ and the comonad F ′ ◦G′ from
Theorem 6.1.1 is naturally isomorphic to U

Proof. Assume that C is a category and (T, µ, η) is a monad over C . Define
the functor

G : C → AlgT (C )
X 7→ (T (X), µX).
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The pair (T (X), µX) is an algebra over T by definition. If X is an object in
C then (F ◦G)(X) = T (X). Thus it remains to show that the functor G is
the desired left adjoint to the forgetful functor F : AlgT (C )→ C .

To this end, assume that X is an object in C and (A,αA) is a T -algebra.
We will show that there is a natural isomorphism

HomAlgT (C )(G(X), A) ∼= HomC (X,F (A)).

Let φ : (T (X), µX)→ (A,αA) be a morphism of T -algebras. This is simply
a morphism φ : T (X)→ A in C which makes the following diagram in C
commute:

T 2(X) T (X)

T (A) A

µX

T (φ) φ

αA

By using the unit property in Definition 6.1.1, we find that

φ = αA ◦ T (f) ◦ T (ηX).

In particular, φ is uniquely determined by the composite

X T (X) A
ηX f

which is a morphism in C from X to F (A,αA) = A. Consequently

HomAlgT (C )(G(X), A) ∼= HomC (X,F (A))

and the pair (G,F ) is an adjoint pair of functors. The dual argument
proves the second part of the theorem.

6.3 (Co)monadic functors and the

Barr-Beck theorem

Let F : C → D and G : D → C be functors such that (F,G) is an adjoint
pair of functors. By Theorem 6.1.1, T = G ◦ F is a monad over C and
S = F ◦G is a comonad over D .

Let η : idC ⇒ G ◦ F and ε : F ◦G⇒ idD be the unit and counit of
adjunction respectively. Define the functors
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Genh : D → AlgT (C )
Y 7→ (G(Y ), G(εY ))

(6.2)

and

Fenh : C → CoAlgS(D)
Z 7→ (F (Z), F (ηZ)).

(6.3)

A few lengthly but simple computations are required to show that the
functors in equation (6.2) and equation (6.3) are well-defined functors.

Definition 6.3.1. Let C and D be categories and G : D → C be a functor.
We say that G is monadic if the following two statements are satisfied:

1. G has a left adjoint F : C → D .

2. If T = G ◦ F is the associated monad to the adjoint pair (F,G) (see
Theorem 6.1.1) and Genh : D → AlgT (C ) is the functor in equation
(6.2) then Genh is an equivalence.

Definition 6.3.2. Let C and D be categories and F : C → D be a functor.
We say that F is comonadic if the following two statements are satisfied:

1. F has a right adjoint G : D → C .

2. If S = F ◦G is the associated comonad to the adjoint pair (F,G) (see
Theorem 6.1.1) and Fenh : C → CoAlgS(D) is the functor in equation
(6.3) then Fenh is an equivalence.

The main result of this section is the Barr-Beck theorem which gives
necessary and sufficient conditions for a functor to be monadic. In order to
understand the statement of the Barr-Beck theorem, we will now deal with
the necessary prerequisites.

Lemma 6.3.1. Let C be a category and I be a small category. Let (T, µ, η)
be a monad over C and F : AlgT (C )→ C be the forgetful functor. Then

1. F creates limits,

2. If T preserves colimits of shape I then F reflects colimits of shape I.
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Proof. Assume that (T, µ, η) is a monad over C and that F : AlgT (C )→ C
is the forgetful functor.

To show: (a) F creates limits.

(a) Assume that J : I→ AlgT (C ) is a diagram and that the family of
morphisms (

pI : L→ (F ◦ J)(I)
)
I∈I

is a limit of F ◦ J . We have to show that there is a limit of J which maps
to the above limit via F . Assume that I is an object in I. Then J(I) is a
T -algebra with associated morphism αJ(I) : T (J(I))→ J(I). Now consider
the composite

qI = αJ(I) ◦ T (pI) : T (L)→ (F ◦ J)(I).

