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0.1 Purpose

This document is a record of my notes on category theory. The primary
reference we are following here is [Bou17], which after discussing the basics
of category theory, proceeds to develop the theory behind protomodular
and Mal’tsev categories. This document marks the second time I have
recorded detailed notes on a particular reference, with the first set of notes
being about functional analysis.

As mentioned at the start of [Bou17, Chapter 2], there are two main
pathways one can take after gaining a basic grasp of category theory —
enriched category theory and the theory of internal structures. The
reference [Bou17] develops the theory in the latter direction.

2



Chapter 1

Category theory

1.1 Basic definitions and examples

The concept of a category crops up in a multitude of different fields,
ranging from group theory to algebraic topology (via 2-categories and
higher order category theory). Certain constructions such as taking
quotients or pullbacks in different contexts/categories have an elegant and
unified description in category theory. Additionally, there are many
instances of adjoint pairs of functors which appear in fields such as
representation theory (induction and restriction) and multilinear algebra
(Hom-tensor adjunction). To put it simply, category theory is very
powerful and pervasive.

We will start by defining categories. Instead of following [Bou17], we will
define categories directly.

Definition 1.1.1. A category C is a triple, consisting of:

1. A class of objects ob(C )

2. A class of morphisms (or arrows) between the objects Hom(C ). We
say that the morphism f : A→ B is an element of Hom(A,B), which
denotes the class of all morphisms from A to B. A is deemed the
source object and B is the target object in this case.

3. A binary operation called composition of morphisms, defined by
◦ : Hom(B,C)×Hom(A,B)→ Hom(A,C), ◦(g, f) = g ◦ f .

Additionally, the composition of morphisms must satisfy the following two
properties:
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1. Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h)

2. Identity: For all objects A ∈ ob(C ), there exists a morphism
1A : A→ A such that for all morphisms f ∈ Hom(A,B), f ◦ 1A = f
and for all morphisms g ∈ Hom(B,A), 1A ◦ g = g.

Let us compare the definition of a category to the definitions of a graph and
a reflexive graph given below.

Definition 1.1.2. A graph C is a pair, consisting of:

1. A class of objects ob(C )

2. A class of morphisms (or arrows) between the objects Hom(C ). We
say that the morphism f : A→ B is an element of Hom(A,B), which
denotes the class of all morphisms from A to B. A is deemed the
source object and B is the target object in this case.

A reflexive graph is a graph where each object X is associated to an
identity morphism 1X : X → X.

Hence, a category is a reflexive graph, equipped with the composition
operation of morphisms. We will now give illustrative examples of
categories.

Example 1.1.3. Here are the examples of categories which are most
important to [Bou17].

The category Set is the category whose objects are sets and whose
morphisms are functions between sets.

The category Mon is the category whose objects are monoids (groups
without inversion) and whose morphisms are monoid homomorphisms.

The category Grp is the category whose objects are groups and whose
morphisms are group homomorphisms.

Similarly, we have the category Ab of abelian groups and the category
CoM of commutative monoids. Finally, the category Top is the category
whose objects are topological spaces and whose morphisms are continuous
functions.

Before we proceed, we will make a quick remark. Consider the category
Set. The objects in Set are all the possible sets. However, this raises the
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issue of Russell’s paradox — there is no “set of all sets”. Indeed, we were
careful to say a “class of objects” and not a “set of objects” in the
definition of a category. This observation segues into a philosophical
discussion about the foundations of category theory which we will not
pursue here. For further details, consult [Mur06] for a brief discussion.

Analogously to morphisms in a category, we can define the notion of
morphisms between categories.

Definition 1.1.4. Let C ,D be categories. A functor F : C → D is a map
which satisfies the following properties:

1. If C ∈ ob(C ), then F (C) ∈ ob(D)

2. If C ∈ ob(C ), then F (1C) = 1F (C), where 1C and 1F (C) are the
identity morphisms defined on C and F (C) respectively.

3. If X, Y, Z ∈ ob(C ), f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), then
F (g ◦ f) = F (g) ◦ F (f), where F (g) ∈ Hom(F (Y ), F (Z)) and
F (f) ∈ Hom(F (X), F (Y )).

A functor is quite literally a morphism of categories because it preserves
the essential structures of a category — the identity morphism on every
object and the composition operation.

Example 1.1.5. Let G be a group and

[G,G] = {[g, h] = ghg−1h−1 | g, h ∈ G}

be the commutator subgroup of G. The quotient Gab = G/[G,G] is the
abelianisation of G. We also have the projection map πG : G→ Gab, which
is a group morphism.

The functor ab : Grp→ Ab sends a group G to its abelianisation Gab and
a group morphism f : G→ H to the group morphism fab : Gab → Hab. The
morphism fab is the unique group morphism which makes the below
diagram commute, as a consequence of the universal property of the
quotient:

G H

Gab Hab

f

πG πH

fab
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Additionally, we also have a notion of maps between functors themselves.

Definition 1.1.6. Let C and D be categories. Let F : C → D and
G : C → D be functors. A natural transformation α : F → G is a family
of morphisms

{αA : F (A)→ G(A) | A ∈ C }

such that for every morphism f : A→ A′ in C , the following diagram
commutes:

F (A) F (A′)

G(A) G(A′)

F (f)

αA αA′

G(f)

If the αA are all isomorphisms in D , then α is said to be a natural
isomorphism.

Example 1.1.7. Following on from the previous example, the projection
map π is a natural transformation from the identity functor
id : Grp→ Grp to the abelianisation functor ab.

Our next definition focuses on the morphisms in a particular category.

Definition 1.1.8. Let C be a category. Suppose that we have the
following diagram in C :

U X Y Z
g

h

h′

f

We say that g equalizes the pair (h, h′) if h ◦ g = h′ ◦ g. Furthermore, f
coequalizes the pair (h, h′) if f ◦ h = f ◦ h′.

We say that f is a monomorphism when the only pairs (h, h′) which are
coequalized by f are pairs of the form (h, h). Dually, g is an epimorphism
when the only pairs (h, h′) which are equalized by g are pairs of the form
(h, h).

Let us apply this definition in the following lemma.

Lemma 1.1.1. In the category of sets Set, a function (set morphism)
f : X → Y is a monomorphism if and only if f is an injective function.
Moreover, f is an epimorphism if and only if f is a surjective function.
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Proof. Assume that we have the following diagram in the category Set:

U X Y Z
g

h

h′

f

To show: (a) If g is surjective, then g is an epimorphism.

(b) If g is an epimorphism, then g is surjective.

(c) If f is injective, then f is a monomorphism.

(d) If f is a monomorphism, then f is injective.

(a) Assume that g is surjective and that h ◦ g = h′ ◦ g. Since g : U → X is
surjective, for h ◦ g = h′ ◦ g to hold, h and h′ must agree on the image
g(U) = X. Therefore, h = h′ which demonstrates that g is an epimorphism.

(b) We will prove this by contrapositive. Assume that g is not a surjective
function. Then, there exists an element x ∈ X such that x 6∈ g(U). The key
point here is that we can do anything with the element x. Define the
functions h, h′ : X → Y such that h(x) = y1 and h′(x) = y2 with y1 6= y2

and h(z) = h′(z) for all z ∈ X − {x}. By construction, h 6= h′, but
h ◦ g = h′ ◦ g. Hence, the function g equalizes the pair (h, h′) with h 6= h′,
which shows that g is not an epimorphism as required.

(c) Assume that f is an injective function and that f ◦ h = f ◦ h′. Then, for
all x ∈ X, f(h(x)) = f(h′(x)) and since f is injective, h(x) = h′(x) for all
x ∈ X. Thus, f is a monomorphism.

(d) We will again prove the contrapositive statement. Assume that f is not
an injective function. Then, there exists y1, y2 ∈ Y with y1 6= y2 such that
f(y1) = f(y2). Construct the functions h, h′ : X → Y such that for some
x ∈ X, h(x) = y1, h′(x) = y2 and for all z ∈ X −{x}, h(z) = h′(z). Then by
construction, h 6= h′, but f ◦ h = f ◦ h′. Therefore, f coequalizes the pair of
functions (h, h′) with h 6= h′, unveiling that f is not a monomorphism.

It is worth noting that 1.1.1 extends to the categories Grp and Ab by
utilising a similar proof technique.

Definition 1.1.9. Let C be a category, A,B be objects in C and
f ∈ Hom(A,B) be a morphism. We say that f is an isomorphism if there
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exists a morphism f−1 ∈ Hom(B,A) such that f ◦ f−1 = idB and
f−1 ◦ f = idA, where id denotes the identity morphism.

Lemma 1.1.2. Let C be a category, A,B be objects in C and f : A→ B
be an isomorphism. Then, f is a monomorphism and an epimorphism.

Proof. Assume that f : A→ B is a morphism in the category C . Suppose
that h, h′ : B → C are morphisms such that h ◦ f = h′ ◦ f . By precomposing
with the inverse map f−1, we find that h ◦ (f ◦ f−1) = h′ ◦ (f ◦ f−1) and
consequently, h = h′. This shows that f equalizes the pair (h, h) for all
h ∈ Hom(B,C). Hence, f is an epimorphism.

Now assume that g, g′ : Z → A are morphisms such that f ◦ g = f ◦ g′. By
composing with f−1, we find that g = g′ and hence, f coequalizes the pair
(g, g) for all g ∈ Hom(Z,A). This demonstrates that f is a
monomorphism.

Interestingly, the converse of Lemma 1.1.2 does not hold.

Example 1.1.10. In the category of monoids Mon, consider the inclusion
map ι : Z≥0 → Z, where Z≥0 and Z are monoids with the binary operation
of addition. The inclusion ι is both a monomorphism and an epimorphism
in Mon. However it is not an isomorphism in Mon, as it is not surjective.
See [Awo10, Section 2] for the details.

The above example also demonstrates that in a given category, an
epimorphism is not always surjective. Similarly, a monomorphism is not
always injective. Given below are some more properties satisfied by
monomorphisms and epimorphisms in C . The proofs of these relations are
omitted because they are simple applications of the definitions.

1. If f and g are monomorphisms in C , then g ◦ f is also a
monomorphism.

2. If g ◦ f is a monomorphism in C , then f is also a monomorphism.

3. If f and g are epimorphisms in C , then g ◦ f is also an epimorphism.

4. If g ◦ f is an epimorphism in C , then g is also an epimorphism.
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1.2 Equalizers and coequalizers

The definition of an epimorphism and monomorphism that we gave is a
special case of the concept of an equalizer and a coequalizer respectively.
We will make the necessary definitions below.

Definition 1.2.1. Let C be a category and consider the following diagram
in C :

I X Yi
h

h′

We say that the morphism i : I → X is an equalizer of the pair (h, h′) if it
equalizes the pair (h, h′) and satisfies the following universal property: if
g : U → X is a morphism which equalizes the pair (h, h′) then there exists a
unique morphism γ : U → I such that the the triangle in the below diagram
commutes:

U

I X Y

g
γ

i
h

h′

The equalizer i of (h, h′) is often denoted by eq(h, h′).

By reversing the arrows in the diagrams in the above definition, we obtain
the definition of a coequalizer.

Definition 1.2.2. Let C be a category and consider the following diagram
in C :

X Y Q
h

h′

q

We say that the morphism q : Y → Q is a coequalizer of the pair (h, h′) if
it coequalizes the pair (h, h′) and satisfies the following universal property:
for all morphisms f : Y → Z which coequalize the pair (h, h′), there exists a
unique morphism φ : Q→ Z such that the the triangle in the below
diagram commutes:

Z

X Y Q
h

h′
q

f
φ
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The coequalizer q of (h, h′) is often denoted by coeq(h, h′).

Example 1.2.3. As an example of equalizers and coequalizers, let us give
a description of equalizers and coequalizers in the category of sets Set.

Suppose that we have the following diagram in Set:

I X Yι
h

h′

where I is the set

I = {x ∈ X | h(x) = h′(x)}

and ι : I → X is the inclusion function. We will show that ι is the equalizer
of the pair (h, h′). Suppose that g : U → X is a function which equalizes
the pair (h, h′). The point here is that the image of g must be contained in
I by the definition of the equalizer. Thus, we can define the unique map
g : U → I, which is just g, but with codomain restricted to I. Then, it is
easy to check that the triangle in the following diagram commutes:

U

I X Y

g
g

ι
h

h′

Furthermore, ι equalizes the pair (h, h′) because for all i ∈ I,

(h ◦ ι)(i) = h(i) = h′(i) = (h′ ◦ ι)(i).

This is just from the definition of I. Therefore, ι is the equalizer of the pair
of functions (h, h′).

Now, we will find the coequalizer of the pair (h, h′). Let ∼ denote the
smallest equivalence relation defined by setting h(x) ∼ h′(x) for all x ∈ X.
This is an equivalence relation on Y and thus, we can define the quotient
set Y/ ∼, which is equipped with the usual projection map π : Y → Y/ ∼.
We claim that π coequalizes the pair (h, h′).

To see why this is the case, observe that for all x ∈ X,

(π ◦ h)(x) = [h(x)] = [h′(x)] = (π ◦ h′)(x)
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where [h(x)] ∈ Y/ ∼ denotes the equivalence class with representative h(x).
So, π coequalizes (h, h′). Moreover, suppose that g : Y → Z is a morphism
in Set which coequalizes (h, h′) so that g ◦ h = g ◦ h′. Then, we define the
function

φ : Y/ ∼ → Z
[y] 7→ g(y)

To see why φ is well-defined, suppose that y1 and y2 are two representatives
of the same equivalence class in Y/ ∼. Then, since g ◦ h = g ◦ h′,
g(y1) = g(y2) by the definition of ∼. This ensures that φ is well-defined.
Again, one can quickly check that φ makes the triangle in the below
diagram commute:

Z

X Y Y/ ∼
h

h′
π

g
φ

Also, φ is unique because it is entirely determined by the function g.
Therefore, π : Y → Y/ ∼ is the coequalizer of the pair (h, h′).

There are a multitude of examples of equalizers and coequalizers given in
the reference [Lei14]. We will list a few of them below:

Example 1.2.4. Let h, h′ : X → Y be morphisms in the category of
topological spaces Top. Then, the equalizer of (h, h′) is the inclusion map
ι : I → X where I is the topological space

I = {x ∈ X | h(x) = h′(x)}
equipped with the subspace topology from X. Similarly, π : Y → Y/ ∼ is
the coequalizer of (h, h′) where for all x ∈ X, h(x) ∼ h′(x) and Y/ ∼ is
equipped with the quotient topology.

Example 1.2.5. Let k-Vect be the category of k-vector spaces, where k is
a field. Let s, t : V → W be linear transformations between the vector
spaces V and W . Then, the equalizer of (s, t) is the inclusion map
ι : ker(t− s)→ V .

Example 1.2.6. Let u, v : G→ H be morphisms in the category of abelian
groups Ab. The coequalizer of (u, v) is the group morphism
ψ : H → H/im(v − u). Notice that the image im(v − u) is just the cokernel
coker(v − u).
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Let us now prove some general properties satisfied by equalizers and
coequalizers.

Theorem 1.2.1. Let C be a category, A,B be objects in C and
h, h′ ∈ Hom(A,B) be morphisms in C . Then, any equalizer or coequalizer
of (h, h′) is unique up to isomorphism. Furthermore, any equalizer of (h, h′)
is a monomorphism and any coequalizer of (h, h′) is a epimorphism.

Proof. Assume that C is a category, A,B are objects in C and
h, h′ ∈ Hom(A,B) be morphisms in C .

To show: (a) Equalizers of (h, h′) are unique up to isomorphism.

(b) Coequalizers of (h, h′) are unique up to isomorphism.

(c) If f : Z → A is an equalizer of (h, h′), then f is a monomorphism.

(d) If g : B → C is a coequalizer of (h, h′), then g is an epimorphism.

(a) Suppose that Z is an object in C and f1, f2 : Z → A are equalizers of
(h, h′). By the universal property of the equalizer, there exists a morphism
ρ : Z → Z such that the triangle in the following diagram commutes:

Z

Z A B

f2ρ

f1
h

h′

But, another application of the universal property of the equalizer reveals
the existence of another morphism φ : Z → Z such that the triangle in the
following diagram commutes:

Z

Z A B

f1
φ

f2
h

h′

Now, observe that from both diagrams, we have

f2 = ρ ◦ f1

= ρ ◦ (φ ◦ f2) = (ρ ◦ φ) ◦ f2
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and

f1 = φ ◦ f2

= φ ◦ (ρ ◦ f1) = (φ ◦ ρ) ◦ f2.

Thus, φ ◦ ρ = ρ ◦ φ = idZ , which demonstrates that ρ and φ are both
isomorphisms. Since f1 = φ ◦ f2, we deduce that f1 and f2 are in fact, equal
up to isomorphism.

(b) Assume that C is an object in C and g1, g2 : B → C are coequalizers of
(h, h′). Similarly to part (a), we apply the universal property of the
coequalizer to obtain the morphisms φ, ρ : C → C, which make the
triangles in the following diagram commute:

C

A B C
h

h′
g1

g2
φ

C

A B C
h

h′
g2

g1 ρ

Arguing in exactly the same manner as the previous part, we find that φ
and ρ are inverses of each other and thus, isomorphisms. Hence, g1 and g2

are equal up to isomorphism.

(c) Assume that f : Z → A is an equalizer of (h, h′). Assume that
x, y : E → Z are morphisms such that f ◦ x = f ◦ y. This gives us the
following commutative diagram:

E

Z A B

f◦x
xy

f
h

h′

The universal property of the equalizer now tells us that there exists a
unique u : E → Z such that f ◦ x = f ◦ u. Therefore, u = x = y and as a
result, f must be a monomorphism.
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(d) Assume that g : B → C is an equalizer of (h, h′). Assume that
p, q : C → D are morphisms such that p ◦ g = q ◦ g. Then, the following
diagram must commute:

D

A B C
h

h′
g

p◦g
p q

Since g is a coequalizer of (h, h′), we can use the universal property of the
coequalizer to deduce the existence of a morphism v : C → D such that
v ◦ g = p ◦ g. Due to uniqueness, v = p = q and consequently, g must be an
epimorphism.

Next, we will define a special kind of epimorphism called a split
epimorphism. [Bou17] explains that split epimorphisms are behind many
“strong classification processes in algebra”.

Definition 1.2.7. Let C be a category and f : X → Y be a morphism in
C . The morphism f is said to be a split epimorphism if there exists
another morphism s : Y → X such that f ◦ s = idY .

Let us prove some of the defining properties of split epimorphisms.

Theorem 1.2.2. Let C be a category and f : X → Y be a split
epimorphism so that there exists a morphism s : Y → X such that
f ◦ s = idY . Then, the composite θ = s ◦ f is idempotent (θ2 = θ).
Furthermore, s = eq(idX , θ) and f = coeq(idX , θ).

Proof. Assume that C is a category and f : X → Y be a split epimorphism.
Then, there exists a morphism s : Y → X such that f ◦ s = idY . Let
θ = s ◦ f . Then,

θ2 = θ ◦ θ = s ◦ (f ◦ s) ◦ f = s ◦ f = θ.

Thus, θ is idempotent.

To show: (a) s = eq(idX , θ).

(b) f = coeq(idX , θ).

(a) To see that s : Y → X equalizes the pair (idX , θ), we compute directly
that
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θ ◦ s = (s ◦ f) ◦ s = s ◦ (f ◦ s) = s = idX ◦ s.
Now suppose that g : U → X is a morphism in C which equalizes the pair
(idX , θ). Then, g = θ ◦ g. Now consider the composite f ◦ g : U → Y . It is
unique because it is the composite of two unique morphisms. Additionally,
we note that

s ◦ (f ◦ g) = θ ◦ g = g.

Thus, s is the equalizer of the pair (idX , θ).

(b) To see that f : X → Y coequalizes the pair (idX , θ), we observe that

f ◦ θ = (f ◦ s) ◦ f = idY ◦ f = f ◦ idX .
Thus, f coequalizes (idX , θ). Now suppose that h : X → W is a morphism
such that h coequalizes (idX , θ). Then, h ◦ θ = h. Consider the composite
h ◦ s : Y → W . This is a unique morphism which satisfies

(h ◦ s) ◦ f = h ◦ (s ◦ f) = h ◦ θ = h.

Therefore, f is the coequalizer of (idX , θ) as required.

As a result of 1.2.1, s must be a monomorphism and f must be an
epimorphism. An isomorphism is a special case of a split epimorphism. If
f : X → Y is an isomorphism in C , then, it is a split epimorphism because
f ◦ f−1 = idY .

The next result can be thought of as a converse of 1.2.2. It shows that we
can always construct a unique split epimorphism in a particular scenario.

Theorem 1.2.3. Let C be a category and θ : X → X be an idempotent
morphism in C . Let s = eq(idX , θ) be a morphism from Y to X. Then,
there exists a unique morphism f : X → Y such that f ◦ s = idY and
s ◦ f = θ.

Dually, if f = coeq(idX , θ) is a morphism from X to Y , then there exists a
unique morphism s : Y → X such that f ◦ s = idY and s ◦ f = θ.

Proof. Assume that C is a category and θ : X → X is an idempotent
morphism in C . Let s = eq(idX , θ), where s is a morphism from Y to X.
By exploiting the universal property of the equalizer, there exists a unique
morphism f : X → Y such that the triangle in the following diagram
commutes:
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X

Y X X

θ
f

s
idX

θ

Thus, s ◦ f = θ. To see that f ◦ s = idY , we can use the fact that θ is
idempotent, in tandem with s ◦ f = θ, to reveal that

s ◦ (f ◦ s) ◦ f = s ◦ f.
Since s is an equalizer, it is a monomorphism (see 1.2.1). Therefore,
(f ◦ s) ◦ f = f and consequently, f ◦ s = idY as required.