The family of morphisms (qI)I∈I defines a cone on F ◦ J . By the universal
property of the limit, there exists a unique morphism αL : T (L)→ L such
that the following diagram in C commutes:

T (L) L

T ((F ◦ J)(I)) (F ◦ J)(I)

αL

T (pI) pI

αJ(I)

(6.4)

Now we will show that the pair (L, αL) is a T -algebra. To see that (L, αL)
satisfies the associativity property in Definition 6.2.1, we observe that if I is
an object in I then

pI ◦ (αL ◦ T (αL)) = αJ(I) ◦ T (pI) ◦ T (αL) (by diagram (6.4))

= αJ(I) ◦ T (pI ◦ αL)

= αJ(I) ◦ T (αJ(I) ◦ T (pI)) (by diagram (6.4))

= (αJ(I) ◦ T (αJ(I))) ◦ T 2(pI)

= αJ(I) ◦ µJ(I) ◦ T 2(pI) (by Definition 6.2.1)

= αJ(I) ◦ T (pI) ◦ µL (naturality of µ)

= pI ◦ (αL ◦ µL).

By Lemma 4.6.3, αL ◦ T (αL) = αL ◦ µL and associativity is satisfied. To see
that the unit property in Definition 6.2.1 is satisfied,
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pI ◦ (αL ◦ ηL) = αJ(I) ◦ (T (pI) ◦ ηL) (by diagram (6.4))

= αJ(I) ◦ (ηJ(I) ◦ pI) (by naturality of η)

= pI = pI ◦ idL. (by Definition 6.2.1)

By Lemma 4.6.3, (L, αL) satisfies the unit property and hence, is a
T -algebra. To see that (L, αL) is a limit of J , first observe that by
commutativity of diagram (6.4), we have a family of morphisms(

pI : (L, αL)→ (J(I), αJ(I)) = J(I)
)
I∈I

Now suppose that we have another cone over J :(
qI : (X,αX)→ J(I)

)
I∈I

By the universal property of the limit (pI)I∈I in C , there exists a unique
morphism ψ : X → L in C such that if I is an object in I then pI ◦ ψ = qI .
So

pI ◦ ψ ◦ αX = qI ◦ αX

= αJ(I) ◦ T (qI) (by Definition 6.2.1)

= αJ(I) ◦ T (pI) ◦ T (ψ)

= pI ◦ αL ◦ T (ψ). (by diagram (6.4))

By Lemma 4.6.3, ψ ◦αX = αL ◦ T (ψ) and ψ is a morphism in AlgT (C ) from
(X,αX) to (L, αL). Therefore (pI)I∈I is a limit of J which is obviously sent
to the limit (pI)I∈I of F ◦ J via F . So F creates limits thereby proving part
(a).

Now assume that T preserves colimits of shape I. Let C = colimI(F ◦ J) be
the colimit associated to F ◦ J . The composite

T (colimI(F ◦ J)) colimI

(
T ◦ (F ◦ J)

)
colimI(F ◦ J)

∼= colimI(α
J(−))

supplies the necessary structure to turn C into a T -algebra. This requires
computations we will omit here. By the universal property of the colimit
applied to C, we deduce that C is also a colimit of J in AlgT (C ). Hence F
reflects colimits of shape I. This completes the proof.
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Next, we define the notion of a conservative functor.

Definition 6.3.3. Let C and D be categories and F : C → D be a
functor. We say that F is conservative if the following statement is
satisfied: If f is a morphism in C and F (f) is an isomorphism in D then f
is an isomorphism in C .

Example 6.3.1. Let k be a field. Then the forgetful functors
k-Vect→ Set and Grp→ Set are conservative functors.

Example 6.3.2. It is well-known that the category of groups Grp satisfies
the short five lemma (see [Wei94, Exercise 1.3.3]). The notion of a
protomodular category generalises this. A finitely complete category with a
zero object is said to be protomodular if it satisfies a weaker version of the
short five lemma, called the split short five lemma (see [BB04, Definition
3.1.1]).

In [BB04, Proposition 3.1.2], an equivalent characterisation for a finitely
complete category with zero object C to be protomodular is proved, which
states that the inverse image functor (or base change functor in [Bou17])
associated to an arbitrary morphism in C is conservative. Here are a few
examples of protomodular categories: Grp, Ab, abelian categories and
Grp(Top); the category of topological groups. By the characterisation in
[BB04, Proposition 3.1.2], these examples of protomodular categories give
rise to a plentiful supply of conservative functors. For more information on
protomodular categories, consult [Bou17] and [BB04, Chapter 3].