Now assume that f = coeq(idX , θ), where f is a morphism from X to Y .
From the universal property of the coequalizer, there exists a unique
morphism s : Y → X such that the triangle in the below diagram
commutes:

X

X X Y
idX

θ
f

θ s

That is, s ◦ f = θ. Using the fact that θ is idempotent, we once again
obtain s ◦ (f ◦ s) ◦ f = s ◦ f . From 1.2.1, f is an epimorphism because it is
a coequalizer. Therefore, s ◦ (f ◦ s) = s and so, f ◦ s = idY as required.

We observe that for a given category C , the split epimorphisms (f, s),
where s is the morphism whose existence is determined from f being a split
epimorphism, form a category themselves. We will call this category Pt(C ).
The morphisms in this category are given by pairs of morphisms (x, y)
which form commutative squares of the form

X X ′

Y Y ′

x

f f ′

y

s s′

The above commutative diagram ensures that split epimorphisms are
mapped to split epimorphisms. Now suppose that f ∈ HomC (X, Y ) and
s ∈ HomC (Y,X). Finally, the functor ¶C : Pt(C )→ C sends a split
epimorphism given by the pair (f, s) to Y which is the codomain of f . It is
an exercise in the definitions to prove that Pt(C ) is a category and ¶C is a
functor.
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1.3 Reflexive relations

One of the most important constructions in the categories we are familiar
with, such as Set and Top, is the quotient. The quotient is reliant on the
notion of an equivalence relation. In this section, we will discuss the first
step towards generalising the notion of an equivalence relation to category
theory — the concept of reflexive graphs. As usual, we will begin with
preliminary definitions:

Definition 1.3.1. Let C be a category and X be an object of C . A graph
on the object X is a pair of morphisms d0, d1 ∈ Hom(G,X).

The graph (d0, d1) is said to be reflexive when d0 and d1 admit a common
section. That is, there exists a morphism s0 ∈ Hom(X,G) such that
d0 ◦ s0 = d1 ◦ s0 = idX . In an abuse of notation, we often denote a reflexive
graph by G, rather than specifying the pair of morphisms.

Another way of interpreting the idea of a reflexive graph on X is that the
diagonal map ∆ = (idX , idX) ∈ Hom(X,X ×X) factors through the
morphism (d0, d1) : G→ X ×X. That is, there exists s0 ∈ Hom(X,G) such
that the following diagram commutes:

G

X X ×X

(d0,d1)

∆

s0

Definition 1.3.2. Let C be a category, X be an object in C and (d0, d1) be
a reflexive graph on X, where d0, d1 ∈ Hom(G,X). We say that (d0, d1) is a
reflexive relation if d0 and d1 are both monomorphisms. Alternatively,
the induced morphism (d0, d1) : G→ X ×X is a monomorphism.

Why is this definition consistent with our usual concept of a reflexive
relation on a set? Recall that a relation on a set X is just a subset of
X ×X. More specifically, a relation on a set X is the subset

Φ = {(φ1(g), φ2(g)) | g ∈ G} ⊆ X ×X

where φ1, φ2 : G→ X are monomorphisms in Set. For a relation on X to
be reflexive, the diagonal of X, which is defined by

D = {(x, x) | x ∈ X}

17



must be a subset of Φ. This holds precisely when φ1 and φ2 have a common
section s0 : X → G, a function which satisfies φ1 ◦ s0 = φ2 ◦ s0 = idX .
Moreover, we want (φ1, φ2) to be a monomorphism (or injective since we
are dealing with sets) because we do not want an element to appear more
than once in Φ.

Here are some well-known examples of reflexive graphs.

Example 1.3.3. Let C be a category and X be an object. Then, the
discrete reflexive relation on X is given by the identity map idX ,
represented by the following diagram:

X X
idX

idX

idX

The reflexive relation is given by the pair (idX , idX) and the appropriate
section for both morphisms is in this case idX . Since idX is an isomorphism,
it must also be a monomorphism (see 1.1.2). Hence, (idX , idX) is a reflexive
relation on the object X. We commonly denote it by ∆X .

Example 1.3.4. Let C be a category and X be an object. Then, the
indiscrete reflexive relation on X is given by the following diagram:

X ×X X
π1

π2

∆

Here, π1 and π2 are the canonical projection maps onto the first and second
factors respectively and ∆ = (idX , idX) is the diagonal map. This is a
reflexive relation on X because the induced map (π1, π2) : X ×X → X ×X
is just the identity morphism on X ×X, which is an isomorphism and
hence, a monomorphism. The indiscrete reflexive relation is usually
denoted by ∇X .

Definition 1.3.5. Let C be a category and (d0, d1) be a reflexive graph on
an object X, where d0, d1 ∈ Hom(G,X). The dual of (d0, d1), often
denoted by Gop, is the reflexive graph (d1, d0) on X.

For a given category C , we will denote by RGr(C ) the category whose
objects are reflexive graphs and whose morphisms are pairs of morphisms
(α, β) which make the following diagram commute:

18



G X

G′ X ′

dG0

α

dG1

β

dG
′

0

dG
′

1

We will use U0 : RGr(C )→ C to denote a functor which maps a reflexive
graph to its underlying object X. Finally, we denote by Ref(C ) the
subcategory of RGr(C ) whose objects are the reflexive relations. As a
demonstration of this category, we will prove the following lemma:

Lemma 1.3.1. Let C be a category, X be an object and R be a reflexive
graph on X. Then, there exists unique morphisms dR : R→ ∇X and
sR0 : ∆X → R in the category RGr(C ).

Proof. Assume that X is an object in the category C and that R is a
reflexive graph on X, depicted by the diagram below:

R X
a0

a1

r0

We define dR : R→ ∇X to be the pair ((a0, a1), idX), where idX is the
identity map on X and (a0, a1) ∈ Hom(R,X ×X) is induced from the
morphisms a0 and a1. To see that dR is a morphism in the category
RGr(C ), note that if r ∈ R then

π1 ◦ (a0, a1)(r) = π1(a0(r), a1(r)) = a0(r) = (idX ◦ a0)(r)

π2 ◦ (a0, a1)(r) = π2(a0(r), a1(r)) = a1(r) = (idX ◦ a1)(r)

and if x ∈ X then

(a0, a1) ◦ r0(x) = (a0, a1)(r0(x))

= ((a0 ◦ r0)(x), (a1 ◦ r0)(x))

= (idX(x), idX(x))

= (x, x) = (∆ ◦ idX)(x).

Indeed, the following diagram commutes:
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R X

X ×X X

a0

(a0, a1)

a1

r0

idX

π1

π2

∆

This shows that dR : R→ ∇X is indeed a unique morphism in RGr(C ).

Next, we define the map sR0 : ∆X → R by the pair of morphisms (r0, idX)
(morphisms in C ). It is straightforward to check that this pair makes the
following diagram commute and is thus, a unique morphism in RGr(C ):

X X

R X

idX

idX

r0

idX

idX

a0

a1

r0

1.4 Pullbacks and pushouts

In this section, we introduce our second fundamental example of a
limit/colimit in category theory — pullbacks and pushouts respectively. In
particular, pullbacks appear in a lot of fields of mathematics, mainly under
the guise of “precomposing” with a particular map. We will take the
definition of pullbacks and pushouts from [Lei14, Section 5.1].

Definition 1.4.1. Let C be a category. Suppose that we have the
following diagram in C :

Y

X Z

t

s

A pullback of the above diagram is an object P of C , together with
morphisms p1 : P → X and p2 : P → Y such that the square below
commutes.
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P Y

X Z

p2

p1 t

s

Furthermore, a pullback must satisfy the following universal property. For
any commutative square of the below form in C ,

A Y

X Z

f2

f1 t

s

there exists a unique morphism f ′ : A→ P such that the two triangles in
the below diagram commute:

A

P Y

X Z

f ′

f2

f1

p2

p1 t

s

Similarly to the relationship of the coequalizer to an equalizer, the
definition of a pushout can be obtained from that of a pullback, by
reversing the arrows.

Definition 1.4.2. Let C be a category. Suppose that we have the
following diagram in C :

Y

X Zv

u

A pushout of the above diagram is an object P of C , together with
morphisms p1 : X → P and p2 : Y → P such that the square below
commutes.

P Y

X Z

p2

p1

v

u
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Furthermore, a pushout must satisfy the following universal property. For
any commutative square of the below form in C ,

B Y

X Z

g2

g1

v

u

there exists a unique morphism g′ : P → B such that the two triangles in
the below diagram commute:

B

P Y

X Z

g′

p2

g2

p1
g1

v

u

We will give one example each of a pullback and a pushout.

Example 1.4.3. Let us work in the category of sets Set. Suppose that we
have the following diagram in Set:

Y

X Z

t

s

Let P be a subset of X × Y defined by

P = {(x, y) ∈ X × Y | s(x) = t(y)}.

Let πX : P → X and πY : P → Y be the usual projection maps. By the
definition of P , it is easy to verify that the following square commutes:

P Y

X Z

πY

πX t

s

To see the universal property of a pullback is satisfied, suppose that we
have the following commutative square:

22



Q Y

X Z

f2

f1 t

s

We define the function α : Q→ P by

α : Q→ P

q 7→ (f1(q), f2(q)).

This is a well-defined unique map to P because s ◦ f1 = t ◦ f2. It remains to
show that f1 = πX ◦ α and f2 = πY ◦ α. But this follows directly from the
definition of α. Thus, the triple (P, πX , πY ) is a pullback in Set.

Example 1.4.4. For our example of a pushout, we will work in the
category of topological spaces Top. Again, suppose we have the following
diagram in Top:

Y

X Zv

u

Consider the disjoint union X t Y of the topological spaces X and Y . We
define an equivalence relation on X t Y by saying that if x ∈ X and y ∈ Y ,
x ∼ y if and only if there exists a z ∈ Z such that v(z) = x and u(z) = y.
In other words, ∼ is the smallest equivalence relation generated by pairs of
the form (v(z), u(z)) for all z ∈ Z.

Next, we define X tZ Y to be the quotient topological space (X t Y )/ ∼.
There are continuous functions ιX : X → X tZ Y and ιY : Y → X tZ Y ,
defined by ιX(x) = [x] and ιY (y) = [y]. From the definition of X tZ Y , it is
straightforward to verify that the following diagram commutes:

X tZ Y Y

X Z

ιY

ιX

v

u

To see that the universal property of the pushout is satisfied, suppose that
we have the following commutative square:

23



W Y

X Z

g2

g1

v

u

Define the map β : X tZ Y → W by

β : X tZ Y → W

[x] 7→ g1(x)

[y] 7→ g2(y)

How do we know that β is a well-defined continuous map? In order to
obtain the definition of β, we can exploit the universal property of the
quotient in Top, which suggests that it is enough to construct a continuous
map β′ : X t Y → W such that β′(u(z)) = β′(v(z)) for all z ∈ Z.
Fortunately, we have the homeomorphism

Cts(X t Y,W ) ∼= Cts(X,W )× Cts(Y,W ).

On the RHS, we have g1 ∈ Cts(X,W ) and g2 ∈ Cts(Y,W ). By the
homeomorphism, the pair (g1, g2) induces the continuous function
β′ : X t Y → W which has the desired property because g1 ◦ v = g2 ◦ u.
Thus, β : X tZ Y → W is a well-defined continuous function. For all x ∈ X
and y ∈ Y ,

β(ιX(x)) = β([x]) = g1(x) and β(ιY (y)) = β([y]) = g2(y).

It remains to show uniqueness. Suppose that β∗ : X tZ Y → W is another
map which satisfies β∗ ◦ ιX = g1 and β∗ ◦ ιY = g2. Then, a direct
computation yields for all x ∈ X and y ∈ Y ,

β([x]) = β∗([x]) and β([y]) = β∗([y]).

Since every element of X tZ Y is either [y] for some y ∈ Y or [z] for some
z ∈ Z, the above equalities reveal that β = β∗. Hence, we have uniqueness
and therefore, the triple (X tZ Y, ιX , ιY ) is a pushout in Top.

It turns out that pushouts in Top play an important role in the
construction of finite CW-complexes, which are the fundamental objects of
study in algebraic topology. See [Mur21] for a brief discussion of this point.
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The above example of a pushout in Top is also directly from [Mur21].

Pullbacks and pushouts indeed exist in the categories Mon, CoM, Grp
and Ab. We will now turn our attention to proving various properties of
pullbacks.

Lemma 1.4.1. Let C be a category and f : Y → Z be a morphism in C .
Suppose that we have the following pullback square in C :

P Y

X Z

p2

p1 f

g

If f is a monomorphism, then p1 is also a monomorphism. Similar
statements hold when f is an isomorphism or a split epimorphism. We say
that monomorphisms, isomorphisms and split epimorphisms are stable
under pullbacks.

Proof. Assume that C is a category and f : Y → Z is a morphism in C .
Consider the above pullback square involving f . Now suppose that f is a
monomorphism and assume that α, β ∈ Hom(Q,P ).

To show: (a) If p1 ◦ α = p1 ◦ β, then α = β.

(a) Assume that p1 ◦ α = p1 ◦ β. By exploiting the commutativity of the
pullback square, we find that upon composing both sides with g,

g ◦ (p1 ◦ α) = f ◦ (p2 ◦ α) = g ◦ (p1 ◦ β) = f ◦ (p2 ◦ β)

as morphisms from Q to Z. Since f is a monomorphism, we have
p2 ◦ α = p2 ◦ β. Next, we observe that α makes the two triangles in the
below diagram commute:

Q

P Y

X Z

α

p2◦α

p1◦α

p2

p1 f

g

Since p1 ◦ α = p1 ◦ β by assumption and p2 ◦ α = p2 ◦ β as demonstrated
previously, β must also make the two triangles commute, as depicted by the
diagram
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Q

P Y

X Z

β

p2◦α

p1◦α

p2

p1 f

g

By the universal property of the pullback, the morphism which makes the
two triangles commute must be unique. Therefore, α = β.

Part (a) proves that p1 is a monomorphism. Hence, monomorphisms are
stable under pullbacks.

Now suppose that f is an isomorphism. Construct the following
commutative square:

X Y

X Z

f−1◦g

idX f

g

The universal property of the pullback tells us that there exists a unique
morphism h : X → P such that the two triangles in the below diagram
commute:

X

P Y

X Z

h

f−1◦g

idX

p2

p1 f

g

So, we have p1 ◦ h = idX .

To show: (b) h ◦ p1 = idP .

(b) Observe that

p1 ◦ (h ◦ p1) = (p1 ◦ h) ◦ p1 = idX ◦ p1 = p1 ◦ idP .
Since f is an isomorphism, it must be a monomorphism from 1.1.2.
Therefore, h ◦ p1 = idP as required.
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Part (b), in conjunction with the fact that p1 ◦ h = idX , demonstrates that
p1 is an isomorphism in C . Therefore, isomorphisms are stable under
pullbacks.

Finally, suppose that f is a split epimorphism. Then, there exists s : Z → Y
such that f ◦ s = idZ . Hence, we have the following commutative square:

X Y

X Z

s◦g

idX f

g

and by the universal property, there exists a unique morphism t : X → P ,
which makes the two triangles in the following diagram commute:

X

P Y

X Z

t

s◦g

idX

p2

p1 f

g

In particular, p1 ◦ t = idX . Hence, p1 is a split epimorphism. This reveals
that split epimorphisms are stable under pullbacks.

Let us look at a special case of the pullback — the pullback of the pair of
morphisms (f, f), where f ∈ Hom(X, Y ). We will denote this pullback in a
category C in the following specific manner:

R[f ] X

X Y

pf1

pf0
f

f

We call the pair of morphisms (pf0 , p
f
1) the kernel pair of f . By

considering the commutative square

X X

X Y

idX

idX f

f
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we can use the universal property of the pullback to deduce the existence of
a unique morphism sf0 : X → R[f ] such that the two triangles in the below
diagram commute:

X

R[f ] X

X Y

sf0

idX

idX

pf1

pf0
f

f

The above diagram shows that any morphism f ∈ Hom(X, Y ) gives rise to
a reflexive relation R[f ]. More explicitly, the reflexive relation R[f ] is given
by the kernel pair (pf0 , p

f
1), with pf0 , p

f
1 ∈ Hom(R[f ], X). We also observe

that f coequalizes the kernel pair (pf0 , p
f
1).

The next lemma demonstrates when a pullback becomes an equalizer.

Lemma 1.4.2. Let C be a category with pullbacks. Let h, h′ ∈ Hom(X, Y )
be a pair of morphisms. Suppose that we have the pullback square

I X

Y Y × Y

i

g (h, h′)

∆

where ∆ : Y → Y × Y is the diagonal map. Then, i = eq(h, h′) is the
equalizer of the pair of morphisms (h, h′).

Proof. Assume that C is a category with pullbacks. Assume that
h, h′ ∈ Hom(X, Y ) are a pair of morphisms, which satisfy the pullback
square in the statement of the lemma.

To see that i equalizes the pair (h, h′), the commutativity of the pullback
square tells us that as morphisms from I to Y × Y ,

(h ◦ i, h′ ◦ i) = (g, g).

So, h ◦ i = g = h′ ◦ i, which reveals that i equalizes the pair (h, h′). Note
that this also exposes the identity of g as the composite h ◦ i.

To see that i is the equalizer of (h, h′), suppose that k ∈ Hom(U,X) such
that k equalizes (h, h′) so that h ◦ k = h′ ◦ k. This is enough to make the
following square commute:
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U X

Y Y × Y

k

h◦k (h, h′)

∆

Now, we can use the universal property of the pullback to deduce the
existence of a unique morphism φ : U → I such that the two triangles in
the below diagram commute:

U

I X

Y Y × Y

φ

k

h◦k

i

g (h, h′)

∆

The commutativity of the top triangle proves that i is the equalizer of the
pair (h, h′) as required.

The next lemma answers the question of whether the category Pt(C ) of
split epimorphisms in C has pullbacks. As one would expect, it turns out
that the pullbacks are inherited from C .

Lemma 1.4.3. Let C be a category with pullbacks. Then, the category
Pt(C ) also has pullbacks. Furthermore, the functor ¶C : Pt(C )→ C
preserves pullbacks.

Proof. Assume that C is a category with pullbacks. In order to
communicate the proof properly, we will require some compact notation.
We will abbreviate a split epimorphism in C

X Y
f

s

as X ↔ Y . Suppose that we have the following diagram in Pt(C ):

X ′′ ↔ Y ′′

X ′ ↔ Y ′ X ↔ Y

a1,b1

a0,b0

Ignoring the morphisms which comprise the split epimorphisms in the above
diagram, we find two separate diagrams in C . Since C has pullbacks, we
can take pullbacks of both diagrams to obtain the following diagram in C :
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P,Q X ′′ ↔ Y ′′

X ′ ↔ Y ′ X ↔ Y

p1,q1

p0,q0 a1,b1

a0,b0

This is a diagram in C because we do not know yet whether P and Q are
related by a split epimorphism. To construct a split epimorphism between
P and Q, first consider the following commutative square in C :

P Y ′′

Y ′ Y

f ′′◦p1

f ′◦p0 b1

b0

By the universal property of the pullback, there exists a unique morphism
h : P → Q such that the two triangles in the following diagram commute:

P

Q Y ′′

Y ′ Y

h

f ′′◦p1

f ′◦p0

q1

q0 b1

b0

By applying the universal property of the pullback again on the
commutative square

Q X ′′

X ′ X

s′′◦q1

s′◦q0 a1

a0

we find that there exists a unique morphism g : Q→ P such that the two
triangles in the following diagram commute:

Q

P X ′′

X ′ X

g

s′′◦q1

s′◦q0

p1

p0 a1

a0
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It remains to show that h ◦ g = idQ. We know from the diagrams above
that p1 ◦ g = s′′ ◦ q1 and q1 ◦ h = f ′′ ◦ p1. By combining these two equations,
we find that q1 ◦ (h ◦ g) = q1. Similarly, q0 ◦ (h ◦ g) = q0. Notice that the
morphism h ◦ g : Q→ Q makes the two triangles in the following diagram
commute:

Q

Q Y ′′

Y ′ Y

h◦g

q1

q0

q1

q0 b1

b0

But, the identity map idQ : Q→ Q also makes the same diagram commute.
Thus, by uniqueness from the universal property of the pullback,
idQ = h ◦ g. This shows that h : P → Q is a split epimorphism and thus,
the square in Pt(C ) commutes:

P ↔ Q X ′′ ↔ Y ′′

X ′ ↔ Y ′ X ↔ Y

p1,q1

p0,q0 a1,b1

a0,b0

This is indeed a pullback in Pt(C ) since we can use the universal property
of the pullbacks (P, p0, p1) and (Q, q0, q1) in C to construct the appropriate
morphisms in Pt(C ) (or pairs of morphisms in C ). Furthermore, the
functor ¶C preserves pullbacks because it maps the above commutative
square in Pt(C ) to the following commutative square in C :

Q Y ′′

Y ′ Y

q1

q0 b1

b0

This is a pullback in C by construction.

Unsurprisingly, a similar conclusion also holds for the category of reflexive
graphs RGr(C ).

Lemma 1.4.4. Let C be a category with pullbacks. Then, the category
RGr(C ) also has pullbacks. Furthermore, the functor U0 : RGr(C )→ C
preserves pullbacks.
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Proof. Assume that C is a category with pullbacks. We will denote a
reflexive graph on X

G X
d0

d1

s

by G
 X. Suppose that we have the following diagram in C :

G′′ 
 X ′′

G′ 
 X ′ G
 X

a1,b1

a0,b0

Ignoring the morphisms which comprise each reflexive graph, we obtain two
different graphs in C . Since C has pullbacks, we can form the pullbacks of
both graphs to obtain the commutative square

P,Q G′′ 
 X ′′

G′ 
 X ′ G
 X

p1,q1

p0,q0 a1,b1

a0,b0

Similarly to 1.4.3, we have to show that P is a reflexive graph for Q. The
procedure is almost the same as in 1.4.3. We apply the universal property
of the pullback twice in C to deduce the existence of morphisms
h1, h2 : P → Q such that the following diagrams commute in C :

P

Q X ′

X ′′ X

h1

d′0◦p1

d′′0◦p0

q1

q0 b1

b0

P

Q X ′

X ′′ X

h2

d′1◦p1

d′′1◦p0

q1

q0 b1

b0
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It remains to show that h1 and h2 have a common section (right inverse).
Applying the universal property of the pullback once more, we obtain the
following commutative diagram in C :

Q

P G′

G′′ G

g

s′◦q1

s′′◦q0

p1

p0 a1

a0

Now the first two pullback diagrams tell us that q1 ◦ h2 = d′1 ◦ p1 and
q1 ◦ h1 = d′0 ◦ p1. The third diagram tells us that p1 ◦ g = s′ ◦ q1. By
precomposing the first two relations with g, we find that q1 ◦ (h2 ◦ g) = q1

and q1 ◦ (h1 ◦ g) = q1. Similar statements hold for q0 in place of q1. So, the
following diagram involving a pullback square commutes:

Q

Q X ′

X ′′ X

h1◦g

q1

q0

q1

q0 b1

b0

By uniqueness of the pullback, h1 ◦ g = h2 ◦ g = idQ. Thus, we obtain the
following commutative square in RGr(C ):

P 
 Q G′′ 
 X ′′

G′ 
 X ′ G
 X

p1,q1

p0,q0 a1,b1

a0,b0

This defines a pullback in RGr(C ) because we can use the universal
property of the pullback in C for (P, p0, p1) and (Q, q0, q1) to construct the
appropriate morphisms. Moreover, the functor U0 preserves pullbacks
because it sends the above pullback square in RGr(C ) to

Q X ′

X ′′ X

q1

q0 b1

b0
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This is a pullback square in C by construction.

We also note from [Bou17, Exercise 1.5.6] that conveniently, the
subcategory of reflexive relations Ref(C ) is stable under pullbacks in
RGr(C ).

Our next task is to prove a few results which elucidate common situations
where pullbacks arise from.

Lemma 1.4.5. Let C be a category with pullbacks. Consider the following
diagram in C , which consists of adjacent commutative squares:

A A′ A′′

B B′ B′′

α

h1

α′

h2 h3

β β′

If both squares in the above diagram are pullback squares, then the outside
square is also a pullback square. Furthermore, if the outside square and the
right hand side square are pullbacks, then the left hand side square is also a
pullback.

Proof. Assume that C is a category with pullbacks. Suppose that we have
the following diagram shown in the statement of the lemma. Assume that
the adjacent commutative squares are pullbacks. We want to show that the
following square is a pullback square:

A A′′

B B′′

α′◦α

h1 h3

β′◦β

Suppose that we are given the commutative square

X A′′

B B′′

γ

g h3

β′◦β

Then, the following diagram is also a commutative square

X A′′

B′ B′′

γ

β◦g h3

β′◦β
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and by the universal property of the pullback, there exists a unique
morphism φ : X → A′ such that the triangles in the following diagram
commute:

X

A′ A′′

B′ B′′

φ

γ

β◦g

α′

h2 h3

β′

The bottom left triangle gives rise to the commutative square

X A′

B B′

φ

g h2

β

Since the left square is also a pullback square, we can again use the
universal property of the pullback to deduce the existence of a unique
morphism ψ : X → A such that the following diagram commutes:

X

A A′

B B′

ψ

φ

g

α

h1 h2

β

Now observe that h1 ◦ ψ = g and

(α′ ◦ α) ◦ ψ = α′ ◦ φ = γ.

Therefore, the outer square is indeed a pullback square.

For the other direction, assume that the outside square and the right square
are both pullbacks. Suppose that we have the following commutative
diagram in C :

Y A′

B B′

δ

j h2

β
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Since the right square is commutative because it was assumed to be a
pullback, we find that β′ ◦ (β ◦ j) = β′ ◦ (h2 ◦ δ) and
(β′ ◦ β) ◦ j = h3 ◦ (α′ ◦ δ). Using the universal property of the pullback on
the outer square, there exists a unique morphism ρ : Y → A such that the
following diagram commutes:

Y

A A′′

B B′′

ρ

α′◦δ

j

α′◦α

h1 h3

β′◦β

It suffices to show that α ◦ ρ = δ. Note first that α ◦ ρ makes the following
diagram commute

Y

A′ A′′

B′ B′′

α◦ρ

α′◦δ

β◦j

α′

h2 h3

β′

But δ : Y → A′ also makes the above diagram commute. Since the right
hand side square is a pullback, we can use uniqueness of the universal
property of pullbacks to deduce that α ◦ ρ = δ. This demonstrates that
ρ : Y → A is the unique morphism which makes the following diagram
commute:

Y

A A′′

B B′′

ρ

δ

j

α

h1 h2

β

This demonstrates that the LHS square is a pullback as required.

One application of 1.4.5 is to prove the Dice lemma, which comprises
[Bou17, Corollary 1.6.3].
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Lemma 1.4.6. Let C be a category. Suppose that we have the commutative
cube in C (the image is from [Bou17, Corollary 1.6.3]):

Suppose further that the top, bottom and front faces of the cube are pullback
squares. Then, the back face of the cube must also be a pullback square.

Proof. Assume that C is a category and that we have the commutative
diagram in the statement of the lemma (evidently, the identities of the
objects and morphisms in the diagram are unimportant).

Assume that the top, bottom and front faces of the cube are pullback
squares. Then, from 1.4.5, the square consisting of both the front and top
faces must be a pullback square because its constituent squares are
pullbacks. But, by commutativity of the diagram, this means that the back
and bottom squares together form a pullback. Since the bottom face is a
pullback, another application of 1.4.5 reveals that the back face is a
pullback (since the bottom face is to the right of the back face).

Notice that by an identical argument, if the top, bottom, front and left
faces of the cube are all pullback squares, then the remaining two faces of
the cube (the right and back faces) must also be pullbacks.

Here is a curious feature about the proof of 1.4.5. When we reached the
point where it suffices to show that α ◦ ρ = δ, it is tempting to write
α′ ◦ (α ◦ ρ) = α′ ◦ δ and cancel out the α′. However, in 1.4.5, α′ is not a
monomorphism, which renders this line of reasoning invalid. On the
flipside, if α′ was a monomorphism, then this step works, producing the
following lemma:

Lemma 1.4.7. Let C be a category with pullbacks. Consider the following
diagram in C , which consists of adjacent commutative squares:

37



A A′ A′′

B B′ B′′

α

h1

α′

h2 h3

β β′

Suppose that α′ is a monomorphism. If the outside square is a pullback,
then the left hand side square is also a pullback.

Proof. Assume that C is a category with pullbacks and that the outside
square is a pullback. Assume that α′ is a monomorphism. Suppose that we
have the following commutative diagram in C :

Y A′

B B′

δ

j h2

β

Since the right square is commutative because it was assumed to be a
pullback, we find that β′ ◦ (β ◦ j) = β′ ◦ (h2 ◦ δ) and
(β′ ◦ β) ◦ j = h3 ◦ (α′ ◦ δ). Using the universal property of the pullback on
the outer square, there exists a unique morphism ρ : Y → A such that the
following diagram commutes:

Y

A A′′

B B′′

ρ

α′◦δ

j

α′◦α

h1 h3

β′◦β

It suffices to show that α ◦ ρ = δ. We know from the top triangle in the
above diagram that α′ ◦ (α ◦ ρ) = α′ ◦ δ. Since α′ is a monomorphism,
α ◦ ρ = δ. Hence, the following diagram commutes

Y

A A′′

B B′′

ρ

δ

j

α

h1 h2

β

and hence, the left hand side square is a pullback square.
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1.5 Inverse image

Recall the notion of a reflexive relation from section 1.3. This was
motivated by wanting to generalise the notion of an equivalence relation on
sets to different categories. Before we proceed to define internal equivalence
relations in a category C , we will first discuss the notion of an inverse
image in the category RGr(C ).

Definition 1.5.1. Let C be a category with pullbacks. From 1.4.4, the
category RGr(C ) must also have pullbacks. Let G be a reflexive graph on
Y given by

G Y
d0

d1

s0

and f : X → Y be a morphism. The inverse image of G by f , which is
denoted by f−1(G), is the following pullback in the category RGr(C ):

f−1(G) G

∇X ∇Y

(fG,f)

dG

∇f

Recall that ∇X and ∇Y denote indiscrete reflexive relations and that the
morphism dG : G→ ∇Y was constructed in 1.3.1.

Let us given an explicit description of the morphism ∇f : ∇X → ∇Y . This
is just the pair of morphisms ((f, f), f) in C . This observation is
substantiated by the fact that the square (or rather three squares) in C
commutes:

X ×X X

Y × Y Y

π1

(f, f)

π2

∆

f

π1

π2

∆

By definition, the inverse image f−1(G) is a pullback in the category
RGr(C ). Hence, f−1(G) defines a reflexive graph on the object X. From
1.3.1, the morphism in RGr(C ) from f−1(G) to ∇X must be the morphism
df−1(G) which is unique. What we are primarily interested in is the
universal property satisfied by the inverse image.
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Lemma 1.5.1. Let C be a category with pullbacks. Let G be a reflexive
graph on Y given by

G Y
d0

d1

s0

and f : X → Y be a morphism. If Γ is a reflexive graph on X, then there
exists a morphism (f, f̌) : Γ→ G if and only if there exists a factorisation
Γ→ f−1(G) above X.

Proof. Assume that C is a category with pullbacks and G is a reflexive
graph on Y . Assume that f : X → Y is a morphism in C so that the
inverse image f−1(G) can be formed as the pullback square

f−1(G) G

∇X ∇Y

(fG,f)

df−1(G) dG

∇f

Assume that Γ is a reflexive graph on X. First, assume that there exists a
morphism (f̌ , f) : Γ→ G. Then, the following diagram must commute:

Γ G

∇X ∇Y

(f̌ ,f)

dΓ dG

∇f

We know that the left downwards pointing arrow in the above commutative
square is dΓ from 1.3.1, due to uniqueness. By exploiting the universal
property of the pullback, there exists a morphism φ in RGr(C ) from Γ to
f−1(G) such that the two triangles in the following diagram commute in
RGr(C ):

Γ

f−1(G) G

∇X ∇Y

φ

(f̌ ,f)

dΓ

(fG,f)

df−1(G) dG

∇f
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So, (f̌ , f) : Γ→ G factors as the composite (fG, f) ◦ φ.

Conversely, suppose that we have a morphism α : Γ→ f−1(G) in the
category RGr(C ) above X. Then, we can define a morphism in RGr(C )
from Γ to G by the composite (fG, f) ◦ α. This completes the proof.

The next result demonstrates an important invariant of the inverse image.

Lemma 1.5.2. Let C be a category with pullbacks. Let G be a reflexive
graph on Y given by

G Y
d0

d1

s0

and f : X → Y be a morphism. If G is a reflexive relation, then the inverse
image f−1(G) is also a reflexive relation.

Proof. Assume that C is a category with pullbacks. Assume that G is a
reflexive graph on Y and f : X → Y is a morphism. The inverse image
f−1(G) satisfies the following commutative diagram in RGr(C ):

f−1(G) G

∇X ∇Y

(fG,f)

df−1(G) dG

∇f

The morphism (fG, f) : f−1(G)→ G induces the following commutative
diagram in C :

f−1(G) X

G Y

e1

fG

e0

t0

f

d1

d0

s0

In order to demonstrate that f−1(G) is a reflexive relation on X, we must
show that (e0, e1) : f−1(G)→ X ×X is a monomorphism. To this end,
suppose that f1, f2 ∈ HomC (Z, f−1(G)) and that (e0, e1) ◦ f1 = (e0, e1) ◦ f2.

To show: (a) f1 = f2.
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(a) Since f ◦ e0 = d0 ◦ fG and f ◦ e1 = d1 ◦ fG, we find that
(f, f) ◦ (e0, e1) ◦ f1 = (f, f) ◦ (e0, e1) ◦ f2 and

(d0, d1) ◦ (fG, fG) ◦ f1 = (d0, d1) ◦ (fG, fG) ◦ f2.

But, G is a reflexive relation on Y . This means that the morphism
(d0, d1) ∈ HomC (G, Y × Y ) is a monomorphism. In conjunction with the
above equation, we obtain fG ◦ f1 = fG ◦ f2.

Recall how pullbacks in RGr(C ) were constructed in 1.4.4. We constructed
two different pullback squares in C and then used the universal property of
the pullback to turn these into a single pullback square in RGr(C ). Using
this observation, we find that the following square in C is a pullback:

f−1(G) G

X ×X Y × Y

fG

(e0,e1) (d0,d1)

(f,f)

Notice that the morphism f1 makes the following diagram commute:

Z

f−1(G) G

X ×X Y × Y

f1

fG◦f2

(e0,e1)◦f2

fG

(e0,e1) (d0,d1)

(f,f)

But, f2 also makes the diagram commute. So, by uniqueness associated to
the universal property of the pullback, f1 = f2.

Part (a) reveals that (e0, e1) : f−1(G)→ X ×X is a monomorphism in C .
Therefore, f−1(G) must be a reflexive relation on X.

An important consequence of the proof of 1.5.2 is that a very similar proof
technique can be used to prove the following result, which we will state
below (but not prove).

Theorem 1.5.3. Let C be a category with pullbacks. Then the subcategory
Ref(C ) of RGr(C ) is stable under pullbacks in RGr(C ).

We will end this section with another definition we require.
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Definition 1.5.2. Let C be a category with pullbacks and R, S be
reflexive relations on X. The intersection R ∩ S is the reflexive relation
on X given by the diagonal of the pullback

R ∩ S S

R ∇X

ιS

ιR
dR∩S

dS

dR

where ιS and ιR are the inclusion morphisms.

As explained in [Bou17, Exercise 1.5.7], the inverse image along a
morphism f : X → Y preserves the intersection of reflexive relations. This
means that in the category Ref(C ), f−1(R ∩ S) ∼= f−1(R) ∩ f−1(S).

1.6 Internal equivalence relations

We have now built up enough theory to describe our generalisation of an
equivalence relation in category theory. After our definition of a reflexive
relation (see 1.3.2), we briefly discussed why it is a valid generalisation of
the usual notion of a reflexive relation on a set. We will take the opposite
approach in this section and begin by motivating the ideas behind the
definition of an internal equivalence relation before providing the definition.

Our starting point lies with the usual idea of an equivalence relation on a
set.

Definition 1.6.1. Let X be a set. A relation R ⊆ X ×X is said to be an
equivalence relation on the set X if R satisfies the following three
properties:

1. For all x ∈ X, (x, x) ∈ R.

2. For all x, x′ ∈ X, if (x, x′) ∈ R, then (x′, x) ∈ R

3. For all x, x′, x′′ ∈ X, if (x, x′) ∈ R and (x′, x′′) ∈ R, then (x, x′′) ∈ R.

If only the first property is satisfied in the above definition, then we recover
the definition of a reflexive relation on a set. Before we proceed, we want to
point out that instead of writing (x, x′) ∈ R, [Bou17] writes xRx′. We will
also adopt this notation.
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The first step to generalising the above definition to category theory is to
find a condition which condenses the second and third properties to a single
property. This is precisely what the horn-filler condition does.

Lemma 1.6.1. Let X be a set and R be a reflexive relation on X. Then, R
is an equivalence relation if and only if R satisfies the horn-filler condition
— for all x, x′, x′′ ∈ X, if xRx′ and xRx′′, then x′Rx′′.

Proof. Assume first that R is an equivalence relation on the set X. Assume
that xRx′ and xRx′′. By symmetry, x′Rx and by transitivity applied to
x′Rx and xRx′′, x′Rx′′. Hence, the horn-filler condition must be satisfied.

For the converse, suppose that R is a reflexive relation on X which satisfies
the horn-filler condition. To see that symmetry is satisfied, assume that
xRx′. Then, since xRx (because R is reflexive), we can apply the horn-filler
condition to demonstrate that x′Rx. To see that transitivity is satisfied,
assume that xRx′ and x′Rx′′. By symmetry, x′Rx and by the horn-filler
condition applied to x′Rx and x′Rx′′, we obtain xRx′′ as required.

The natural question to ask here is: how does the horn-filler condition
generalise to category theory? Suppose that C is a category with pullbacks,
X is an object in C and R is the following reflexive relation on X:

R X
dR1

dR0

The identity of the common section is not important here. Form the
following pullback square from the pair (dR0 , d

R
0 ).

R[dR0 ] R

R X

d0

d1 dR0

dR0

This turns R[dR0 ] into a reflexive relation on R, which is coequalized by dR0 .
This will become important in what follows. Now consider the following
diagram in C :

R[dR0 ] R

R X

d1

d0

d2 dR1

dR1

dR0
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This is a morphism (d2, d
R
1 ) of reflexive relations. The two commutative

squares reveal that dR0 ◦ d2 = dR1 ◦ d0 and dR1 ◦ d2 = dR1 ◦ d1. Let s ∈ R[dR0 ]
and suppose briefly that we are working in the category Set so that the
usual definition of an equivalence relation on a set applies. Recall from the
construction of the kernel pair that (dR0 ◦ d0)(s) = (dR0 ◦ d1)(s). Hence, the
following pairs are contained in our reflexive relation R ⊆ X ×X

((dR0 ◦d0)(s), (dR1 ◦d0)(s)), ((dR0 ◦d1)(s), (dR1 ◦d1)(s)), ((dR0 ◦d2)(s), (dR1 ◦d2)(s)).

But since dR0 ◦ d2 = dR1 ◦ d0 and dR1 ◦ d2 = dR1 ◦ d1, the third pair is just
((dR1 ◦ d0)(s), (dR1 ◦ d1)(s)), which is an element of our reflexive relation. If
we define x = (dR0 ◦ d0)(s), x′ = (dR1 ◦ d0)(s) and x′′ = (dR1 ◦ d1)(s), then we
have demonstrated that if xRx′ and xRx′′, then x′Rx′′ which is exactly the
horn-filler condition.

It remains to construct the morphism (d2, d
R
1 ) : R[dR0 ]→ R in Ref(C ). One

way to do this is via the pullback square given by the inverse image
(dR1 )−1(R). Explicitly, this yields the commutative diagram in Ref(C )

R[dR0 ]

(dR1 )−1(R) R

∇R ∇X

(ρ1,ρ2)

(d2,dR1 )

d
R[dR0 ]

(f,dR1 )

d
(dR1 )−1(R) dR

∇
dR1

Recall the explicit description of the two unique morphisms dR[dR0 ] and
d(dR1 )−1(R) from 1.3.1. We have

dR[dR0 ] = ((d0, d1), idR) and d(dR1 )−1(R) = ((e0, e1), idR)

where e0, e1 are the morphisms constituting the reflexive relation (dR1 )−1(R)
on R. The main point here is that the second morphism in each pair is the
identity idR on R. By commutativity of the leftmost triangle, ρ2 = idR.
This ensures that we can define the morphism (d2, d

R
1 ) : R[dR0 ]→ R, by

setting d2 = f ◦ ρ1.

Therefore, if we have a unique morphism (ρ1, ρ2) : R[dR0 ]→ (dR1 )−1(R)
induced by the pullback square from (dR1 )−1(R), then we can always
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construct (d2, d
R
1 ). In [Bou17], the first condition is written as

R[dR0 ] ⊂ (dR1 )−1(R).

Now we can generalise the idea of an equivalence relation with the following
important definition.

Definition 1.6.2. Let C be a category with pullbacks. Let X be an object
in C and R be the following reflexive relation on X:

R X
dR1

dR0

We say that R is an internal equivalence relation if R satisfies
R[dR0 ] ⊂ (dR1 )−1(R).

In order to parse the definition, we will go over some examples of internal
equivalence relations.

Example 1.6.3. Let C be a category with pullbacks. Let X be an object
in C . We claim that the discrete reflexive relation ∆X is an internal
equivalence relation on X. The discrete reflexive relation is given by the
diagram

X X
idX

idX

idX

We must show that R[idX ] ⊂ id−1
X (∆X), where id−1

X (∆X) is the inverse
image formed from the pullback square

id−1
X (∆X) ∆X

∇X ∇X

(f,idX)

d
id−1
X

(∆X ) (∆,idX)

∇idX

It suffices to construct a commutative square of the form

R[idX ] ∆X

∇X ∇X

dR[idX ] (∆,idX)

∇idX
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where ∆ = (idX , idX) is the diagonal morphism from X to X ×X. Recall
that R[idX ] is formed as the pullback of the pair (idX , idX), giving the
following commutative square in C :

R[idX ] X

X X

p0

p1 idX

idX

Since idX is an isomorphism, 1.1.2 tells us that p0 = p1. It is not too hard
to observe that the pair (p1, idX) : R[idX ]→ ∆X is a morphism in Ref(C )
because the following diagram commutes in C :

R[idX ] X

X X

p1

p0=p1

p1 idX

idX

idX

Since the morphism dR[idX ] = ((p1, p1), idX) (see 1.3.1), we find that the
square in Ref(C ) commutes

R[idX ] ∆X

∇X ∇X

(p1,idX)

dR[idX ] (∆,idX)

∇idX

Thus, by the universal property of the pullback, we obtain a unique
morphism (φ1, φ2) : R[idX ]→ id−1

X (∆X) such that the following diagram
commutes

R[idX ]

id−1
X (∆X) ∆X

∇X ∇X

(φ1,φ2)

(p1,idX)

dR[idX ]

(f,idX)

d
id−1
X

(∆X ) (∆,idX)

∇idX
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Therefore, R[idX ] ⊂ id−1
X (∆X) and so, the discrete reflexive relation is in

fact an internal equivalence relation.