The following lemma examines what happens when conservative functors
have left/right adjoints.

Lemma 6.3.2. Let C and D be categories and F : C → D be a
conservative functor. If F has a fully faithful left adjoint or a fully faithful
right adjoint then F is an equivalence of categories.

Proof. Assume that F : C → D is a conservative functor which has a fully
faithful left adjoint G : D → C . Let

η : idD ⇒ F ◦G and ε : G ◦ F ⇒ idC

be the unit and counit of adjunction associated to the adjoint pair (G,F ).
Since G is fully faithful then η is a natural isomorphism. To see that F is
an equivalence of categories, it suffices to show that the counit ε is also a
natural isomorphism.
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To this end, assume that X is an object in C . Using Theorem 2.2.1, we
observe that the composite

F (X) FGF (X) F (X)
ηF (X) F (εX)

is equal to the identity morphism idF (X). Since ηF (X) is an isomorphism
then F (εX) is an isomorphism in D . Since F is a conservative functor then
εX is an isomorphism in C and ε is a natural isomorphism. Consequently,
F is an equivalence of categories as required. An analogous argument
proves that F is an equivalence if it admits a fully faithful right adjoint.

Next, we will define the notion of a fork, which is closely related to the
notion of a coequalizer.

Definition 6.3.4. Let C be a category. A fork is a diagram in C

X Y Z
f

g

q
(6.5)

In other words, a fork is a cocone of a diagram D : I→ C where I is the
small category

• •

We say that the fork in equation (6.5) is split if there exist morphisms
s : Z → Y and t : Y → X in C such that

q ◦ s = idZ , f ◦ t = idY and g ◦ t = s ◦ q.

It is straightforward to check that a split fork is a coequalizer. This leads
us to the next definition.

Definition 6.3.5. Let C be a category and f, g : X → Y be morphisms in
C . We say that the pair (f, g) is a split pair if the coequalizer
q = coeq(f, g) exists and the resulting fork

X Y Z
f

g

q

is split.

Definition 6.3.6. Let C and D be categories and F : C → D be a
functor. Let f, g be morphisms in C . We say that the pair (f, g) is F -split
if the pair of morphisms (F (f), F (g)) in D is a split pair.
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The point of the above definitions is that monads give rise to examples of
split pairs.

Example 6.3.3. Let C be a category and (T, µ, η) be a monad over C . Let
(X,αX) be a T -algebra. We claim that the pair (µX , T (αX)) is a split pair.
By the associativity property in Definition 6.2.1, we have a fork

T 2(X) T (X) X
µX

T (αX)

αX

To see that this fork is split, note that we have the morphisms

ηX : X → T (X) and ηT (X) : T (X)→ T 2(X).

By Definition 6.2.1, we have idX = αX ◦ ηX . By Definition 6.1.1,
idT (X) = µX ◦ ηT (X). Finally,

T (αX) ◦ ηT (X) = ηX ◦ αX

because η : idC ⇒ T is a natural transformation.

Example 6.3.4. Now let C and D be categories and F : C → D and
G : D → C be functors such that (F,G) is an adjoint pair. Let Y be an
object in D and ε : F ◦G⇒ idD be the counit of adjunction. Then we have
a fork

FGFG(Y ) FG(Y ) Y
εFG(Y )

FG(εY )

εY

If we apply the functor G to the above fork, we obtain another fork

GFGFG(Y ) GFG(Y ) G(Y )
G(εFG(Y ))

GFG(εY )

G(εY )

Now recall from Theorem 6.1.1 that the triple (G ◦ F, η, ζ) is a monad over
C where ζ is the natural transformation

ζ = idG ◦ ε ◦ idF : G ◦ (F ◦G) ◦ F ⇒ G ◦ F.
Hence by the previous example (Example 6.3.3), the above fork is split.
Therefore the pair (εFG(Y ), FG(εY )) is G-split.

Now we have arrived at the main theorem of this chapter.

Theorem 6.3.3 (Barr-Beck). Let C and D be categories and G : D → C
be a functor. Then G is a monadic functor if and only if the following
statements are satisfied:
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1. G has a left adjoint,

2. G is a conservative functor,

3. If (f, g) is a G-split pair of morphisms in D then it has a coequalizer
coeq(f, g) and G(coeq(f, g)) = coeq(G(f), G(g)).