Example 1.6.4. Following on from the previous example, we claim also
that the indiscrete reflexive relation ∇X on X is also an internal equivalence
relation. Recall that the indiscrete reflexive relation is given by the diagram

X ×X X
π2

π1

∆

We must show that R[π1] ⊂ π−1
2 (∇X), where π−1

2 (∇X) is formed from the
pullback

π−1
2 (∇X) ∇X

∇X×X ∇X

(f,π2)

dπ2 (idX×X ,idX)

∇π2

We want to construct a commutative square of the form

R[π1] ∇X

∇X×X ∇X

dR[π1] (idX×X ,idX)

∇π2

The commutative square we are after is lying in plain sight

R[π1] ∇X

∇X×X ∇X

∇π2◦dR[π1]

dR[π1] (idX×X ,idX)

∇π2

The universal property of the pullback then gives us a unique morphism
(φ1, φ2) : R[π1]→ π−1

2 (∇X) such that the following diagram commutes:

R[π1]

π−1
2 (∇X) ∇X

∇X×X ∇X

(φ1,φ2)

∇π2◦dR[π1]

dR[π1]

(f,π2)

dπ2 (idX×X ,idX)

∇π2
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Therefore, R[π1] ⊂ π−1
2 (∇X) and consequently, the indiscrete reflexive

relation ∇X must be an internal equivalence relation.

We denote by Equ(C ) the subcategory of Ref(C ) whose objects are
internal equivalence relations. Another remark we will make here is that by
symmetry, an equivalent condition to R[dR0 ] ⊂ (dR1 )−1(R) in the definition
1.6.2 is R[dR1 ] ⊂ (dR0 )−1(R). Another equivalent formulation is that the
intersection R[dR0 ] ∩ (dR1 )−1(R) ∼= R[dR0 ].

Definition 1.6.5. Let C be a category with pullbacks and R and S denote
reflexive relations on the objects X and Y respectively. Let (f̌ , f) : R→ S
be a morphism in Ref(C ):

R X

S Y

dR1

dR0

f̌ f

dS1

dS0

We say that (f̌ , f) is fibrant if the square indexed by 0 is a pullback square.

It turns out that in the definition of fibrant, we do not care which square is
a pullback, as the following lemma suggests

Lemma 1.6.2. Let C be a category with pullbacks and R and S denote
reflexive relations on the objects X and Y respectively. Let (f̌ , f) : R→ S
be a morphism in Ref(C ). Then, (f̌ , f) is fibrant if and only if the square
indexed by 1 is a pullback.

Proof. Assume that C is a category with pullbacks and R and S are
reflexive relations on the objects X and Y respectively. Assume that
(f̌ , f) : R→ S is a morphism in Ref(C ), given by the diagram

R X

S Y

dR1

dR0

f̌ f

dS1

dS0

49



To show: (a) If (f̌ , f) is fibrant, then the square indexed by 1 is a pullback.

(b) If the square indexed by 1 is a pullback, then (f̌ , f) is fibrant.

(a) Suppose that we have the following commutative square in C :

T X

S Y

q0

q1 f

dS1

Then, the square below is also commutative:

T X

S Y

q0

sS0 ◦dS1 ◦q1 f

dS0

Here, sS0 and sR0 are the sections associated with the reflexive relations S
and R respectively. Using the fact that (f̌ , f) is fibrant, we can use the
pullback to deduce the existence of a unique morphism φ : T → R such that
the following diagram commutes:

T

R X

S Y

φ

q0

sS0 ◦dS1 ◦q1

dR0

f̌ f

dS0

Finally, we observe that the below diagram also commutes

T

R X

S Y

sR0 ◦dR0 ◦φ

q0

sS0 ◦dS1 ◦q1

dR1

f̌ f

dS1

The top triangle commutes because

dR1 ◦ (sR0 ◦ dR0 ◦ φ) = dR0 ◦ φ = q0.
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The bottom triangle commutes because

f̌ ◦ (sR0 ◦ dR0 ◦ φ) = (sS0 ◦ f) ◦ dR0 ◦ φ
= sS0 ◦ f ◦ q0

= sS0 ◦ dS1 ◦ q1.

Therefore, the diagram reveals that the square indexed by 1 is a pullback.

(b) By repeating the argument in part (a) while interchanging the indices 0
and 1 (except for the sections), we also achieve the statement of part
(b).

An additional component of 1.6.2 is that if f is a monomorphism, then
R ∼= f−1(S) or equivalently, R ⊂ f−1(S) (which is a result of the fibrant
morphism (f̌ , f)) and f−1(S) ⊂ R. Unfortunately, I am not sure how to
prove this! The full statement of 1.6.2 is from [Bou17, Exercise 1.6.9].

Example 1.6.6. Here is an important example of a fibrant morphism from
[Bou17, Proposition 1.6.10]. Let R be an internal equivalence relation on
X. The morphism (d2, d

R
1 ) induced by the inclusion R[d0] ⊂ d−1

1 (R) is
fibrant. That is, the commutative squares in the diagram below indexed by
0 (or 1) are pullbacks

R[dR0 ] R X

R X

d1

d0

d2 dR1

dR0

dR1

dR0

Example 1.6.6 will play a prominent role in the next lemma, which captures
the essence of the symmetry condition associated to an equivalence relation.

Lemma 1.6.3. Let C be a category with pullbacks and R be an internal
equivalence relation on X. Then, there exists a unique morphism
σR : R→ R such that dR0 ◦ σR = dR1 and dR1 ◦ σR = dR0 .

Proof. Assume that C is a category with pullbacks and R is an internal
equivalence relation on X. Then, there exists a fibrant morphism
(d2, d

R
1 ) : R[dR0 ]→ R in Ref(C ), given by the following diagram in C :
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R[dR0 ] R X

R X

d1

d0

d2 dR1

dR0

dR1

dR0

Let us first use the pullback square associated with R[dR0 ] in order to
deduce the existence of a unique morphism u : R[dR0 ]→ R[dR0 ] in C such
that the following diagram commutes:

R[dR0 ]

R[dR0 ] R

R X

u

d1

d0

d0

d1 dR0

dR0

Now we use the fact that (d2, d
R
1 ) is fibrant, alongside the universal

property of the pullback, to find a unique morphism β : R→ R[dR0 ] such
that the following diagram commutes:

R

R[dR0 ] R

R X

β

idR

idR

d1

d2 dR1

dR1

Now consider the unique composite d2 ◦ u ◦ β : R→ R. Then, we have

dR0 ◦ (d2 ◦ u ◦ β) = (dR1 ◦ d0) ◦ u ◦ β
= dR1 ◦ (d1 ◦ β)

= dR1 ◦ idR = dR1 .

and
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dR1 ◦ (d2 ◦ u ◦ β) = (dR1 ◦ d1) ◦ u ◦ β
= (dR1 ◦ d0) ◦ β
= dR0 ◦ (d2 ◦ β)

= dR0 ◦ idR = dR0 .

Thus, σR = d2 ◦ u ◦ β is the desired morphism.

Similarly to 1.6.3, there is an appropriate characterisation of the
transitivity property of an equivalence relation.

Lemma 1.6.4. Let C be a category with pullbacks and R be an internal
equivalence relation on X. Let (R×X R, q0, q1) be the pullback of the
morphisms dR0 , d

R
1 : R→ X such that dR0 ◦ q0 = dR1 ◦ q1. Then, there exists a

unique morphism τ : R×X R→ R such that dR0 ◦ τ = dR0 ◦ q1 and
dR1 ◦ τ = dR1 ◦ q0.

I attempted to prove this, but to no avail.

Why is it reasonable to assume that 1.6.4 holds? There is an alternative
definition of 1.6.2 which is widely used in the literature. This alternative
definition says roughly that R is an equivalence relation on X whenever R
is a reflexive relation on X, which is further equipped with the unique
morphisms σR : R→ R and τ : R×X R→ R from 1.6.3 and 1.6.4
respectively. For instance, see [Bor94b, Proposition 2.5.4] and [BG04, Page
167]. With the interest of progressing further, we will adopt this alternative
definition for the major theorem we will prove next.

Theorem 1.6.5. Let C be a category with pullbacks and S be a reflexive
relation on an object X. Let T be another object in C . Then, the pairs of
morphisms (h, h′) : T → X ×X which can be factorised through the internal
equivalence relation S, determine an equivalence relation on HomC (T,X)
in the usual sense if and only if S is an internal equivalence relation.

Proof. First assume that C is a category with pullbacks and S is an
internal equivalence relation on an object X:

S X
d1

d0

s0
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From the definition of internal equivalence relation in [BG04, Page 167],
there exists unique morphisms σ : S → S and τ : S ×X S → S such that for
σ, d0 ◦ σ = d1 and d1 ◦ σ = d0. Furthermore, recall that S ×X S is the
pullback

S ×X S S

S X

q0

q1 d1

d0

Then, τ must satisfy d1 ◦ τ = d1 ◦ q1 and d0 ◦ τ = d0 ◦ q0.

Assume that T is another object in C . We claim that the pairs of
morphisms which factor through S

{(h, h′) ∈ HomC (T,X)×HomC (T,X) | h = d0◦φ, h′ = d1◦φ where φ ∈ HomC (T, S)}
(1.1)

is an equivalence relation on HomC (T,X). Call this set H.

To see that reflexivity holds, we must show that (h, h) ∈ H for all
h ∈ HomC (T,X). Consider the morphism s0 ◦ h ∈ HomC (T, S). Then,
h = d0 ◦ (s0 ◦ h) = d1 ◦ (s0 ◦ h). By definition, (h, h) ∈ H as required.

To see that symmetry holds, assume that (h, h′) ∈ H where
h, h′ ∈ HomC (T,X). Then, there exists α ∈ HomC (T, S) such that
h = d0 ◦ α and h′ = d1 ◦ α. By using the symmetry morphism σ : S → S
(either from the definition or 1.6.3), h′ = d0 ◦ (σ ◦ α) and h = d1 ◦ (σ ◦ α).
Hence, (h′, h) ∈ H, which proves symmetry.

To see that transitivity holds, assume that (f, g), (g, h) ∈ H. Then, there
exists β, γ ∈ HomC (T, S) such that f = d0 ◦ β, g = d1 ◦ β = d0 ◦ γ and
h = d1 ◦ γ. Using the universal property of the pullback on

S ×X S S

S X

q0

q1 d1

d0

we find a unique morphism u : T → S ×X S such that the following
diagram commutes:
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T

S ×X S S

S X

u

β

γ

q0

q1 d1

d0

Now we have f = d0 ◦ (q0 ◦ u) = d0 ◦ (τ ◦ u) and
h = d1 ◦ (q1 ◦ u) = d1 ◦ (τ ◦ u). Therefore, (f, h) ∈ H.

Thus, H defines an equivalence relation on HomC (T,X).

For the converse, assume that H (as defined in (1.1)) is an equivalence
relation on HomC (T,X) in the usual sense of sets for any object T in C . In
order to emphasise the dependency on T , the set given in (1.1) will now be
called HT .

Firstly, to see that S is a reflexive relation, note that by reflexivity,
(idX , idX) ∈ HX . So, there exists s ∈ HomC (X,S) such that
idX = d0 ◦ s = d1 ◦ s. This shows that S is a reflexive relation on X.

To see that S is equipped with the symmetry morphism σ, observe that
(d0, d1) ∈ HS because d0 = d0 ◦ idS and d1 = d1 ◦ idS and by symmetry
(d1, d0) ∈ HS. Hence, there exists a morphism σ : S → S such that
d1 = d0 ◦ σ and d0 = d1 ◦ σ as required.

Finally, to see that S is equipped with the transitivity morphism τ , observe
that (d0 ◦ q1, d1 ◦ q1) and (d0 ◦ q0, d1 ◦ q0) are both elements of HS×XS. From
the pullback square associated to S ×X S, d1 ◦ q0 = d0 ◦ q1. By the
transitivity of HS×XS, (d0 ◦ q0, d1 ◦ q1) ∈ HS×XS and consequently, there
exists τ : S ×X S → S such that d0 ◦ q0 = d0 ◦ τ and d1 ◦ q1 = d1 ◦ τ .

Thus, S is an internal equivalence relation in the sense of [BG04, Page
167].

Theorem 1.6.5 establishes a connection between internal equivalence
relations and the definition of equivalence relations on sets that we are used
to in 1.6.1.
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1.7 More about equivalence relations

We dedicate this section to stating and proving various results about
internal equivalence relations. The first result is from [Bou17, Exercise
1.6.11, Part a]. It warrants a mention since it is powerful.

Theorem 1.7.1. Let C be a category with pullback. Then, the category of
internal equivalence relations Equ(C ) is invariant under pullback.
Specifically, if we have a pullback square in Equ(C )

T U

V W

α

β γ

δ

with U, V,W being internal equivalence relations, then T must be an
internal equivalence relation.

In particular, since the intersection and inverse image are pullbacks by
definition, internal equivalence relations must be preserved under
intersection and inverse image.

Our next task is to demonstrate that R[f ] is an internal equivalence relation
on X, where f : X → Y is any morphism in a category with pullbacks.

Theorem 1.7.2. Let C be a category with pullbacks and f : X → Y be a
morphism. Then, the reflexive relation R[f ] on X is formed by the
following pullback square in Ref(C ):

R[f ] ∆Y

∇X ∇Y

(f̌ ,f)

dR[f ] sY0

∇f

In particular, R[f ] is an internal equivalence relation on X, referred to as
the kernel equivalence relation of f .

Proof. Assume that C is a category with pullbacks and f : X → Y is a
morphism in C . First observe that the morphism (f̌ , f) : R[f ]→ ∆Y makes
the following diagram in C commute:
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R[f ] X

Y Y

pf1
f̌

pf0

sf0

f

idY

idY

idY

Hence, f̌ = f ◦ pf0 = f ◦ pf1 . In turn, the following square in Ref(C ) also
commutes:

R[f ] ∆Y

∇X ∇Y

(f◦pf0 ,f)

((pf0 ,p
f
1 ),idX) (∆,idY )

((f,f),f)

For clarity, we expanded the definition of all the involved Ref(C )
morphisms. Again, ∆ : Y → Y × Y is the diagonal map. To see that this
defines a pullback square, suppose that we have the following commutative
diagram in Ref(C ):

Q ∆Y

∇X ∇Y

(ǧ,g)

dQ sY0

∇f

Let q0, q1 : Q→ X be the morphisms associated with the reflexive relation
Q. By considering the morphism (ǧ, g) : Q→ ∆Y , the commutative
diagram it induces in C and the above commutative diagram in Ref(C ),
we find that g = f and ǧ = f ◦ q0 = f ◦ q1. Now we use the fact that R[f ] is
originally a pullback in C to deduce the existence of a unique morphism
α : Q→ R[f ] such that the following diagram commutes in C :

Q

R[f ] X

X Y

α

q0

q1

pf0

pf1
f

f
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Thus, (α, idX) : Q→ R[f ] is the unique morphism in Ref(C ) which makes
the following diagram commute:

Q

R[f ] ∆Y

∇X ∇Y

(α,idX)

(f◦q0,f)

((qf0 ,q
f
1 ),idX)

(f◦pf0 ,f)

((pf0 ,p
f
1 ),idX) (∆,idY )

((f,f),f)

Hence, R[f ] is given by the following pullback square in Ref(C ):

R[f ] ∆Y

∇X ∇Y

(f̌ ,f)

dR[f ] sY0

∇f

Here are two consequences of 1.7.2. Since ∇X ,∇Y and ∆Y are internal
equivalence relations and 1.7.1 holds, R[f ] must be an internal equivalence
relation on X. Secondly, the inverse image f−1(∆Y ) is also given by the
pullback square in Ref(C ):

f−1(∆Y ) ∆Y

∇X ∇Y

(f∆Y
,f)

dR[f ] sY0

∇f

Thus, R[f ] and f−1(∆Y ) must factor through each other as internal
equivalence relations, revealing that R[f ] ⊂ f−1(∆Y ), f−1(∆Y ) ⊂ R[f ] and
subsequently R[f ] ∼= f−1(∆Y ). A question which directly stems from this
is: what is the inverse image of the indiscrete reflexive relation ∇Y ?

Theorem 1.7.3. Let C be a category with pullbacks and X, Y be objects in
C . Let f : X → Y be a morphism in C . Then, ∇X

∼= f−1(∇Y ).

Proof. Assume that C is a category with pullbacks and f : X → Y is a
morphism in C . It suffices to show that the commutative square in Ref(C )
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∇X ∇Y

∇X ∇Y

∇f

d∇X d∇Y

∇f

is a pullback square. In its most explicit form, the commutative diagram is

∇X ∇Y

∇X ∇Y

((f,f),f)

((π1,X ,π2,X),idX) ((π1,Y ,π2,Y ),idY )

((f,f),f)

where π1,X , π2,X : X ×X → X are projection maps onto the first and second
factor respectively. Note that (π1,X ,π2,X) = idX×X and similarly for Y .

Suppose that we have the following commutative diagram in Ref(C ):

P ∇Y

∇X ∇Y

(p̌,p)

dP d∇Y

∇f

Let p0, p1 : P → X be the pair of morphisms in C associated to the
reflexive relation P . By commutativity of the above diagram, we find that
p̌ = (f ◦ p0, f ◦ p1) and p = f . Now observe that ((p0, p1), idX) : P → ∇X is
the unique morphism which makes the following diagram commute:

P

∇X ∇Y

∇X ∇Y

((p0,p1),idX)

((f◦p0,f◦p1),f)

((p0,p1),idX)

((f,f),f)

(idX×X ,idX) (idY×Y ,idY )

((f,f),f)

Thus, ∇X forms the following pullback square

∇X ∇Y

∇X ∇Y

∇f

d∇X d∇Y

∇f
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However, we also have the pullback square associated to the inverse image
f−1(∇Y ):

f−1(∇Y ) ∇Y

∇X ∇Y

(f∇Y ,f)

df−1(∇Y ) d∇Y

∇f

Therefore, f−1(∇Y ) and ∇X must factor through each other as reflexive
relations on X. So, f−1(∇Y ) ∼= ∇X as required.

The next theorem demonstrates when two kernel equivalence relations
factor through each other.

Theorem 1.7.4. Let C be a category with pullbacks. Suppose that
f : X → Y , m : Y → Z and g = m ◦ f : X → Z are morphisms in C . Then,
R[f ] ⊂ R[g]. Furthermore, if m is a monomorphism, then R[f ] ∼= R[g].

Proof. Assume that C is a category with pullbacks and f,m and g = m ◦ f
are the morphisms defined as in the statement of the theorem. We notice
that by our factorisation of g, the following diagram in Ref(C ) commutes:

R[f ] ∆Y ∆Z

∇X ∇Y ∇Z

(f◦pf0 ,f)

((pf0 ,p
f
1 ),idX) (∆,idY )

(m,m)

(∆,idZ)

((f,f),f) ((m,m),m)

Note that the left side commutative square is the pullback constructed in
1.7.2. Focusing on the outer square and using the universal property of the
pullback R[g], we deduce the existence of a morphism (φ, idX) : R[f ]→ R[g]
in Ref(C ) such that the following diagram commutes:

R[f ]

R[g] ∆Z

∇X ∇Z

(φ,idX)

(g◦pf0 ,g)

((pf0 ,p
f
1 ),idX)

(g◦pg0,g)

((pg0,p
g
1),idX) (∆,idZ)

((g,g),g)
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Therefore, R[f ] ⊂ R[g].

Now assume that m is a monomorphism. Our goal is to show that the RHS
square in the diagram below

R[f ] ∆Y ∆Z

∇X ∇Y ∇Z

(f◦pf0 ,f)

((pf0 ,p
f
1 ),idX) (∆,idY )

(m,m)

(∆,idZ)

((f,f),f) ((m,m),m)

is a pullback square. Suppose that we have the following commutative
square in Ref(C ):

Q ∆Z

∇Y ∇Z

(q̌,q)

((q0,q1),idY ) (∆,idZ)

((m,m),m)

From the above diagram, we must have q = m. Meanwhile, the morphism
(q̌, q) : Q→ ∆Z makes the following diagram in C commute:

Q Y

Z Z

q1

q̌

q0

m

idZ

idZ

idZ

So, q̌ = m ◦ q0 = m ◦ q1. Note that since m is a monomorphism, q0 = q1.
From this, observe that the morphism (q0, idY ) : Q→ ∆Y in Ref(C ) makes
the following diagram commute:

Q

∆Y ∆Z

∇Y ∇Z

(q0,idY )

(m◦q0,m)

((q0,q1),idY )

(m,m)

(∆,idY ) (∆,idZ)

((m,m),m)
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The morphism (q0, idY ) : Q→ ∆Y must be unique. To see why this is the
case, suppose that there exists another morphism (q′0, r) : Q→ ∆Y such
that the above diagram commutes. Then, from the top triangle,
(m,m) ◦ (q0, idY ) = (m,m) ◦ (q′0, r). Since (m,m) is a monomorphism,
(q0, idY ) = (q′0, r) as required.

So, both squares of the commutative diagram below are pullbacks

R[f ] ∆Y ∆Z

∇X ∇Y ∇Z

(f◦pf0 ,f)

((pf0 ,p
f
1 ),idX) (∆,idY )

(m,m)

(∆,idZ)

((f,f),f) ((m,m),m)

By 1.4.5, the outer square must also be a pullback in Ref(C ) and
consequently, R[g] must factor through R[f ]. So, R[g] ⊂ R[f ], thereby
proving that R[f ] ∼= R[g] in the case where m is a monomorphism.

The proof of 1.7.4 suggests that a monomorphism satisfies particularly nice
properties with regards to internal equivalence relations. This is formalised
below.

Theorem 1.7.5. Let C be a category with pullbacks and f : X → Y be a
morphism in C . Then, f is a monomorphism if and only if R[f ] ∼= ∆X .

Proof. Assume that C is a category with pullbacks and f : X → Y is a
morphism in C .

To show: (a) If f is a monomorphism, then R[f ] ∼= ∆X .

(b) If R[f ] ∼= ∆X , then f is a monomorphism.

(a) This proceed similarly to the proof of 1.7.4. Suppose that we have the
following commutative square in Ref(C ):

Q ∆Y

∇X ∇Y

(q̌,q)

((q0,q1),idX) (∆,idY )

((f,f),f)

From the above diagram, we must have q = f . Meanwhile, the morphism
(q̌, q) : Q→ ∆Z makes the following diagram in C commute:
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Q X

Y Y

q1

q̌

q0

f

idY

idY

idY

So, q̌ = f ◦ q0 = f ◦ q1. Note that since f is a monomorphism, q0 = q1.
From this, observe that the morphism (q0, idX) : Q→ ∆X in Ref(C ) makes
the following diagram commute:

Q

∆X ∆Y

∇X ∇Y

(q0,idX)

(f◦q0,f)

((q0,q1),idX)

(f,f)

(∆,idX) (∆,idY )

((f,f),f)

The morphism (q0, idX) : Q→ ∆Y must be unique. To see why this is the
case, suppose that there exists another morphism (q′0, r) : Q→ ∆X such
that the above diagram commutes. Then, from the top triangle,
(f, f) ◦ (q0, idX) = (f, f) ◦ (q′0, r). Since (f, f) is a monomorphism,
(q0, idX) = (q′0, r) as required. Therefore, the square below in Ref(C ) is a
pullback square

∆X ∆Y

∇X ∇Y

(f,f)

(∆,idX) (∆,idY )

((f,f),f)

However, we also have the pullback square

R[f ] ∆Y

∇X ∇Y

(fR,f)

dR[f ] (∆,idY )

((f,f),f)
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Thus, R[f ] and ∆X must factorise through each other, revealing that
R[f ] ∼= ∆X .

(b) Now assume that R[f ] ∼= ∆X . Assume that g, h : W → X are
morphisms which satisfy f ◦ g = f ◦ h. Since R[f ] ∼= ∆X , we have the
following pullback square in Ref(C ):

∆X ∆Y

∇X ∇Y

(f,f)

(∆,idX) (∆,idY )

((f,f),f)

and consequently, the following pullback square in C :

X Y

X ×X Y × Y

f

∆ ∆

(f,f)

Again, ∆ is the usual diagonal morphism. By using the universal property
of the pullback, there exists a unique morphism φ : W → X such that the
following diagram commutes:

W

X Y

X ×X Y × Y

φ

f◦g

(g,h)

f

∆ ∆

(f,f)

From the bottom left triangle, we have

∆ ◦ φ = (φ, φ) = (g, h)

and by uniqueness, φ = g = h. This demonstrates that f is a
monomorphism as required.
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One particular corollary of 1.7.5 mentioned in [Bou17, Exercise 1.6.13] is
that for all objects X in the category C , R[idX ] ∼= ∆X . We recall that idX
is the identity morphism on X.

The next lemma is a useful exercise in understanding the definition of the
intersection of two reflexive relations.

Lemma 1.7.6. Let C be a category with pullbacks. Consider the following
factorisation of the morphisms w : U → X and w′ : U → X ′ in C :

U

P X ′

X Y

φ

w′

w

h′

h f ′

f

Then, R[φ] ∼= R[w] ∩R[w′] as internal equivalence relations on U .

Proof. Assume that C is a category with pullbacks. Assume that the
factorisation φ of the morphisms w : U → X and w′ : U → X ′ in the
commutative diagram in the statement of the lemma holds.

To show: (a) R[φ] ⊂ R[w] ∩R[w′].

(b) R[w] ∩R[w′] ⊂ R[φ].

(a) It suffices to produce a pullback square in Ref(C ) of the form

R[φ] R[w′]

R[w] ∇U

We will let dw0 , d
w
1 : R[w]→ U be the morphisms associated with the

reflexive relation R[w] on U . Similar definitions apply for R[φ] and R[w′].
Using the universal property of the pullback on R[w] in C , there exists a
unique morphism α : R[φ]→ R[w] such that the following diagram
commutes
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R[φ]

R[w] U

U X

α

dφ0

dφ1

dw0

dw1 w

w

The outer square commutes because

w ◦ dφ0 = h ◦ (φ ◦ dφ0) = h ◦ (φ ◦ dφ1) = w ◦ dφ1 .
In a similar vein, we can apply the universal property of the pullback to
R[w′] in C to deduce the existence of a unique morphism α′ : R[φ]→ R[w′]
such that the following diagram commutes:

R[φ]

R[w′] U

U X

α′

dφ0

dφ1

dw
′

0

dw
′

1
w′

w′

Using the morphisms α and α′, we deduce that the following square in
Ref(C ) is commutative:

R[φ] R[w′]

R[w] ∇U

(α′,idU )

(α,idU ) ((dw
′

0 ,dw
′

1 ),idU )

((dw0 ,d
w
1 ),idU )

By definition, it must factor through R[w] ∩R[w′]:

R[φ]

R[w] ∩R[w′] R[w′]

R[w] ∇U

(α′,idU )

(α,idU )

ι′

ι dR[w′]

dR[w]
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where ι and ι′ are inclusion morphisms. This proves that
R[φ] ⊂ R[w] ∩R[w′].

(b) Consider the following commutative diagram below:

R[φ] R[w′] ∆X′

R[w] ∇U ∇X′

(α′,idU )

(α,idU )

(w′◦dw′0 ,w′)

dR[w′] (∆,idX′ )

dR[w] ((w′,w′),w′)

Notice that both the LHS and RHS squares are pullbacks. Hence, from
1.4.5, the outside square must also be a pullback square. Next, observe that
the following square in Ref(C ) commutes:

R[w] ∩R[w′] ∆X′

R[w] ∇X′

(w′◦dw′0 ,w′)◦(ι′,idU )

(ι,idU ) (∆,idU )

((w′,w′),w′)◦((dw0 ,dw1 ),idU )

Therefore, R[w] ∩R[w′] must factor through R[φ] as follows:

R[w] ∩R[w′]

R[φ] ∆X′

R[w] ∇X′

dR[w′]

dR[w]

Hence, R[w] ∩R[w′] ⊂ R[φ] as required. So, parts (a) and (b) demonstrate
that R[φ] ∼= R[w] ∩R[w′] as internal equivalence relations on U .

The next lemma is the content of [Bou17, Proposition 1.6.15]. It is labelled
as very useful and is also one of the few propositions in [Bou17, Chapter 1]
with an accompanying proof.

Lemma 1.7.7. Let C be a category with pullbacks. Suppose that
(f̃ , f) : R→ S is a morphism of equivalence relations, given by the
commutative diagram below:
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R X

S Y

dR1
f̃

dR0

sR0

f

dS1

dS0

sS0

Then, the diagram given below is a pullback in the category Equ(C ):

R ∩R[f ] ∆Y

R S

j

(f̌ ,f)

sY0

(f̃ ,f)

Here, j : R ∩R[f ]→ R is an inclusion of internal equivalence relations.

Proof. Assume that C is a category with pullbacks. Consider the following
cube in Equ(C ):

The double line is just the identity morphism (idY , idY ) : ∆Y → ∆Y . Notice
that the left and front faces of the cube are both pullbacks. Hence, from
1.4.5, the square formed from these two faces is also a pullback square.
However, from the commutativity of the cube, this means that the square
formed from the back and right faces is a pullback. Since
(idY , idY ) : ∆Y → ∆Y is a monomorphism (represented by the double line),
we can apply 1.4.7 to deduce that the back face of the cube is a pullback as
required.

We will finish this section by defining another type of equivalence relation.

Definition 1.7.1. Let C be a category with pullbacks. An internal
equivalence relation R on X is called effective when there exists a
morphism f : X → Y such that R ∼= R[f ].
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Example 1.7.2. We will work in the category of sets Set. Assume that T
defines an internal equivalence relation on X:

T X

dR1

dR0

s

We will show that T is an effective relation. Our first instinct is to form the
quotient set X/T :

T X X/T

t1

t0

s q

Recall that in Set, the projection morphisms q is the coequalizer of dR0 and
dR1 . Since we have the following pullback square in C ,

R[q] X

X X/T

pq0

pq1
q

q

T ⊂ R[q]. We claim also that R[q] ⊂ T . Since T is an internal equivalence
relation, we have the following pullback square in C :

R[t0] T

T X

d1

d0

d2 t1

t1

t0

Using the universal property of the pullback, we have the factorisation

R[q]

R[t0] T

T X

s◦pq0

s◦pq0

d1

d2 t1

t1
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Thus, R[q] ⊂ T and consequently, T ∼= R[q].

Equivalence relations in the categories Grp and Mon are also effective.
The final lemma of this section states that effective equivalence relations
are stable under the inverse image.

Lemma 1.7.8. Let C be a category with pullbacks and S be an effective
(internal) equivalence relation on Y . Let f : X → Y be a morphism. Then,
the inverse image f−1(S) is also an effective equivalence relation.

Proof. Assume that C is a category with pullbacks and S is an effective
equivalence relation on the object X. Assume that f : X → Y is a
morphism in C . Since f−1(S) is a formed as a pullback in Equ(C ), it must
be an internal equivalence relation as a result of 1.7.1.

Suppose that g : Y → Z is a morphism such that S ∼= R[g]. Due to this, the
following square is a pullback square in Equ(C ):

S ∆Z

∇Y ∇Z

(ǧ,g)

((dS0 ,d
S
1 ),idY ) (∆,idY )

((g,g),g)

From this, we construct the following commutative diagram:

f−1(S) S ∆Z

∇X ∇Y ∇Z

(f̌ ,f)

df−1(S)

(ǧ,g)

dS (∆,idY )

((f,f),f) ((g,g),g)

Notice that both the LHS and RHS squares are pullbacks. So, by 1.4.5, the
outer square is also a pullback. Therefore, from the definition of a kernel
equivalence relation, f−1(S) ∼= R[g ◦ f ] and f−1(S) is an effective
equivalence relation.

1.8 The square construction

Let C be a category with pullback and R, S be internal equivalence
relations on an object X in C . Let dR0 , d

R
1 : R→ X be the morphisms

associated with the equivalence relation R and sR0 : X → R be the
associated section. Similarly, let dS0 , d

S
1 : S → X be the morphisms

associated with the equivalence relation S and sS0 : X → S be the
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associated section.

Define ∆R
0 : R→ X ×X by ∆R

0 = (dR0 , d
R
1 ). The object S × S defines an

equivalence relation on X ×X with the associated pair of morphisms in
HomC (S × S,X ×X) given by

DS
0 = dS0 × dS0 and DS

1 = dS1 × dS1 .

Taking the inverse image of the equivalence relation S × S on X ×X along
∆R

0 produces the following pullback square in Equ(C ):

(∆R
0 )−1(S × S) S × S

∇R ∇X×X

((δS0 ,δ
S
1 ),∆R

0 )

((δR0 ,δ
R
1 ),idR) ((DS0 ,D

S
1 ),idX×X)

((∆R
0 ,∆

R
0 ),∆R

0 )

By the universal property, there exists a unique morphism
(σS, σ̌) : S × S → (∆R

0 )−1(S × S) such that the following diagram
commutes:

S × S

(∆R
0 )−1(S × S) S × S

∇R ∇X×X

(σS ,σ̌)

idS×S

((sR0 ◦dS0 ,sR0 ◦dS1 ),sR0 )

((δS0 ,δ
S
1 ),∆R

0 )

((δR0 ,δ
R
1 ),idR) ((DS0 ,D

S
0 ),idX×X)

((∆R
0 ,∆

R
0 ),∆R

0 )

Observe that σ̌ = sR0 and

δR0 ◦ σS ◦ sS0 = sR0 ◦ dS0 ◦ sS0
= sR0
= δR0 ◦ σR ◦ sR0 .

Here, δR0 ◦ σR = δR1 ◦ σR is the identity morphism on R. In a similar vein,
δR1 ◦ σS ◦ sS0 = δR1 ◦ σS ◦ sS0 . Therefore,
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(δR0 , δ
R
1 ) ◦ σS ◦ sS0 = (δR0 , δ

R
1 ) ◦ σR ◦ sR0

Since (∆R
0 )−1(S × S) is a reflexive relation on R, the induced morphism

(δR0 , δ
R
1 ) : (∆R

0 )−1(S × S)→ R×R is a monomorphism. So,
σS ◦ sS0 = σR ◦ sR0 . The most interesting fact arising from this computation
is that (∆R

0 )−1(S × S) is also an equivalence relation on S, with morphisms
δS0 , δ

S
1 and common section σS. Furthermore, (∆R

0 )−1(S × S) satisfies the
following commutative diagram in C :

(∆R
0 )−1(S × S) S

R X

δR1 δR0

δS1

δS0

σS

dS1 dS0

dR1

σR

dR0

sS0

sR0

We will place particular emphasis on the fact that in the above diagram,
the squares indexed by 0 and 1 both commute. In addition, we also have
dS0 ◦ δS1 = dR1 ◦ δR0 and dS1 ◦ δS0 = dR0 ◦ δR1 . To see why this is the case, the
commutativity of our original inverse image diagram yields

(DS
0 , D

S
1 ) ◦ (δS0 , δ

S
1 ) = (DS

0 ◦ (δS0 , δ
S
1 ), DS

1 ◦ (δS0 , δ
S
1 ))

= (dS0 ◦ δS0 , dS0 ◦ δS1 , dS1 ◦ δS0 , dS1 ◦ δS1 )

and

(∆R
0 ,∆

R
0 ) ◦ (δR0 , δ

R
1 ) = (∆R

0 ◦ δR0 ,∆R
1 ◦ δR1 )

= (dR0 ◦ δR0 , dR1 ◦ δR0 , dR0 ◦ δR1 , dR1 ◦ δR1 ).

Definition 1.8.1. Let C be a category with pullback and R, S be internal
equivalence relations on an object X in C . The inverse image of the
equivalence relation S × S on X ×X along ∆R

0 = (dR0 , d
R
1 ) : R→ X ×X is

denoted by R�S = (∆R
0 )−1(S × S).

Example 1.8.2. This is the content of [Bou17, Exercise 1.6.19] and gives a
concrete example of the square construction. Let C be a category with
pullbacks and R = R[f ] be an internal equivalence relation on an object X,
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where f : X → Y is a morphism.

The paraterminal map (f̌ , f) : S → ∇Y is the morphism in Equ(C )
which makes the following diagram in C commute:

S X

Y × Y Y

dS0
f̌

dS1

sS0

f

π1

π2

∆

Note that f̌ = (f ◦ dS0 , f ◦ dS1 ). We can describe the kernel equivalence
relation of the paraterminal map via the following square construction:

R[f ]�S S

R[f ] X

Y

δR1 δR0

δS1

δS0

dS1 dS0

df1

df0

f

Hence, the kernel equivalence relation is represented by the following
diagram:

R[f ]�S S ∇Y

(δS1 ,d
S
1 )

(δS0 ,d
S
0 )

(f̌ ,f)

To see why this is the case, we have to show that f̌ ◦ δS0 = f̌ ◦ δS1 . We have

f̌ ◦ δS0 = (f ◦ dS0 , f ◦ dS1 ) ◦ δS0
= (f ◦ dS0 ◦ δS0 , f ◦ dS1 ◦ δS0 )

= (f ◦ df0 ◦ δR0 , f ◦ d
f
0 ◦ δR1 )

= (f ◦ df1 ◦ δR0 , f ◦ d
f
1 ◦ δR1 )

= (f ◦ dS0 ◦ δS1 , f ◦ dS1 ◦ δS1 )

= f̌ ◦ δS1 .
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Note that in the second last line, we used the fact that f ◦ df0 = f ◦ df1 .

In order to better understand 1.8.1, we will foray briefly into our flagship
category Set. If we make the square construction in Set and obtain the
following diagram:

R�S S

R X

δR1 δR0

δS1

δS0

σS

dS1 dS0

dR1

σR

dR0

sS0

sR0

The pair contained in our equivalence relation on X are (dS0 ◦ δS0 , dS1 ◦ δS0 ),
(dS0 ◦ δS1 , dS1 ◦ δS1 ), (dR0 ◦ δR0 , dR1 ◦ δR0 ) and (dR0 ◦ δR1 , dR1 ◦ δR1 ). If we set
u = dS0 ◦ δS0 , v = dS1 ◦ δS0 , u′ = dS0 ◦ δS1 and v′ = dS1 ◦ δS1 , then uSv, u′Sv′, uRu′

and vRv′. Hence, R�S is the set of (u, v, u′, v′) ∈ X4 such that the relations
uSv, u′Sv′, uRu′ and vRv′ hold. We represent this by the following diagram:

u v

u′ v′

S

R R

S

In a general category with pullbacks C , the notation uSv means that a pair
of morphisms (u, v) : T → X ×X must factorise through the equivalence
relation S (see [Bou17, Exercise 1.6.8] and 1.6.5), as exhibited by the
following diagram in C :

X ×X

T S
φ

(u,v)
(dS0 ,d

S
1 )

The next lemma shows how the square construction gives rise to a fibrant
morphism.

Lemma 1.8.1. Let C be a category with pullbacks and (R, S) be any pair
of equivalence relations on X. If R ⊂ S, then the following morphism in
Equ(C )
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R�S S

R×R X ×X

δS0

(δR0 ,δ
R
1 )

δS1

(dS0 ,d
S
1 )

dR0 ×dR0

dR1 ×dR1

is fibrant.

Proof. Assume that C is a category with pullbacks and (R, S) is a pair of
equivalence relations on X. Assume that R ⊂ S. We must show that the
square indexed by 0

R�S S

R×R X ×X

δS0

(δR0 ,δ
R
1 ) (dS0 ,d

S
1 )

dR0 ×dR0

is a pullback square. So, suppose we have the following commutative square:

T S

R×R X ×X

α0

(φ1,φ2)

α1

(dS0 ,d
S
1 )

dR0 ×dR0

dR1 ×dR1

Let h = dR0 ◦ φ1 and h′ = dR0 ◦ φ2. Then, the pair (h, h′) : T → X ×X
factors through the equivalence relation S, from the top and right
morphisms. Hence, we can write hSh′. Furthermore, define ȟ = dR1 ◦ φ1 and
ȟ′ = dR1 ◦ φ2. Then, hRȟ and h′Rȟ′. So, we have the following diagram:

h h′

ȟ ȟ′

S

R R

Since R ⊂ S, the pairs (h, ȟ) and (h′, ȟ′) both factor through S, giving rise
to the following diagram:

75



h h′

ȟ ȟ′

S

S S

Since HomC (T,X) is an equivalence relation in the set-theoretic sense (see
1.6.5), ȟSh, hSh′, h′Sȟ′ and by transitivity, ȟSȟ′. Hence, the following
diagram holds:

h h′

ȟ ȟ′

S

R R

S

This demonstrates that we obtain a factorisation of (h, h′) through R�S.
Therefore, the commutative square indexed by 0 must be a pullback square
as required.

1.9 Split graphs and split relations

Let C be a category and f : X → Y be a split epimorphism. Then, there
exists s : Y → X such that f ◦ s = idY . Consider the following
commutative diagram:

X X

X Y

idX

s◦f f

f

Then, there exists a unique morphism sf1 : X → R[f ] such that the
following diagram commutes:

X

R[f ] X

X Y

sf1

idX

s◦f

pf1

pf0
f

f

The first lemma of this section describes some of the properties associated
with the unique morphism sf1 .
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Lemma 1.9.1. Let C be a category and f : X → Y be a split epimorphism
and s : Y → X be the morphism such that f ◦ s = idY . Let sf1 : X → R[f ]
be the unique section of pf1 : R[f ]→ X such that pf0 ◦ s

f
1 = s ◦ f . Then, the

morphism pf0 ◦ s
f
1 : X → X coequalizes the pair (pf0 , p

f
1), f = coeq(pf0 , p

f
1)

and the following square is a pullback square:

R[f ] X

X Y

sf1

sf0

s

s

Recall that sf0 : X → R[f ] is the unique section associated to the reflexive
relation R[f ] on the object X.