Proof. Assume that C and D are categories and that G : D → C is a
functor. First assume that G is a monadic functor. By definition of a
monadic functor, G has a left adjoint F : C → D .

To show: (a) G is conservative.

(b) If (f, g) is a G-split pair of morphisms in D then the coequalizer
coeq(f, g) exists.

(c) G(coeq(f, g)) = coeq(G(f), G(g)).

(a) Let T = G ◦ F be the associated monad to the adjoint pair (F,G) (see
Theorem 6.1.1). Let Genh : D → AlgT (C ) be the functor defined in
equation (6.2). Since G is a monadic functor then Genh is an equivalence.

Now let FC : AlgT (C )→ C be the forgetful functor. By equation (6.2),

FC ◦Genh = G.

Now since Genh is an equivalence, G is conservative if and only if FC is
conservative. So, we will show that FC is a conservative functor. To this
end, assume that (X,αX) and (Y, αY ) are objects in AlgT (C ) and
f : (X,αX)→ (Y, αY ) is a morphism in AlgT (C ). Then f is a morphism in
C from X to Y satisfying

f ◦ αX = αY ◦ T (f).

Suppose further that f = FC (f) is an isomorphism in C . Then

f ◦ (f−1 ◦ αY ) = αY = (αY ◦ T (f)) ◦ T (f)−1 = f ◦ (αX ◦ T (f)−1).

Since f is an isomorphism then f is a monomorphism and consequently,
f−1 ◦ αY = αX ◦ T (f)−1. So f−1 defines a morphism of T -algebras from
(Y, αY ) to (X,αX) which is inverse to f ∈ AlgT (C ). Thus, f is an
isomorphism in AlgT (C ) and the forgetful functor FC is a conservative

123



functor.

(b) Assume that (f, g) is a G-split pair of morphisms in D from X to Y .
Then the pair (G(f), G(g)) in C is a split pair. Let h : G(Y )→ A be the
coequalizer of (G(f), G(g)). Then the fork in C

G(X) G(Y ) A
G(f)

G(g)

h

is split, which means that there exist morphisms s : A→ G(Y ) and
t : G(Y )→ G(X) in C such that

h ◦ s = idA, G(f) ◦ t = idG(Y ) and G(g) ◦ t = s ◦ h.

The idea is to apply the functor Genh to the pair (f, g). Let ε : F ◦G⇒ idD

be the counit of adjunction associated to the adjoint pair (F,G). By
equation (6.2),

Genh(X) = (G(X), G(εX)) and Genh(Y ) = (G(Y ), G(εY )).

We also have two morphisms of T -algebras Genh(f) and Genh(g). The claim
here is that A ∈ C is actually a T -algebra and that h : G(Y )→ A is a
morphism of T -algebras.

To show: (ba) A is a T -algebra.

(bb) h : G(Y )→ A is a morphism of T -algebras.

(ba) Define the morphism αA : T (A)→ A by the composite

T (A) T (G(Y )) G(Y ) A.
T (s) G(εY ) h

We claim that (A,αA) is a T -algebra. To see that associativity is satisfied,
consider the following diagram in C :

124



T 2(A) T 2(G(Y )) T (G(Y )) T (A)

T (G(Y )) T (G(X)) T (G(Y ))

G(X) G(Y )

T (A) T (G(Y )) G(Y ) A

µA

T 2(s)

µG(Y )

T (G(εY ))

T (G(εY )) T (h)

T (t) T (s)

G(εY )

T (G(f))

T (G(g))

G(εX) G(εY )

G(g)

G(f) h

T (s) G(εY ) h

(6.6)
We want to show that the outer square in diagram (6.6) is commutative.
The point here is that by the properties of split forks, T -algebras and
naturality of the multiplication map µ : T 2 ⇒ T , every subdiagram of
diagram (6.6) commutes. Thus, the outer square of diagram (6.6)
commutes and αA satisfies associativity. By another diagram chase, every
subdiagram of the diagram below

A T (A)

G(Y ) T (G(Y ))

A G(Y )

ηA

s T (s)

ηG(Y )

h G(εY )

h

commutes. Recall that η : idC ⇒ T = G ◦ F is not only the unit associated
to the monad T over C — it is also the unit of adjunction associated to the
adjoint pair (F,G) (see Theorem 6.1.1). Note that in the context of the
above diagram, G(εY ) ◦ ηG(Y ) = idG(Y ). The top square commutes by
naturality of η. Commutativity of the outer square tells us that (A,αA)
satisfies the unit property and is therefore a T -algebra.

(bb) By examining the rectangle formed by the last two columns of
diagram (6.6), we deduce that h is a morphism of T -algebras from
(G(Y ), G(εY )) to (A,αA).

(b) We now claim that h is the coequalizer of the pair (Genh(f), Genh(g)) in
AlgT (C ). Assume that (W,αW ) is a T -algebra and that e′ : G(Y )→ W is a
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morphism in C satisfying e′ ◦G(f) = e′ ◦G(g). Since h is the coequalizer of
the pair (G(f), G(g)) then there exists a unique morphism j : A→ W in C
such that e′ = j ◦ h.

It remains to show that j is a morphism of T -algebras. Consider the
following diagram in C :

T (A) T (G(Y )) G(Y ) A

T (W ) W G(Y )

T (s) G(εY )

T (e′)

h

e′ s

αW e′

We want to show that j ◦αA = αW ◦ T (j). The morphism αA is the top row
of the above diagram. Observe that since h ◦ s = idA then j = e′ ◦ s. Hence
the relation j ◦ αA = αW ◦ T (j) is equivalent to commutativity of the above
diagram. The LHS square is commutative because e′ is a morphism of
T -algebras and the RHS square is commutative because

e′ ◦ s ◦ h = j ◦ h = e′.

Therefore h is the coequalizer of (Genh(f), Genh(g)) in AlgT (C ). Since
Genh : D → AlgT (C ) is an equivalence by assumption, we obtain a
coequalizer coeq(f, g) of the pair (f, g) in D . This completes the proof of
part (b).

(c) Now observe that

coeq(G(f), G(g)) = h = FC (h) = (FC ◦Genh)(coeq(f, g)) = G(coeq(f, g)).

With parts (b) and (c) of the proof, we demonstrated that the third
condition in the statement of the Barr-Beck theorem is satisfied.

Conversely, assume that G satisfies the three conditions in the statement of
the Barr-Beck theorem. By assumption G has a left adjoint. So it suffices
to prove that the functor Genh : D → AlgT (C ) is an equivalence. By
Lemma 6.3.2, it suffices to show that Genh is conservative and admits a
fully faithful left adjoint.

To show: (d) Genh is a conservative functor.
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(e) Genh has a fully faithful left adjoint.

(d) By assumption, G is a conservative functor. Assume that f : X → Y is
a morphism in D . Assume that

Genh(f) : (G(X), G(εX))→ (G(Y ), G(εY ))

is an isomorphism in AlgT (C ). Then there exists a morphism of T -algebras
g : (G(Y ), G(εY ))→ (G(X), G(εX)) such that f ◦ g = idGenh(Y ) and
g ◦ f = idGenh(X). Notably, g : G(Y )→ G(X) is a morphism in D such that
f ◦ g = idG(Y ) and g ◦ f = idG(X). Therefore, f is an isomorphism in D and
Genh is a conservative functor as required.

(e) By Theorem 6.2.1, the forgetful functor FC : AlgT (C )→ C admits a
left adjoint functor

FLC : C → AlgT (C )
X 7→ (T (X), ηX).

If X is an object in C then we know that if a functor

H : AlgT (C )→ D

is a left adjoint to Genh then it must satisfy

H(T (X)) = (H ◦Genh)(F (X)) ∼= F (X).

The idea behind the proof of part (e) is to “resolve” every T -algebra by free
T -algebras (T -algebras of the form FLC (X)) and then use the above
characterisation of H on free T -algebras to construct a genuine left adjoint
functor to Genh on all T -algebras.

Define the functor GL
enh : AlgT (C )→ D to be the composite

AlgT (C ) C D .
FC F

If X is an object in C then

GL
enh((T (X), ηX)) = (F ◦ FC ◦ FLC )(T (X)) ∼= F ((G ◦ F )(X)) ∼= F (X).

Hence, our construction of a left adjoint to Genh will begin with GL
enh.