Proof. Assume that C is a category and f : X → Y is a split epimorphism,
with associated section s : Y → X. Suppose that sf1 : X → R[f ] is the
unique morphism which makes the following diagram commute:

X

R[f ] X

X Y

sf1

idX

s◦f

pf1

pf0
f

f

To see that the composite pf0 ◦ s
f
1 : X → X coequalizes the kernel pair

(pf0 , p
f
1), we compute directly from the definition that

(pf0 ◦ s
f
1) ◦ pf0 = (s ◦ f) ◦ pf0

= (s ◦ f) ◦ pf1 (f ◦ pf0 = f ◦ pf1)

= (pf0 ◦ s
f
1) ◦ pf1 .

Thus, pf0 ◦ s
f
1 coequalizes the kernel pair (pf0 , p

f
1).

To prove that f is in fact, the coequalizer of (pf0 , p
f
1), we first recall from

1.2.2 that f = coeq(idX , s ◦ f) = coeq(idX , p
f
0 ◦ s

f
1). Assume that g : X → Z

is a morphism which coequalizes (pf0 , p
f
1). Then, g ◦ pf0 = g ◦ pf1 . By

precomposing with sf1 , we find that g ◦ pf0 ◦ s
f
1 = g ◦ pf1 ◦ s

f
1 and by using the

definition of sf1 , we obtain g = g ◦ pf0 ◦ s
f
1 . Thus, g coequalizes the pair

(idX , p
f
0 ◦ s

f
1). But, f = coeq(idX , p

f
0 ◦ s

f
1), which means that there exists a

unique morphism α : Y → Z such that the following diagram commutes:
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Z

X X Y
idX

pf0◦s
f
1

f

g
α

The main point here is that α : Y → Z is also the unique morphism which
makes the following diagram commute:

Z

R[f ] X Y
pf0

pf1

f

g
α

This demonstrates that f = coeq(pf0 , p
f
1).

For the last assertion, we begin with pf0 ◦ s
f
1 = s ◦ f . By first precomposing

with s and then sf0 , we first deduce that pf0 ◦ s
f
1 ◦ s = s and consequently,

sf1 ◦ s = sf0 ◦ p
f
0 ◦ s

f
1 ◦ s = sf0 ◦ s.

Now suppose that we have the following commutative diagram:

T X

X R[f ]

t1

t2 sf1

sf0

We must show that there exists a unique morphism β : T → Y such that
s ◦ β = t1 = t2. Since t1 = t2, we will simply write t in place of t1 and t2.
Since sf0 ◦ t = sf1 ◦ t, t = pf0 ◦ s

f
1 ◦ t. Similarly to the proof that

f = coeq(pf0 , p
f
1), we recall from 1.2.2 that s = eq(idX , p

f
0 ◦ s

f
1). Hence, there

exists a unique morphism β : T → Y such that the following diagram
commutes:

T

Y X X

t
β

s
idX

pf0◦s
f
1

So, β also makes the following diagram commute:
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T

Y X R[f ]

t
β

s
sf0

sf1

This completes the proof and also reveals that s = eq(sf0 , s
f
1).

The point of 1.9.1 is that it is our first example of a split reflexive relation.

Definition 1.9.1. Let C be a category and G denote a reflexive
graph/relation on the object X, which is given by the following diagram:

G X
d0

d1

s0

We say that G is a split reflexive graph/relation if there exists a
morphism s1 : X → G such that d1 ◦ s1 = idX and d0 ◦ s1 coequalizes the
pair (d0, d1).

G X

d0

d1

s0

s1

Lemma 1.9.1 shows that if f : X → Y is a split epimorphism, then R[f ] is a
split reflexive (equivalence) relation. Interestingly, a converse statement
also holds, which yields a characterisation of split equivalence relations.
The remainder of this section is dedicated to proving this characterisation.
First, we need to prove specific properties satisfied by split reflexive graphs.

Lemma 1.9.2. Let C be a category with pullbacks and G be a split reflexive
graph on the object X, as depicted by the diagram below:

G X

d0

d1

s0

s1

Then, the morphism d0 ◦ s1 : X → X is idempotent. If
s = eq(idX , d0 ◦ s1) : I → X and q : X → I is the unique map satisfying
q ◦ s = d0 ◦ s1, then there exists a unique factorisation ρ : G→ R[q].
Finally, if G is a split reflexive relation, ρ is a monomorphism.
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Proof. Assume that C is a category with pullbacks and G is a split
reflexive graph on the object X. To see that the morphism d0 ◦ s1 : X → X
is idempotent, we compute directly that

(d0 ◦ s1 ◦ d0) ◦ s1 = (d0 ◦ s1 ◦ d1) ◦ s1

= d0 ◦ s1.

This uses the fact that d0 ◦ s1 coequalizes the pair (d0, d1).

Now assume that s = eq(idX , d0 ◦ s1) : I → X and q : X → I is the unique
map satisfying q ◦ s = d0 ◦ s1. We know that q exists as a consequence of
the universal property of the equalizer s, given by the diagram below:

X

I X X

d0◦s1q

s
idX

d0◦s1

Since d0 ◦ s1 coequalizes (d0, d1), d0 ◦ s1 ◦ d0 = d0 ◦ s1 ◦ d1. From the
construction of q, we have s ◦ q ◦ d0 = s ◦ q ◦ d1. From 1.2.1, s is an
equalizer and is subsequently, a monomorphism. So, q ◦ d0 = q ◦ d1. This
means that the following square commutes:

G X

X I

d0

d1 q

q

Thus, there exists a unique morphism ρ : G→ R[q] such that the following
diagram commutes:

G

R[q] X

X I

ρ

d0

d1

pq0

pq1
q

q
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Finally, assume that G is a split reflexive relation on X. Then, the
morphism (d0, d1) : G→ X ×X is a monomorphism. Assume that
α, β : Y → G are morphisms which satisfy ρ ◦ α = ρ ◦ β. By composing
with pq0 on both sides, we deduce that d0 ◦ α = d0 ◦ β. Analogously, if we
compose both sides by pq1, we obtain d1 ◦ α = d1 ◦ β. Hence,
(d0, d1) ◦ α = (d0, d1) ◦ β. Since (d0, d1) is a monomorphism, we deduce that
α = β, which reveals that ρ is a monomorphism as required.

Lemma 1.9.2 tells us that we have the inclusion G ⊂ R[q]. It is precisely
the condition of an equivalence relation which yields the reverse inclusion
and thus, the following theorem:

Theorem 1.9.3. Let C be a category with pullbacks and R be a split
equivalence relation on the object X, given by the following diagram:

R X

d0

d1

s0

s1

Let s = eq(idX , d0 ◦ s1) : I → X and q : X → I be the unique map satisfying
q ◦ s = d0 ◦ s1. Then, R ∼= R[q]. In particular, R must be effective.

Proof. Assume that C is a category with pullbacks and R is a split
equivalence relation on X. Assume that s and q are the morphisms defined
as above. We know from 1.9.2 that R ⊂ R[q].

To show: (a) R[q] ⊂ R.

(a) Recall from 1.9.2 that d0 ◦ s1 = s ◦ q. Since q ◦ pq0 = q ◦ pq1, we compose
both sides with s to deduce that d0 ◦ s1 ◦ pq0 = d0 ◦ s1 ◦ pq1. So, the following
square commutes in C :

R[q] R

R X

s1◦pq0

s1◦pq1 d0

d0

Hence, it must factorise through R[d0], yielding the following commutative
diagram:
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R[q]

R[d0] R

R X

R(s1)

s1◦pq0

s1◦pq1

e0

e1 d0

d0

In turn, R(s1) : R[q]→ R[d0] is the unique morphism which makes the
following diagram commute:

R[q] R[d0] R

X R X

R(s1)

pq1pq0

d2

e1e0 d1d0

s1 d1

Observe that the RHS square is a pullback square because R is an internal
equivalence relation on X. Therefore, R[q] ⊂ R and R ∼= R[q].

Hence, any split equivalence relation can be thought of as a kernel
equivalence relation.

1.10 Fibres and split epimorphisms

Admittedly, the term “fibre” is used in a variety of contexts in
mathematics. As the term is generally used, a fibre refers to a situation
where something “small” induces an entire “structure” from it. We will
give an example to illustrate the general idea.

Example 1.10.1. Let M be a smooth manifold of dimension m and
p ∈M . The tangent bundle TM on M is a vector bundle of rank m. There
is an induced projection map

π : TM →M

(p, v) 7→ p

which maps a point p ∈M and an associated tangent vector v ∈ TpM to
just the point p. The fibre of the point p is the preimage
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π−1(p) = {(p, v) ∈ TM} ∼= TpM.

This is a R-vector space with dimension m. In this manner, every point p
on the smooth manifold M , induces a real vector space — the tangent
space TpM . This illustrates the general idea behind the term “fibre”.

The fibres we are concerned with are defined rigorously below.

Definition 1.10.2. Let C be a category with pullbacks and Y be an object
in C . The fibre above Y is the category PtY (C ) = ¶−1

C (Y ). The objects in
PtY (C ) are the split epimorphisms with codomain Y and the morphisms
are morphisms x : X → X ′ in C such that the following diagram commutes:

X X ′

Y Y

x

f f ′s

idY

s′

Notice that the general concept of a “fibre” applies here too. An initially
“small structure” (an object of C ) induces a “larger structure”; an entire
category in this case!

Definition 1.10.3. Let C be a category with pullbacks and y : Y → Y ′ be
a morphism in C . The base change functor associated to y, denoted by
y∗, is a functor y∗ : PtY ′(C )→ PtY (C ) defined by pulling back along the
morphism y. That is, y∗ sends the object f ′ : X ′ → Y ′ ∈ PtY ′(C ) to the
object f : X → Y ∈ PtY (C ) such that f and f ′ form the following pullback
square in C :

X X ′

Y Y ′

x=s′◦y◦f

f f ′s

y

s′

Note that by Lemma 1.4.1, f is a split epimorphism in C (and hence an
object in PtY (C ).

Now suppose that φ is a morphism between f ′ : X ′ → Y ′ and g′ : Z ′ → Y ′

in the category PtY ′(C ). Then, the following diagram commutes:
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X ′ Z ′

Y ′ Y ′

φ

f ′ g′s′

idY ′

t′

Notice that φ = t′ ◦ f ′. Then, y∗(φ) = y∗(t′ ◦ f ′) = t ◦ f , where
t ◦ f : X → Z makes the following diagram commute:

X Z

Y Y

t◦f

f gs

idY

t

In order to understand the definition of PtY (C ) better, we will delve into
the claim made in [Bou17, Remark 1.6.25]. Let (f, s) : X → Y be a split
epimorphism in a category C with pullbacks. We claim that
Pt(f,s)(PtY (C )) = PtX(C ).

The objects in Pt(f,s)(PtY (C )) are the split epimorphisms from some object
in PtY (C ) to the split epimorphism (f, s) : X → Y , which is represented by
the following diagram in C :

X ′ X

Y Y

g1

f1 f

t1

s1

idY

s

The object of Pt(f,s)(PtY (C )) in question is given by the dashed arrows.
Clearly, this object is also a split epimorphism with codomain X and hence,
an object in PtX(C ).

Let (g2, t2) : X ′′ → X denote another split epimorphism in Pt(f,s)(PtY (C )).
Since all the split epimorphisms in PtY (C ) have the same codomain, the
morphisms in Pt(f,s)(PtY (C )) are determined by the domains of each
object and are thus, morphisms in C which make the following diagram
commute (in our specific example):
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X ′ X ′′

X X

g1 g2t1

idX

t2

But, the dashed arrows comprise a morphism in PtX(C ). So,
Pt(f,s)(PtY (C )) ⊆ PtX(C ). By unpacking the definition of PtX(C ), it is
not too difficult to argue the reverse inclusion, which then yields
Pt(f,s)(PtY (C )) = PtX(C ).

The next few definitions we will make are standard definitions in category
theory. We cite [Lei14] as a great reference for these definitions, complete
with accompanying examples.

Definition 1.10.4. Let C be a category. We say that an object I ∈ C is
initial if for all objects A ∈ C , there exists a unique morphism φA : I → A.
Dually, we say that an object T ∈ C is terminal if for all objects A ∈ C ,
there exists a unique morphism αA : A→ T .

Example 1.10.5. Let C be a category and Equ(C ) be the category of
internal equivalence relations in C . Let EquX(C ) be the subcategory of
internal equivalence relations on the object X. Lemma 1.3.1 tells us that
the indiscrete reflexive relation ∇X is a terminal object, whereas the
discrete reflexive relation ∆X is an initial object in EquX(C ).

Example 1.10.6. Let Cat denote the category whose objects are small
categories and whose morphisms are functors. The terminal object of Cat
is the category denoted by 1, which contains a single object and a single
morphism (which must be the identity morphism).

Definition 1.10.7. A category C is said to be finitely complete if it has
pullbacks and a terminal object.

Fortunately, our main examples of categories — Set, Grp, Mon, CoM
and Ab — are finitely complete. For instance, the trivial group is a
terminal object in Grp and the one-element set {∗} is terminal in Set (see
[Lei14, Definition 2.1.7]).

Here is the most important definition to this section:

Definition 1.10.8. Let C ,D be categories and H : C → D be a functor.
For all objects X,X ′ in C , the functor H induces the mapping
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HX,X′ : HomC (X,X ′)→ HomD(H(X), H(X ′))

between Hom-sets. We say that H is faithful if HX,X′ is an injective map
for all pairs of objects X,X ′ in C . We say that H is full if HX,X′ is a
surjective map for all pairs of objects X,X ′ in C . Finally, H is fully
faithful if HX,X′ is a bijection for all pairs of objects X,X ′ in C .

Example 1.10.9. Let U : Grp→ Set be the forgetful functor, which
maps a group to its underlying set and a group morphism to the underlying
function between the sets. We claim that U is a faithful functor. Let G,H
be groups. To see why the mapping

UG,H : HomGrp(G,H)→ HomSet(U(G), U(H))

is injective, suppose that φ1, φ2 ∈ HomGrp(G,H) and UG,H(φ1) = UG,H(φ2).
Then, by definition of the forgetful functor U , φ1 and φ2 must agree on the
underlying set U(G) and hence, on G itself. So, φ1 = φ2 and UG,H must be
injective. This demonstrates that U is a faithful functor.

On the other hand, to see that U is not a full functor, define
α : U(G)→ U(H) by α(g) = h for all g ∈ U(G) and with h 6= eH (eH is the
identity element of the group H). Since α(eG) = h 6= eH by definition, α
can never define a group morphism between G and H. So, UG,H is not
surjective and consequently, U is not full.

Definition 1.10.10. Let C and D be categories and H : C → D be a
functor. We say that H is an equivalence of categories if H is fully
faithful and there exists a functor F : D → C and a natural isomorphism
η : idD → H ◦ F , which means that for all morphisms f : A→ A′ in D , the
following diagram must commute:

A A′

(H ◦ F )(A) (H ◦ F )(A′)

f

ηA ηA′

(H◦F )(f)

with ηA and ηA′ being isomorphisms in D .

Example 1.10.11. The following example was taken from [CSM95,
Theorem 5.4]. Let G be a connected and simply connected Lie group and
g = TeGG be the associated Lie algebra, which is just the tangent space at
the identity element eG ∈ G. Let LieGrpC denote the category of
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connected and simply connected Lie groups and LieAlgR be the category
of Lie algebras. Let Φ : G→ H be a Lie group morphism in LieGrpC. The
Lie functor Lie is defined by

Lie : LieGrpC→ LieAlgR

G→ g

Φ→ Lie(Φ) with Lie(Φ)(X) =
d

dt
Φ(exp(tX))|t=0.

Here, X ∈ g. We recall that for all t ∈ R, exp(tX) ∈ G. Then, the Lie
functor Lie is an equivalence of the categories LieGrpC and LieAlgR.
Examples of connected and simply connected Lie groups include
GLn(R), SLn(R) and SO(n), where n ∈ Z≥2.

The definition 1.10.10 provides a notion of an “isomorphism of categories”.
There are a few different definitions of an equivalence of categories which
are used throughout the literature. In particular, we will state a further two
definitions of an equivalence of categories, stemming from [Lei14, Section
1.3, Page 34].

Definition 1.10.12. Let C and D be categories and H : C → D be a
functor. We say that H is an equivalence of categories if H is fully
faithful and essentially surjective. Essentially surjective means that for all
objects D ∈ D , there exists an object C ∈ C such that H(C) ∼= D.

Definition 1.10.13. Let C and D be categories. An equivalence of
categories between C and D is a pair of functors H : C → D and
F : D → C , equipped with natural isomorphisms η : idC → F ◦H and
ε : H ◦ F → idD , where idC is the identity functor on C .

We claim that all three definitions 1.10.10, 1.10.12 and 1.10.13 are
equivalent to each other.

Theorem 1.10.1. Let C and D be categories. Then, the three definitions
of an equivalence of categories — 1.10.10, 1.10.12 and 1.10.13 — are
equivalent.

Proof. Assume that C and D are categories.

To show: (a) If 1.10.10 is satisfied, then 1.10.12 is satisfied.
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(b) If 1.10.12 is satisfied, then 1.10.13 is satisfied.

(c) If 1.10.13 is satisfied, then 1.10.10 is satisfied.

(a) Assume that H : C → D is a functor which satisfies 1.10.10. Then,
there exists a functor F : D → C and a natural isomorphism
η : idD → H ◦ F . Also, H is fully faithful. To see that H is essentially
surjective, assume that D is an object in D . Since η is a natural
isomorphism, ηD defines an isomorphism between D and (H ◦ F )(D).
Hence, D ∼= (H ◦ F )(D) = H(F (D)). This demonstrates that H is
essentially surjective. So, H satisfies 1.10.12.

(b) Assume that H : C → D is fully faithful and essentially surjective so
that 1.10.12 is satisfied.

We will first build a functor F : D → C . Since H is essentially surjective,
for all objects D ∈ D , there exists an object C ∈ C such that H(C) ∼= D
with corresponding isomorphism denoted by ϕD : D → H(C). On the
objects of D , we define F (D) = C. Consequently, ϕD is an isomorphism
between D and (H ◦ F )(D).

Let g : D → D′ be a morphism in D such that F (D′) = C ′. Since H is fully
faithful, there exists a unique morphism f : C → C ′ such that the following
diagram in D commutes:

D D′

(H ◦ F )(D) (H ◦ F )(D′)

g

ϕD ϕD′

H(f)

Subsequently, we define F (g) = f . To see that F defines a functor from D
to C , we first note that the following square commutes in D :

D D

(H ◦ F )(D) (H ◦ F )(D)

idD

ϕD ϕD

id(H◦F )(D)

Note that id(H◦F )(D) = H(idF (D)). By construction of F , H(F (idD)) also
makes the above diagram commute. By uniqueness, we must have
H(F (idD)) = H(idF (D)). Since H is a faithful functor, we deduce that
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F (idD) = idF (D).

For composition of morphisms, suppose that α ∈ HomD(D,D′) and
β ∈ HomD(D′, D′′) with F (D′′) = C ′′. Note that the following diagram in
D commutes:

D D′′

(H ◦ F )(D) (H ◦ F )(D′′)

β◦α

ϕD ϕD′′

H(F (β◦α))

But, we also have the following commutative diagram in D :

D D′ D′′

(H ◦ F )(D) (H ◦ F )(D′) (H ◦ F )(D′′)

α

ϕD ϕD′

β

ϕD′′

H(F (α)) H(F (β))

Therefore, H(F (β) ◦ F (α)) and H(F (β ◦ α)) both make the same diagram
commute. By uniqueness, H(F (β ◦ α)) = H(F (β) ◦ F (α)) and since H is
faithful, we thus have F (β) ◦ F (α) = F (β ◦ α). So, F : D → C is a functor
and ϕ : idD → H ◦ F is a natural isomorphism.

It remains to construct a natural isomorphism from idC to F ◦H. Let
C ∈ C be an object. Then, ϕH(C) as defined before is an isomorphism
between H(C) and (H ◦ F ◦H)(C). Again, we lean on the assumption that
H is fully faithful in order to deduce the existence of a unique morphism
ψC : C → (F ◦H)(C) such that H(ψC) = ϕH(C).

However, ϕH(C) is an isomorphism. So, there exists a morphism
γ : (H ◦ F ◦H)(C)→ H(C) such that

γ ◦ ϕH(C) = idH(C) and ϕH(C) ◦ γ = id(H◦F◦H)(C).

Using the fact that H is fully faithful again, there exists a unique morphism
δ : (F ◦H)(C)→ C such that H(δ) = γ. Now observe that

H(δ ◦ ψC) = H(δ) ◦H(ψC)

= γ ◦ ϕH(C)

= idH(C) = H(idC)
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and similarly, H(ψC ◦ δ) = H(id(F◦H)(C)). Since H is faithful, δ ◦ ψC = idC
and ψC ◦ δ = id(F◦H)(C). We conclude that for all objects C ∈ C , ψC is an
isomorphism.

To see that ψ is a natural isomorphism between idC and F ◦H, consider
the following diagram in C :

C C ′

(F ◦H)(C) (F ◦H)(C ′)

f

ψC ψC′

(F◦H)(f)

By applying H to this diagram, we obtain a commutative diagram in D .
Since H is faithful, we deduce that the above diagram in C commutes.
Hence, ψ : idC → F ◦H is a natural isomorphism and 1.10.13 is satisfied.

(c) Assume that 1.10.13 is satisfied so that there exists a pair of functors
H : C → D and F : D → C , equipped with natural isomorphisms
η : idC → F ◦H and ε : H ◦ F → idD . In order for H to satisfy 1.10.10, it
suffices to show that H is fully faithful. Assume that X, Y ∈ C . Then, the
functor H induces the map between Hom-sets

HX,Y : HomC (X, Y )→ HomD(H(X), H(Y )).

To see that H is faithful, we must show that HX,Y is an injective map.
Since η is a natural isomorphism, we find that the function

(F ◦H)X,Y : HomC (X, Y )→ HomC ((F ◦H)(X), (F ◦H)(Y ))

is bijective. Since this is a function between sets, (F ◦H)X,Y is both a
monomorphism and an epimorphism. Observe that (F ◦H)X,Y is the
composite FH(X),H(Y ) ◦HX,Y . Since (F ◦H)X,Y is a monomorphism, HX,Y

must also be a monomorphism and thus, injective.

To see that H is fully faithful, we use the natural isomorphism
ε : H ◦ F → idD , which unveils that the following induced map is bijective:

HomD(H(X), H(Y ))→ HomD((H ◦ F ◦H)(X), (H ◦ F ◦H)(Y ))

But this map is the composite H(F◦H)(X),(F◦H)(Y ) ◦ FH(X),H(Y ). Arguing in a
similar manner to before, we deduce that the map H(H◦F )(X),(H◦F )(Y ) is an
epimorphism. Applying the fact that H is faithful, we find that
H(F◦H)(X),(F◦H)(Y ) must define the bijection:
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HomC ((F ◦H)(X), (F ◦H)(Y ))→ HomD((H ◦F ◦H)(X), (H ◦F ◦H)(Y ))

But, the LHS is isomorphic (as sets) to HomC (X, Y ), whereas the RHS is
isomorphic (as sets) to HomD(H(X), H(Y )). Thus, HX,Y is a bijection and
HomC (X, Y ) ∼= HomD(H(X), H(Y )), which demonstrates that H is fully
faithful as required. So, H being fully faithful, together with the functor F
and the natural isomorphism ε−1, show that 1.10.10 is satisfied. This
completes the proof.

Consider the pair of functors H and F in 1.10.13. According to 1.10.10, F
is also an equivalence of categories, commonly referred to as the inverse
equivalence of H. Now, we will prove some characteristic properties about
equivalences of categories and fully faithful functors.

Lemma 1.10.2. Let C and D be categories and H : C → D be an
equivalence of categories (in the sense of 1.10.10) so that H is equipped
with a functor F : D → C and a natural isomorphism η : idD → H ◦ F .
Then, F must be unique up to a natural isomorphism.

Proof. Assume that C and D are categories and H : C → D is an
equivalence of categories in the sense of 1.10.10, equipped with a functor
F : D → C and a natural isomorphism η : idD → H ◦ F . Then, from 1.10.1,
there exists a natural isomorphism ε : idC → F ◦H. Assume that
F ′ : D → C is another functor, with a natural isomorphism
η′ : idD → H ◦ F ′. Then, the following diagram in D commutes:

X Y

(H ◦ F ′)(X) (H ◦ F ′)(Y )

f

η′X η′Y

(H◦F ′)(f)

By applying the functor F to the above diagram, we find that the diagram
in C commutes:

F (X) F (Y )

(F ◦H ◦ F ′)(X) (F ◦H ◦ F ′)(Y )

F ′(X) F ′(Y )

F (f)

F (η′X) F (η′Y )

(F◦H◦F ′)(f)

ε−1
F ′(X)

ε−1
F ′(Y )

F ′(f)
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Since functors preserve isomorphisms, we find that the composite
ε−1
F ′(X) ◦ F (η′X) defines an isomorphism between F (X) and F ′(X) for all

objects X ∈ D . Thus, the functors F and F ′ are related via a natural
transformation.

Since injective and surjective functions between sets are preserved under
composition, faithful, full and fully faithful functors must be stable under
composition. The next lemma reveals further interactions between faithful
and/or full functors and composition.

Lemma 1.10.3. Let C ,D and E be categories. Let H : C → D and
H ′ : D → E be functors. If H ′ ◦H is faithful, then H is also a faithful
functor. Furthermore, if H ′ ◦H is fully faithful and H ′ is faithful, then H
is fully faithful.

Proof. Assume that C ,D and E are categories. Assume that H : C → D
and H ′ : D → E are functors.

First, suppose that H ′ ◦H is faithful. Then, for all objects X, Y ∈ C , the
induced map

(H ′ ◦H)X,Y : HomC (X, Y )→ HomE ((H ′ ◦H)(X), (H ′ ◦H)(Y ))

is injective function between sets. Hence, it is a monomorphism. By noting
that (H ′ ◦H)X,Y = H ′H(X),H(Y ) ◦HX,Y , we deduce that HX,Y is a
monomorphism and hence, an injective map. Thus, H must be a faithful
functor.

Now assume that H ′ ◦H is fully faithful and H ′ is faithful. Since H ′ ◦H is
fully faithful, the induced map (H ′ ◦H)X,Y must be bijective for all objects
X, Y ∈ C . By using the previous result, we deduce that H is a faithful
functor. Also, since (H ′ ◦H)X,Y is an epimorphism, H ′H(X),H(Y ) is surjective
and consequently, bijective because H ′ is faithful. Hence,

HX,Y = H ′H(X),H(Y )
−1 ◦ (H ′ ◦H)X,Y .

and consequently, (H ′ ◦H)−1
X,Y ◦H ′H(X),H(Y ) defines an inverse function to

HX,Y . So, HX,Y is bijective, hence revealing that H is fully faithful.

Just like fully faithful functors, equivalences of categories are also stable
under composition, as the following lemma demonstrates:
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Lemma 1.10.4. Let C ,D and E be categories and F : C → D and
G : D → E be equivalences of categories in the sense of 1.10.10. Then,
G ◦ F is also an equivalence of categories.

Proof. Assume that C ,D and E are categories. Assume that F : C → D
and G : D → E are equivalences of categories in the sense of 1.10.10. By
using 1.10.1, F and G must be fully faithful and essentially surjective.

Since F and G are fully faithful, G ◦ F is also fully faithful. To see that
G ◦ F is essentially surjective, let E ∈ E be an object. Since G is essentially
surjective, there exists an object D ∈ D such that G(D) = E. Since F is
essentially surjective, there exists an object C ∈ C such that F (C) = D.
So, E = G(F (C)) = (G ◦ F )(C), thus demonstrating that G ◦ F is
essentially surjective. Therefore, G ◦ F is fully faithful and essentially
surjective. So, G ◦ F is an equivalence of categories from 1.10.1.

Next, we will combine the notions of fibres and equivalences of categories in
order to give a criterion for which a base change functor is fully faithful.

Lemma 1.10.5. Let C be a finitely complete category and y : Y → Y ′ be a
morphism in C . Then, the base change functor y∗ : PtY ′(C )→ PtY (C ) is
fully faithful if and only if any downwards pullback of split epimorphisms
from the top right corner

X X ′

Y Y ′

x

f f ′

y

s s′

doubles as an upward pushout from the bottom left corner of the above
diagram.

Proof. Assume that C is a finitely complete category. Assume that
y : Y → Y ′ is a morphism in C .

First, assume that the base change functor y∗ : PtY ′(C )→ PtY (C ) is fully
faithful and that we have the following pullback of split epimorphisms:

X X ′

Y Y ′

x

f f ′

y

s s′
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Suppose that we have the following commutative diagram in C :

Z

X X ′

Y Y ′

x

f

h

f ′

y

s s′

g

We want to deduce the existence of a unique morphism φ : X ′ → Z such
that the two resulting triangles in the above diagram commute. The idea is
to exploit the fact that y∗ is fully faithful by considering the following
commutative diagram of split epimorphisms:

Y ′ × Z

X X ′

Y Y ′

πY ′

x

f

(y◦f,h)

f ′

y

s s′

(idY ′ ,g)

Consider the morphism ψ : (f, s) = y∗(f ′, s′)→ y∗(πY ′ , (idY ′ ,g)) in the fibre
PtY (C ), which makes the following diagram commute:

X T

Y Y

ψ=β◦f

f α

idY

s β

Since y∗ is fully faithful, there exists a unique morphism
(f ′, φ) : X ′ → Y ′ × Z in the fibre PtY ′(C ) such that the following diagram
commutes:

X ′ Y ′ × Z

Y ′ Y ′

(f ′,φ)

f ′ πY ′

idY ′

s′ (idY ′ ,g)

Thus, (f ′, φ) : X ′ → Y ′ × Z provides the desired unique factorisation by
making the diagram below commute:
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Y ′ × Z

X X ′

Y Y ′

πY ′

x

f

(y◦f,h)

f ′

(f ′,φ)

y

s s′

(idY ′ ,g)

For the converse, suppose that the downwards pullback emanating from the
top right corner is an upwards pushout from the bottom left corner:

X X ′

Y Y ′

x

f f ′

y

s s′

The proof that y∗ is faithful (which is a proof of injectivity) is summarised
in [Bou17, Lemma 1.6.29]. Admittedly, I do not know how to write
this part of the proof in my own words! To see that y∗ is full, suppose
that we have a morphism ψ : (f, s)→ (f, s) = y∗(f

′
, s′). Then, the

following diagram commutes:

X X
′

X X ′

Y Y ′

x

f
′

x

f

ψ

f ′

y

s s′

s′

Using the pushout from the bottom left corner, there exists a unique
morphism φ : X ′ → X

′
such that the diagram commutes:

X X
′

X X ′

Y Y ′

x

f
′

x

f

ψ

f ′

y

s s′

s′

The morphism φ is represented by the dashed arrow. Let us write the
triangle on the RHS in more detail:
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X ′ X
′

Y ′ Y ′

φ

f ′ f
′

idY ′

s′ s′

From the definition of the base change functor, ψ = y∗(φ). This
demonstrates that y∗ is full. So, y∗ is fully faithful.

We end this section by observing that we can generalise 1.10.5 even further;
[Bou17, Corollary 1.6.30] provides a necessary and sufficient condition for
which a base change functor is an equivalence of categories.

1.11 Different types of epimorphisms

The motivation for this section lies with 1.1.2. In any category C , an
isomorphism must be both a monomorphism and an epimorphism. We
know that the converse is in general not true, as 1.1.10 serves as a
counterexample. The idea here is that we want to make the converse to
1.1.2 true, with an appropriate modification. It turns out that the required
modification leads to several refined notions of an epimorphism, which we
will now define.

Definition 1.11.1. Let C be a category and f : X → Y be a morphism in
C . We say that f is an extremal epimorphism if for all factorisations of
the form f = m ◦ f ′ with m being a monomorphism, m is in fact, an
isomorphism.

The main point of extremal epimorphisms is that they provide the answer
to our original problem — a partial converse to 1.1.2.

Theorem 1.11.1. Let C be a category and f : X → Y be a morphism in
C . If f is both an extremal epimorphism and a monomorphism, it must be
an isomorphism.

Proof. Assume that C is a category and f : X → Y is an extremal
epimorphism and a monomorphism in C . Note that f = f ◦ idX , where
idX : X → X is the identity morphism on X and f is a monomorphism by
assumption. Applying the fact that f is an extremal epimorphism, we
deduce that f must be an isomorphism as required.

The next theorem identifies how the concepts of extremal epimorphisms
and epimorphisms are related to each other.

96



Theorem 1.11.2. Let C be a category with equalizers. Then, any extremal
epimorphism is an epimorphism.

Proof. Assume that C is a category with equalizers. Assume that
f : X → Y is an extremal epimorphism in C .

To show: (a) f is an epimorphism.

(a) Assume that α, β : Y → Z are morphisms such that α ◦ f = β ◦ f . We
want to show that α = β. Let γ = eq(α, β) : U → Y . By the universal
property of the equalizer, there exists a unique morphism ρ : X → U such
that the following diagram commutes:

X

U Y Z

f
ρ

γ
α

β

So, f = γ ◦ ρ. Since, γ is an equalizer, it must be a monomorphism (see
1.2.1). Using the fact that f is an extremal epimorphism, we deduce that γ
is an isomorphism. Hence, γ is both a monomorphism and an epimorphism
(see 1.1.2). Since α ◦ γ = β ◦ γ, α = β.

Therefore, f is an epimorphism as required.

The next lemma reveals how extremal epimorphisms behave under
composition.

Lemma 1.11.3. Let C be a category with pullbacks and f : X → Y ,
g : Y → Z be extremal epimorphisms. Then, g ◦ f is also an extremal
epimorphism. Furthermore, if h : Y → W is a morphism in C such that
h ◦ f is an extremal epimorphism, then h is also an extremal epimorphism.

Proof. Assume that C is a category with pullbacks and f : X → Y ,
g : Y → Z are extremal epimorphisms.

To show: (a) The composite g ◦ f is an extremal epimorphism.

(a) Suppose that we have the factorisation g ◦ f = m ◦ j, where m : T → Z
is a monomorphism in C and j ∈ HomC (X,T ). As standard practice, we
represent this as the commutative square:
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X T

Y Z

j

f m

g

Since C contains pullbacks, let us form the pullback square associated to
the pair (m, g):

V T

Y Z

p1

p0 m

g

From the universal property of the pullback, there exists a unique
morphism φ : X → V such that the following diagram commutes:

X

V T

Y Z

φ

j

f

p1

p0 m

g

Notice that f = p0 ◦ φ, where p0 is a monomorphism because m was
assumed to be a monomorphism (see lemma 1.4.1). Since f is an extremal
epimorphism, p0 must be an isomorphism. But, g ◦ p0 = m ◦ p1 and
subsequently, g = m ◦ (p1 ◦ p−1

0 ). Using the fact that g is an extremal
epimorphism and m is a monomorphism, m must be an isomorphism. This
proves that g ◦ f is an extremal epimorphism.

Now assume that h : Y → W is a morphism in C such that h ◦ f is an
extremal epimorphism.

To show: (b) The morphism h is an extremal epimorphism.

(b) Assume that h = n ◦ k, where n is a monomorphism. Then,
h ◦ f = n ◦ (k ◦ f). Since h ◦ f is an extremal epimorphism and n is a
monomorphism, n must be an isomorphism. Consequently, h is an extremal
epimorphism.

The example below provides us with a concrete example of extremal
epimorphisms.
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Example 1.11.2. We will work in the category Set. Suppose that
f : X → Y is a morphism in Set. We claim that f is an extremal
epimorphism if and only if f is surjective.

First assume that f is surjective and that f = m ◦ g, where m : Z → Y is a
monomorphism and g ∈ HomSet(X,Z). Recall that in Set,
monomorphisms are precisely the injective functions and epimorphisms are
precisely the surjective functions. So, m must be injective and since f is an
epimorphism, m must also be an epimorphism and hence, surjective. So, m
must be a bijective function and thus, an isomorphism in Set. Therefore, f
is an extremal epimorphism.

For the converse, assume that f is an extremal epimorphism. Then, since
Set has equalizers (see example 1.2.3), f must be an epimorphism and
hence, a surjective map. Therefore, f is an extremal epimorphism if and
only if f is surjective. In Set, extremal epimorphisms and epimorphism are
exactly the same concept.

Notice that since the category Grp also has equalizers (see [Lei14, Example
5.1.14]), we can argue in exactly the same manner for Set in order to
demonstrate that a group morphism f : G→ H is an extremal
epimorphism if and only if f is surjective (recall that lemma 1.1.1 can be
adapted for Grp).

The next type of epimorphism is motivated by lemma 1.9.1.

Definition 1.11.3. Let C be a category with pullbacks and f : X → Y be
a morphism in C . We say that f is a regular epimorphism if it is the
coequalizer of its kernel equivalence relation R[f ]. That is, if we have the
following diagram in C ,

R[f ] X Y
p1

p0

s0 f

then f ◦ p0 = f ◦ p1.

Lemma 1.9.1 tells us that in a category C with pullbacks, a split
epimorphism must be a regular epimorphism. It turns out that in our
“ladder of inclusions”, regular epimorphisms lie between split epimorphisms
and extremal epimorphisms.

Lemma 1.11.4. Let C be a category with pullbacks. If f : X → Y is a
regular epimorphism in C , then f is an extremal epimorphism.
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Proof. Assume that C is a category with pullbacks. Assume that
f : X → Y is a regular epimorphism in C . Suppose that f = m ◦ g, where
g ∈ HomC (X,T ) and m ∈ HomC (T, Y ) is a monomorphism.

To show: (a) m is an isomorphism.

(a) Suppose that the kernel equivalence relation R[f ] is given by the
following diagram in C :

R[f ] X Y
p1

p0

s0 f

Since m ◦ g ◦ p0 = m ◦ g ◦ p1 and m is a monomorphism, g ◦ p0 = g ◦ p1,
which means that g coequalizes R[f ]. By the universal property of the
coequalizer, there exists a unique morphism π : Y → T such that the
following diagram commutes:

T

R[f ] X Y
p0

p1
f

g
π

So, f = m ◦ g = (m ◦ π) ◦ f . Since f is a coequalizer, it must be an
epimorphism from theorem 1.2.1. So, idY = m ◦ π and subsequently,
m = m ◦ (π ◦m). Since m is a monomorphism, we deduce that idT = π ◦m.
Thus, m is an isomorphism and f is an extremal epimorphism as
required.

The next property we will prove about regular epimorphisms sets the stage
for the next type of epimorphism we will introduce.

Lemma 1.11.5. Let C be a category, f : X → Y be a regular epimorphism
and m : U → V be a monomorphism such that f and m make the following
square in C commute:

X Y

U V

f

h g

m

Then, there exists a unique morphism φ : Y → U such that the two
triangles in the resulting diagram commute:
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X Y

U V

f

h g
φ

m

Proof. Assume that C is a category, f : X → Y is a regular epimorphism
and m : U → V is a monomorphism. Assume that we have the following
commutative diagram:

R[f ] X Y

U V

p0

p1

f

h g

m

Since f is a regular epimorphism, f = coeq(p0, p1). Using the fact that
f ◦ p0 = f ◦ p1, in tandem with the commutative square, we deduce that
m ◦ h ◦ p0 = m ◦ h ◦ p1 and as a result, h ◦ p0 = h ◦ p1 because m is a
monomorphism. By the universal property of the coequalizer, there exists a
unique morphism α : Y → U such that the following diagram commutes:

U

R[f ] X Y
p0

p1
f

h α

Now observe that (m ◦ α) ◦ f = m ◦ h = g ◦ f . Since f is a coequalizer, it
must be an epimorphism (see theorem 1.2.1). Therefore, m ◦ α = g and
α : Y → U is the unique morphism which makes the following diagram
commute:

X Y

U V

f

h gα

m

Interestingly, the next type of epimorphism we will introduce does not make
an appearance in [Bou17]. We will now briefly follow the reference [Bor94a,
Section 4.3], which provides a detailed discussion on strong epimorphisms.

Definition 1.11.4. Let C be a category and f : X → Y be an
epimorphism. We say that f is a strong epimorphism if for all
commutative squares of the form
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X Y

U V

f

h g

m

with m a monomorphism in C , there exists a unique morphism α : Y → U
such that the two triangles in the diagram below commute:

X Y

U V

f

h gα

m

Lemma 1.11.5 demonstrates that a regular epimorphism must be a strong
epimorphism. Our next lemma determines the place strong epimorphisms
occupy on the “ladder of inclusions”.

Lemma 1.11.6. Let C be a category and f : X → Y be a strong
epimorphism. Then, f must be an extremal epimorphism.

Proof. Assume that C is a category and f : X → Y is a strong
epimorphism. Suppose that f = m ◦ g, where g ∈ HomC (X,T ) and
m ∈ HomC (T, Y ) is a monomorphism. This corresponds to the following
commutative square:

X Y

T Y

f

g idY

m

Since f is a strong epimorphism, there exists a unique morphism φ : Y → T
such that the two triangles in the following diagram commute:

X Y

T Y

f

g idY
φ

m

So, m ◦ φ = idY and consequently, m ◦ (φ ◦m) = m. Since m is a
monomorphism, we deduce that φ ◦m = idT . Hence, m is an isomorphism
and f must be an extremal epimorphism.

Strong epimorphisms satisfy very similar properties to that of extremal
epimorphisms.
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Lemma 1.11.7. Let C be a category and f : X → Y , g : Y → Z be strong
epimorphisms. Then, g ◦ f is also a strong epimorphism. Furthermore, if
k : Y → W and ` : X → Y are morphisms in C such that k ◦ ` is a strong
epimorphism, then k is also a strong epimorphism.

Proof. Assume that C is a category and f : X → Y , g : Y → Z are strong
epimorphisms.

To show: (a) The composite g ◦ f is a strong epimorphism.

(a) Suppose that we have the following commutative diagram:

X Z

Z W

g◦f

h j

m

where m : Z → W is a monomorphism. Since composition satisfies
associativity, the following square also commutes:

X Y

Z W

f

h j◦g

m

Since f is a strong epimorphism, there exists a unique morphism β : Y → Z
such that the following diagram commutes:

X Y

Z W

f

h j◦gβ

m

Now we write the bottom right triangle in the above diagram as a
commutative square:

Y Z

Z W

g

β j

m

Since g is a strong epimorphism, there exists a unique morphism γ : Z → Z
such that the following diagram commutes:
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Y Z

Z W

g

β j
γ

m

It remains to show that γ ◦ g ◦ f = h. Using the commutativity of the
diagrams, we have

(γ ◦ g) ◦ f = β ◦ f = h.

Hence, γ is the unique morphism such that the triangles in the following
diagram commute:

X Z

Z W

g◦f

h j
γ

m

So, g ◦ f is a strong epimorphism.