Define A ( AlgT (C ) to be the full subcategory satisfying the following two
properties:
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1. If X ∈ A then the functor

RX : D → Set
Y 7→ HomAlgT (C )(X,Genh(Y ))

is corepresentable (see Definition 3.2.1),

2. If X is an object in A then the unit morphism
ζX : X → (Genh ◦GL

enh)(X) induces an isomorphism

FC (X)→ FLC ((Genh ◦GL
enh)(X)) ∼= G(GL

enh(X))

in C .

By our construction of A, the restriction GL
enh|A gives a partial left adjoint

to Genh, yielding the natural bijection

HomD(GL
enh(X), Y ) ∼= HomAlgT (C )(X,Genh(Y ))

where X is an object in A and Y is an object in D . Observe that the
essential image of FLC is in A. This is because

HomAlgT (C )(FLC (X), Genh(Y )) ∼= HomC (X,G(Y )) ∼= HomD(F (X), Y ).

and if X is an object in C then the unit morphism

ζFL
C (X) : FLC (X)→ (Genh ◦GL

enh)(FLC (X))

induces an isomorphism in C from FC (FLC (X)) ∼= X to

(FC ◦Genh ◦GL
enh)(FLC (X)) ∼= GF (X) = T (X).

Now recall from Example 6.3.3 that if (X,αX) is a T -algebra then it fits
into a split fork (and hence a coequalizer)

T 2(X) T (X) X
µX

T (αX)

αX

of free T -algebras. Now let Xi be the diagram

T 2(X) T (X)
µX

T (αX)

in AlgT (C ) By applying the forgetful functor FC to Xi, we find that
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FC (Xi) ∼= (G ◦GL
enh)(Xi)

is a split coequalizer in C . The above isomorphism follows from the
induced isomorphism

FC (FLC (Z)) ∼= (FC ◦Genh ◦GL
enh)(FLC (Z)) = (G ◦GL

enh)(FLC (Z)).

for Z ∈ C . To see this, apply the isomorphism to X and T (X).
Consequently, the pair of morphisms (GL

enh(µX), GL
enh(T (αX))) in D is

G-split. By third property, this pair must have a coequalizer in D .

Now if (X,αX) is an object in AlgT (C ) and Y is an object in D then
X ∼= colimiXi and

HomAlgT (C )(X,Genh(Y )) ∼= HomAlgT (C )(colimiXi, Genh(Y ))
∼= lim

i
HomAlgT (C )(Xi, Genh(Y ))

∼= lim
i
HomAlgT (C )(G

L
enh(Xi), Y )

∼= HomAlgT (C )(colimiG
L
enh(Xi), Y ).

The third isomorphism follows from the fact that the diagram Xi is in A (it
is comprised of free T -algebras). The second and fourth isomorphisms
follow from Example 5.1.1 (the Yoneda functor maps colimits to limits).

Here is another obsevation. If (X,αX) is an object in AlgT (C ) then the
induced isomorphism in C

X = FC (X)→ (G ◦GL
enh)(X)

is given by the composite

colimiXi
∼= colimi(G ◦GL

enh)(Xi)→ G(colimiG
L
enh(Xi)) ∼= (G ◦GL

enh)(X).

This is an isomorphism because GL
enh(Xi) (or more explicitly

(GL
enh(µX), GL

enh(T (αX)))) is G-split and G preserves such coequalizers.

Therefore, we have a left adjoint functor GL
enh : AlgT (C )→ D to Genh such

that the unit morphism ζX : X → (Genh ◦GL
enh)(X) is an isomorphism in C

after applying the forgetful functor FC . Now FC is conservative by the
proof of part (a). So, GL

enh is also fully faithful.
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By combining parts (d) and (e), we deduce that Genh is an equivalence and
hence G is a monadic functor as required.

Here is the dual statement to the Barr-Beck theorem in Theorem 6.3.3.

Theorem 6.3.4. Let C and D be categories and F : C → D be a functor.
Then F is a comonadic functor if and only if the following statements are
satisfied:

1. F has a right adjoint,

2. F is a conservative functor,

3. If (f, g) is a F -cosplit pair of morphisms in D then it has a
coequalizer eq(f, g) and F (eq(f, g)) = eq(F (f), F (g)).

6.4 The Barr-Beck theorem in descent

theory

As in [Saf23, Section 5.4], we will provide an idea of how Theorem 6.3.4 can
be applied to the problem of descent in Galois theory (the study of field
extensions) and more generally, to extensions of rings in commutative
algebra. We remark that in the statement of Theorem 6.3.4, the notion of a
F -cosplit pair has not been defined formally. It is the dual notion to a split
pair, as defined in the previous section. Fortunately in this section, all the
categories discussed will have equalizers and the all the functors will
preserve them. Hence, we need not worry about the F -cosplit condition.

To illustrate the notion of descent, let us begin with the simplest case of
descent for functions. Let X be a set and k be a field. Define O(X) to be
the commutative k-algebra of functions f : X → k. Then we have a
contravariant functor

O : Setop → Com k-Alg
X 7→ O(X)

φ : X → Y 7→
(
f 7→ f ◦ φ

)
Since O is an algebra of functions then O preserves limits — it sends
colimits in Set to limits in Com k-Alg. Now let α : X → Y be a surjective
morphism in Set. Then, we can form the pullback square
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X ×Y X X

X Y

π1

π2 α

α

Since Set is finitely cocomplete then we have the coequalizer
coeq(π1, π2) : X → C. By computing this coequalizer explicitly, we in fact
have C ∼= Y . By applying the functor O, we obtain the equalizer

eq(O(π1),O(π2)) : O(C)→ O(X)

and the isomorphism of commutative k-algebras O(C) ∼= O(Y ). This means
that functions on Y can be written in terms of functions on X satisfying a
“descent condition” — namely, their two pullbacks to O(X ×Y X) via
O(π1) and O(π2) are equal.

Descent theory generalises the above example by replacing morphisms of
sets with morphisms of some “geometric objects” and by replacing k-vector
spaces such as O(X) with certain categories associated to the geometric
objects.

Let us examine Galois descent, which concerns vector spaces over fields. Let
k ( L be an extension of fields. Then there is an adjoint pair of functors

(Ind,Res)

where Ind : k-Vect→ L-Vect sends a k-vector space V to the L-vector
space V ⊗k L and Res : L-Vect→ k-Vect is simply the restriction functor.
This adjoint pair is actually a special case of the Hom-tensor adjunction in
Example 2.1.3.

How can we apply Theorem 6.3.4 to this situation? The categories k-Vect
and L-Vect are both finitely complete and finitely cocomplete and the
functor Res is obviously conservative. So if we want to apply Theorem
6.3.4 then we have to show that Ind is a conservative functor. Since Res is
conservative then it suffices to prove that the composite Res ◦ Ind is
conservative.

To this end, assume that f : V → W is a morphism of k-vector spaces
which induces an isomorphism V ⊗k L→ W ⊗k L is a isomorphism of
k-vector spaces. Since k ( L is an extension of fields then L ∼=

⊕
i k as a

k-vector space. Therefore the map
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⊕
i
f :
⊕

i
V ∼= V ⊗k L→

⊕
i
W ∼= W ⊗k L

is an isomorphism and thus, f is an isomorphism of k-vector spaces. We
conclude that Res ◦ Ind and Ind are conservative functors.

Now an equalizer of a pair (f, g) in k-Vect is simply the kernel ker(f − g).
From the fact that L ∼=

⊕
i k as k-vector spaces, the functor Ind preserves

kernels and thus, preserves equalizers. At this point, Ind satisfies the
conditions of Theorem 6.3.4.

So by the Barr-Beck theorem, Ind is a comonadic functor. Let us unpack
what this means explicitly. The functor S = Ind ◦Res is a comonad over
L-Vect and the functor

Indenh : k-Vect → CoAlgS(L-Vect)
Z 7→ (Z ⊗k L, Ind(ηZ)).

(see equation (6.3)) defines an equivalence where η : idL-Vect ⇒ Ind ◦Res is
the unit of adjunction for (Ind,Res). To put it simply, the category of
k-vector spaces is equivalent to the category of S-coalgebras in the category
of L-vector spaces. However, observe that the functor S = Ind ◦Res sends
a L-vector space V to

S(V ) = V ⊗k L ∼= V ⊗L (L⊗k L).

So the comonad S is simply given by tensoring with the L-coalgebra
L⊗k L. By definition of a coalgebra, we deduce that k-Vect is equivalent
to the category of L⊗k L-comodules in L-Vect. To be clear, the coalgebra
strucutre on L is given by the coproduct

L⊗k L → (L⊗k L)⊗L (L⊗k L) ∼= L⊗k L⊗k
l1 ⊗ l2 7→ l1 ⊗ 1⊗ l2

and the counit

L⊗k L → L
l1 ⊗ l2 7→ l1l2.

Now let us understand descent in the context of commutative rings. Let R
and S be commutative rings and φ : R→ S is a morphism of commutative
rings. Similarly to the Hom-tensor adjunction in Example 2.1.3, the functor

Ind = S ⊗R (−) : R-Mod→ S-Mod
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has a right adjoint given by the restriction functor

Res : S-Mod→ R-Mod.

So by Theorem 5.1.1, Ind preserves colimits. Note that in a category of
modules, finite products and finite coproducts coincide (direct sum). Thus,
the functor Ind also preserves finite coproducts.

The specific type of descent we will investigate is given by the following
definition.

Definition 6.4.1. Let R and S be commutative rings and f : R→ S be a
morphism of commutative rings. We say that f is faithfully flat if the
functor S ⊗R (−) is faithful and preserves equalizers.

We claim that if f : R→ S is faithfully flat then the tensor product functor
Ind = S ⊗R (−) is comonadic. So assume that f : R→ S is a faithfully flat
morphism. By Theorem 6.3.4, it suffices to show that Ind is a conservative
functor.

Assume that α : M → N is a morphism in R-Mod and that

Ind(α) : S ⊗RM → S ⊗R N

is an isomorphism of S-modules. As proved in [Wei94], the coequalizer of α
and the zero morphism 0M,N : M → N is simply the cokernel of α. Dually,
the equalizer of α and 0M,N is simply the kernel of α. Since Ind is faithfully
flat then it must preserve both kernels and cokernels. Therefore, in order to
prove Ind is conservative, it suffices to show that if P is a R-module and
Ind(P ) ∼= 0 then P ∼= 0.

So assume that P is a R-module and Ind(P ) ∼= 0. If Q is another R-module
then there is an injective map

HomR(Q,P )→ HomS(Ind(Q), Ind(P )) ∼= {0}

by faithfulness of Ind. Consequently, there is a unique morphism from Q to
P and P is the final object in R-Mod. So P is isomorphic to the zero
object and Ind is conservative.

Now by Theorem 6.3.4, Ind is a comonadic functor. The comonad
Ind ◦Res is explicitly the functor
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M 7→ S ⊗RM ∼= S ⊗R S ⊗S M.

Again by definition of a coalgebra, we obtain the following result.

Theorem 6.4.1. Let f : R→ S be a faithfully flat morphism of
commutative rings. Then, the category R-Mod is equivalent to the the
category of S-modules M equipped with a coassociative coaction morphism
M → S ⊗RM (this is just the category of S-coalgebras over S-Mod).

So far, we have showed that if f : R→ S is faithfully flat then the tensor
product functor Ind is comonadic. This raises the question: Is there a
necessary and sufficient condition for Ind to be a comonadic functor. It
turns out that this is provided by the notion of a pure monomorphism.

Definition 6.4.2. Let R be a commutative ring and φ : M → N be a
morphism of R-modules. We say that φ is a pure monomorphism if the
following statement is satisfied: If P is a R-module then the induced
morphism P ⊗RM → P ⊗R N is injective.

Let f : R→ S be a faithfully flat morphism of rings. To see that f is a pure
monomorphism of R-modules, we have to show that if N is a R-module
then the induced morphism N ∼= N ⊗R R→ N ⊗R S is injective. Now since
f is faithfully flat, it suffices to show that the morphism of tensor products

t : N ⊗R S → (N ⊗R S)⊗R S
n⊗ s 7→ n⊗ s⊗ 1S.

is injective. Consider the map

m : N ⊗R S ⊗R S → N ⊗R S
n⊗ s1 ⊗ s2 7→ n⊗ s1s2.

Then m ◦ t = idN⊗RS, t is a split monomorphism and thus injective. Thus
f : R→ S is a pure monomorphism.

Theorem 6.4.2. Let R and S be commutative rings and f : R→ S be a
morphism of commutative rings. Then the tensor product functor
S ⊗R (−) : R-Mod→ S-Mod is comonadic if and only if f is a pure
monomorphism.

This theorem is due to [JT04, Corollary 5.4].
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