Now assume that k : Y → W and ` : X → Y are morphisms in C such that
k ◦ ` is a strong epimorphism.

To show: (b) k is a strong epimorphism.

(b) Suppose that we have the following commutative diagram:

Y W

Z A

k

p q

n

Here, n : Z → A is a monomorphism. Upon precomposing with `, we
obtain the following commutative square:

X W

Z A

k◦`

p◦` q

n

Since k ◦ ` is a strong epimorphism, there exists a unique morphism
δ : W → Z such that the following diagram commutes:
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X W

Z A

k◦`

p◦` qδ

n

Since n ◦ δ = q, n ◦ δ ◦ k = q ◦ k = n ◦ p. So, δ ◦ k = p because n is a
monomorphism. This demonstrates that k is a strong epimorphism.

Theorem 1.11.8. Let C be a category and f : X → Y be a morphism in
C . If f is both a strong epimorphism and a monomorphism, it must be an
isomorphism.

Proof. Assume that C is a category and f : X → Y is a strong epimorphism
and a monomorphism in C . Consider the following commutative square:

X Y

X Y

f

idX idY

f

Since f is a strong epimorphism, there exists a unique morphism
β : Y → X such that the following diagram commutes:

X Y

X Y

f

idX idY
β

f

Hence, f is an isomorphism as required.

Since strong epimorphisms bear a resemblance to extremal epimorphisms, a
natural question which follows is why strong epimorphisms are useful in the
first place. The next theorem tells us that strong epimorphisms are at their
peak utility in finitely complete categories (recall definition 1.10.7).

Theorem 1.11.9. Let C be a finitely complete category.

(a) Let f : X → Y be a morphism which satisfies the diagonal property of
1.11.4. That is, for all commutative squares of the form

X Y

U V

f

h g

m
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with m a monomorphism in C , there exists a unique morphism α : Y → U
such that the two triangles in the diagram below commute:

X Y

U V

f

h gα

m

Then, f is an epimorphism and thus, a strong epimorphism.

(b) Let g : X → Y be a morphism such that given any factorisation
g = m ◦ k with m being a monomorphism, m must be an isomorphism.
Then, g is an epimorphism and thus, an extremal epimorphism.

(c) An epimorphism in C is strong if and only if it is extremal.

Proof. Assume that C is a finitely complete category (it has a terminal
object and pullbacks). Then, C must have equalizers.

Part (a): Assume that f : X → Y is a morphism which satisfies the
diagonal property of 1.11.4. To see that f is an epimorphism, suppose that
u ◦ f = v ◦ f , where u, v ∈ HomC (Y, Z). Let t = eq(u, v) : T → Y . By the
universal property of the equalizer, there exists a unique morphism
ρ : X → T such that the following diagram commutes:

X

T Y Z

f
ρ

t
u

v

So, f = t ◦ ρ. We can write this as the following commutative square:

X Y

T Y

f

ρ idY

t

Since f satisfies the diagonal property, there exists a unique morphism
φ : Y → T such that the two triangles in the following diagram commute:

X Y

T Y

f

ρ idY
φ

t
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So, t ◦ φ = idY and since u ◦ t = v ◦ t by assumption, u = v. Therefore, f is
an epimorphism and consequently, a strong epimorphism.

Part (b): Assume that g : X → Y is a morphism such that given any
factorisation g = m ◦ k with m being a monomorphism, m must be an
isomorphism. To see that g is an epimorphism, suppose that a ◦ g = b ◦ g,
where a, b ∈ HomC (Y, Z). Let t = eq(a, b) : T → Y . Again, by the universal
property of the equalizer, there exists a unique morphism ν : X → T such
that the following diagram commutes:

X

T Y Z

g
ν

t
a

b

So, g = t ◦ ν. Since t is an equalizer, it must be a monomorphism and hence,
an isomorphism, due to our assumption on g. Since a ◦ t = b ◦ t, a = b and
so, g must be an epimorphism and thus, an extremal epimorphism.

Part (c): It suffices from lemma 1.11.6 to show that any extremal
epimorphism is strong. Assume that f : X → Y is an extremal
epimorphism. Assume that f satisfies the following commutative diagram:

X Y

Z W

f

h g

m

where m is a monomorphism. Form the pullback of the pair (m, g), which is
given by the square

P Y

Z W

p1

p0 g

m

By the universal property of the pullback, there exists a unique morphism
α : X → P such that the following diagram commutes:
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X

P Y

Z W

α

f

h

p1

p0 g

m

Since m is a monomorphism, p1 must also be a monomorphism by lemma
1.4.1. But f = p1 ◦ α. Since f is an extremal epimorphism, p1 must be an
isomorphism. Now we compute directly that

m ◦ (p0 ◦ p−1
1 ) = g ◦ (p1 ◦ p−1

1 ) = g.

Therefore, p0 ◦ p−1
1 is a morphism which makes the following diagram

commute:

X Y

Z W

f

h g
p0◦p−1

1

m

One can check that p0 ◦ p−1
1 is unique because f is an epimorphism and m

is a monomorphism. Therefore, f must be a strong epimorphism as
required.

We will now return to following the exposition of [Bou17] and define our
final type of epimorphism.

Definition 1.11.5. Let C be a category with pullbacks. Let f : X → Y
denote a regular epimorphism. We say that f is a ps-regular
epimorphism if as a regular epimorphism, it is stable under pullback.
That is, for all pullback squares of the form

P X

Z Y

p1

p0 f

g

the morphism p0 : P → Z is a regular epimorphism.
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Lemma 1.9.1 and lemma 1.4.1 tell us that any split epimorphism must be a
ps-regular epimorphism. Thus, our “ladder of inclusions” of epimorphisms
is complete. In a category C , we have

split epi ⊂ ps-regular epi ⊂ regular epi ⊂ strong epi ⊂ extremal epi. (1.2)

In a finitely complete category, we have

split epi ⊂ ps-regular epi ⊂ regular epi ⊂ strong epi = extremal epi ⊂ epi.
(1.3)

So far, we have discussed how extremal and strong epimorphisms behave
under composition. Regular epimorphisms are much less well behaved
under composition. For instance, the composition of two regular
epimorphisms need not be a regular epimorphism itself.

Lemma 1.11.10. Let C be a category with pullbacks. If g ◦ f is a regular
epimorphism and f is an epimorphism, then g is also a regular
epimorphism.

Proof. Assume that C is a category with pullbacks. Assume that
g ◦ f : X → Z is a regular epimorphism and f : X → Y is an epimorphism.
Let (pg0, p

g
1) be the pair of morphisms associated to the kernel equivalence

relation R[g], as depicted by the diagram below:

R[g] Y Z
pg1

pg0
g

Suppose that a : Y → T is a morphism such that a ◦ pg0 = a ◦ pg1. By
definition of the kernel equivalence relation, the following diagram must
commute:

R[g ◦ f ] Y

Y Z

f◦pg◦f1

f◦pg◦f0
g

g

Hence, R[g ◦ f ] must factor through R[g], yielding the following
factorisation:
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R[g ◦ f ]

R[g] Y

Y Z

R(f)

f◦pg◦f1

f◦pg◦f0

pg1

pg0
g

g

Since a ◦ pg0 = a ◦ pg1, we can precompose both sides with R(f) and use the
commutativity of the above diagram to deduce that
(a ◦ f) ◦ pg◦f0 = (a ◦ f) ◦ pg◦f1 . So, a ◦ f coequalizes the kernel equivalence
relation R[g ◦ f ]. By the universal property of the coequalizer, there exists
a unique morphism such that the following diagram commutes:

T

R[g ◦ f ] X Z
pg◦f0

pg◦f1

g◦f

a◦f
φ

Since (φ ◦ g) ◦ f = a ◦ f and f is an epimorphism, φ ◦ g = a. Therefore, φ is
the unique morphism which makes the following diagram commute:

T

R[g] Y Z
pg0

pg1

g

a
φ

Thus, g = coeq(pg0, p
g
1) and is consequently a regular epimorphism.

Lemma 1.11.11. Let C be a category with pullbacks.

(a) If f is a ps-regular epimorphism and g a regular epimorphism, then
g ◦ f is also a regular epimorphism.

(b) If f and g are both ps-regular epimorphisms, then g ◦ f is also a
ps-regular epimorphism.

Lemma 1.11.11 is directly from [Bou17, Exercise 1.7.14]. I do not know a
good proof of lemma 1.11.11. However, it plays a major role in the next
section. We will finish this section with some examples of the epimorphisms
we have encountered in this section.
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Example 1.11.6. In the category Set, ps-regular epimorphisms, regular
epimorphisms, strong epimorphisms, extremal epimorphisms and
epimorphisms all coincide with surjective functions. Similarly, in Grp and
Ab, these epimorphisms all coincide with surjective group morphisms.
Hence, the distinction in both of these categories is pointless!

Example 1.11.7. The distinction between different types of epimorphisms
is necessary in Top. In this example, we will give an example of a regular
epimorphism in Top which is not a ps-regular epimorphism.

Let X, Y be topological spaces and f : X → Y be a continuous function.
We say that f is cartesian if the following property is satisfied: V is open
in Y if and only if f−1(V ) is open in X. It turns out from [Bou17, Exercise
1.7.12 (iii)] that regular epimorphisms in Top coincide with continuous,
surjective, cartesian maps.

Let X = {a, b, c, d}, Y = {x, y, z} and Z = {l,m, n}. We equip X, Y and Z
with the topologies

τX = {∅, X, {a, b}}, τY = {∅, Y } and τZ = {∅, Z, {l,m}}.

We define continuous maps f : X → Y and g : Z → Y by

f(a) = x, f(b) = f(c) = y, f(d) = z

g(l) = x, g(m) = g(n) = z.

Observe that f is a continuous, surjective and cartesian function and is
thus, a regular epimorphism. Now form the pullback X ×Y Z:

X ×Y Z Z

X Y

πZ

πX g

f

Recalling the definition of the pullback in Top, we have

X ×Y Z = {(α, β) ∈ X × Z | f(α) = g(β)} = {(a, l), (d,m), (d, n)}

with topology given by

τX×Y Z = {∅, X ×Y Z, {(a, l)}, {(a, l), (d,m)}}.
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The topology τX×Y Z is the coarsest (largest) topology ensuring that the
projection maps πX and πZ are continuous. Now note that πZ is not
cartesian because the preimage π−1({l}) = {a, l} is open in X ×Y Z, but
{l} is not open in Z by definition of τZ . So, f is an example of a regular
epimorphism which is not ps-regular. This example originates from
[Bor94b, Counterexample 2.4.5].

1.12 Barr-Kock Theorem

The Barr-Kock theorem gives us yet another important tool for deducing
when particular squares in a category with pullbacks are pullback squares.

Lemma 1.12.1. Let C be a category with pullbacks. Suppose that we have
the following commutative diagram

R[f ′] X ′ Y ′

R[f ] X Y

pf
′

0

pf
′

1

R(x) x

f ′

y

pf0

pf1

f

where the RHS square is a pullback square. Then, both LHS commutative
squares indexed by 0 and 1 are also pullbacks.

Proof. Assume that C is a category with pullbacks and that we are given
the commutative diagram in the statement of the lemma. We construct the
following cube in C :

R[f ′] X ′

X ′ Y ′

R[f ] X

X Y

pf
′

1

pf
′

0
R(x)

x
f ′

f ′

y
pf1

pf0
f

f ′

x

112



Notice that the bottom, front, top and right faces of the cube are all
pullback squares. From lemma 1.4.6, the remaining two faces of the cube
must also be pullback squares as required.

Lemma 1.12.2. Let C be a category with pullbacks. Suppose that we have
the following pullback square

X ′ Y ′

X Y

m

q′

n

f

where q′ is a ps-regular epimorphism and m is a monomorphism. Then, n
must be a monomorphism.

Proof. Assume that C is a category with pullbacks and that we are given
the pullback square in the statement of the lemma. Assume that q′ is a
ps-regular epimorphism and that m is a monomorphism. The idea is to
write out the kernel equivalence relations of all the morphisms in the
square, giving rise to the following diagram:

By repeated application of Lemma 1.12.1, we find that since our original
square was a pullback, all the commutative squares in the above diagram
are pullbacks. Since q′ is a ps-regular epimorphism, R(q′) must also be a
ps-regular epimorphism. But, q′ is also a regular epimorphism and thus, the
coequalizer of the kernel equivalence relation R[q′] in the middle row.
Therefore, R(q′) is the coequalizer of the upper row.

Now since m is a monomorphism, we can use Theorem 1.7.5 to deduce that
dm0 and dm1 are both isomorphisms. Since isomorphsims are stable under
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pullbacks, d
R(m)
0 , d

R(m)
1 , dn0 , d

n
1 are isomorphisms. Finally, by applying

Theorem 1.7.5 to dn0 and dn1 , we find that n is a monomorphism as
required.

Now we have arrived at the namesake of this section — a powerful tool for
finding pullback squares.

Theorem 1.12.3 (Barr-Kock theorem). Let C be a category with
pullbacks. Suppose that we have the following diagram in C :

R[q′] X ′ Y ′

R[f ] X Y

pq
′

0

pq
′

1

R(x) x

q′

y

pf0

pf1

f

If any of the left hand side squares is a pullback square and q′ is a
ps-regular epimorphism then the right hand side square is a pullback square.

Proof. Assume that C is a category with pullbacks and that we have the
above diagram in C , where any of the LHS squares is a pullback square and
q′ is a ps-regular epimorphism.

We rely on a particular consequence of Lemma 1.7.7. Consider the pullback
of y along f :

X Y ′

X Y

f

x y

f

A consequence of Lemma 1.7.7 is that the morphism φ : X ′ → X is a
monomorphism. This is [Bou17, Corollary 1.6.16].

Using φ, we construct the following cube in C :
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R[q′] X ′

X Y ′

R[f ] X

X Y

pq
′

0

φ◦pq
′

1
R(x)

x
q′

f

y
pf0

pf1
f

f

x

Without loss of generality, assume that the following LHS square is a
pullback square

R[q′] X ′

R[f ] X

pq
′

0

R(x) x

pf0

Then, the bottom, front and back faces of the cube are pullback squares.
By Lemma 1.4.6, the top square of the cube must also be a pullback square.

Now since q′ is a ps-regular epimorphism, φ ◦ pq
′

1 must also be a regular

epimorphism. Since pq
′

1 is an epimorphism, we can use Lemma 1.11.10 to
deduce that φ is an epimorphism. Since φ is a monomorphism and an
epimorphism, it must be an isomorphism as required.

If instead the LHS square

R[q′] X ′

R[f ] X

pq
′

1

R(x) x

pf1

is a pullback square then we can interchange the roles of pq
′

0 and pq
′

1 in the
above argument to obtain the same conclusion.

We end this section by proving a useful corollary of Theorem 1.12.3.

Theorem 1.12.4. Let C be a category with pullbacks. Assume that
f : X → Y is a morphism such that the kernel equivalence relation R[f ] has
a coequalizer q : X → Q which is a ps-regular epimorphism. Then,
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R[q] ∼= R[f ] and the unique factorisation m : Q→ Y such that m ◦ q = f is
a monomorphism.

Proof. Assume that C is a category with pullbacks. Assume that
f : X → Y is a morphism such that the kernel equivalence relation R[f ] is
coequalized by the ps-regular epimorphism q : X → Q.

The fact that we can factorise f = m ◦ q follows from the universal property
of the coequalizer, as seen by the diagram below:

Y

R[f ] X Q
pf0

pf1

q

f
m

By Theorem 1.7.4, we deduce that R[q] ⊂ R[m ◦ q] = R[f ]. Since q
coequalizes R[f ], we also have R[f ] ⊂ R[q]. So, R[f ] ∼= R[q].

Now consider the following diagram in C :

R[q] X Q

R[f ] X Y

pq0

pq1

∼= ∼=

q′

m

pf0

pf1

f

We can apply the Barr-Kock theorem (see Theorem 1.12.3) to find that the
RHS square is a pullback square. By Lemma 1.12.2, m must be a
monomorphism.

1.13 Products and finitely complete

categories

In this section, we will define the important constructions of the product
and the coproduct in a category.

Definition 1.13.1. Let C be a category and X, Y be objects in C . The
product of X and Y is a triple (X × Y, πX , πY ) consisting of an object
X × Y and two morphisms πX : X × Y → X and πY : X × Y → Y (called
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projections) which satisfies the following universal property:

If we have two morphisms f : W → X and g : W → Y then there exists a
unique morphism θ : W → X × Y such that the following diagram
commutes:

X × Y

X W Y

πX πY

f

θ

g

The coproduct is the dual construction of the product. It is obtained by
reversing the arrows in the definition of the product.

Definition 1.13.2. Let C be a category and X, Y be objects in C . The
coproduct of X and Y is a triple (X t Y, ιX , ιY ) consisting of an object
X t Y and two morphisms ιX : X → X × Y and ιY : Y → X × Y which
satisfies the following universal property:

If we have two morphisms f : X → W and g : Y → W then there exists a
unique morphism α : X t Y → W such that the following diagram
commutes:

X t Y

X W Y

α
ιX

f

ιY

g

Example 1.13.3. We will describe the coproduct in Grp. Assume that G
and H are groups. The free product of G and H, denoted by G ? H, is
the set of all reduced words of the form

g1h1g2h2 . . . gkhk

where gi ∈ G and hi ∈ H for i ∈ {1, 2, . . . , n}. The group operation on
G ? H is the concatenation of words, followed by reduction.

We will describe how to reduce a word. Suppose that g1h1 . . . gkhk ∈ G ? H.
If there exists i ∈ {1, 2, . . . k} such that gi = eG or hi = eH , where eG and
eH are the identity elements of G and H respectively then we remove eG or
eH from the word. If there is an instance of gjgj+1 or hihi+1 then we reduce
the word by considering the product gjgj+1 as one element of G (rather
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than two) or the product hihi+1 as one element of H (rather than two).

The words eG, eH ∈ G ?H are the empty words (words of length zero). This
is the identity element eG?H of G ? H.

Now define the inclusion maps ιG : G→ G ? H and ιH : H → G ? H by
ιG(g) = g and ιH(h) = h. Suppose that we have the following diagram in
Grp:

G ? H

G K H

ιG

φG φH

ιH

We want to construct a unique morphism ψ : G ? H → K such that the
following diagram commutes:

G ? H

G K H

ψ
ιG

φG φH

ιH

Define the map ψ by

ψ : G ? H → K
g1h1 . . . gkhk 7→ φG(g1)φH(h1) . . . φG(gk)φH(hk)

As a preliminary observation, we have

ψ(eG?H) = φG(eG) = φH(eH) = eK .

To see that ψ is a group morphism, assume that g1h1 . . . gkhk and
g′1h

′
1 . . . g

′
lh
′
l are two reduced words in G ? H. If the concatenation

g1h1 . . . g
′
lh
′
l is already a reduced word then

ψ(g1h1 . . . gkhkg
′
1h
′
1 . . . g

′
lh
′
l) = φG(g1)φH(h1) . . . φG(g′l)φH(h′l)

= (φG(g1)φH(h1) . . . φG(gk)φH(hk))

(φG(g′1)φH(h′1) . . . φG(g′l)φH(h′l))

= ψ(g1h1 . . . gkhk)ψ(g′1h
′
1 . . . g

′
lh
′
l).

If the concatenation g1h1 . . . g
′
lh
′
l is not a reduced word then there are two

cases which can occur.
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Case 1: If eG or eH appears in our word, we remove it by the reduction
process. Since φG(eG) = φH(eH) = eK , any terms of the form φG(eG) and
φH(eH) in ψ(g1h1 . . . g

′
lh
′
l) are removed from the product.

Case 2: If gigi+1 or hihi+1 appears in our word, we consider them as a single
element of G and H respectively in the word. Since φG and φH are group
morphisms, φG(gigi+1) = φG(gi)φG(gi+1) and φH(hihi+1) = φH(hi)φH(hi+1).
So, we simply rewrite the product ψ(g1h1 . . . g

′
lh
′
l) by replacing

φG(gi)φG(gi+1) with φG(gigi+1) and similarly for φH(hi)φH(hi+1).

These two cases show that ψ respects the reduction process in G ? H.
Hence,

ψ(g1h1 . . . gkhkg
′
1h
′
1 . . . g

′
lh
′
l) = ψ(g1h1 . . . gkhk)ψ(g′1h

′
1 . . . g

′
lh
′
l)

even if the concatenation g1h1 . . . gkhkg
′
1h
′
1 . . . g

′
lh
′
l is not a reduced word.

So, ψ is a group morphism, which satisfies by direct computation,
ψ ◦ ιG = φG and ψ ◦ ιH = φH .

Finally, to see that ψ is a unique group morphism, assume that
ψ′ : G ? H → K is another group morphism such that ψ′ ◦ ιG = φG and
ψ′ ◦ ιH = φH . If g ∈ G and h ∈ H then ψ′(g) = φG(g) = ψ(g) and
ψ′(h) = φH(h) = ψ(h). Since ψ′ and ψ are group morphisms, we conclude
that ψ′ = ψ on all of G ? H. Hence, ψ must be unique.

The free product and the free product with amalgamation feature
prominently in the Seifert Van-Kampen theorem, a useful tool for
computing the fundamental group of a wide variety of topological spaces.
See [Hat02, Section 1.2] for more information.

In a category C with terminal object, the product is a special case of the
pullback. To see why this is the case, note that the universal property of
the product implies that the following square is a pullback

X × Y Y

X ∗

πX

πY

αY

αX

In the above diagram, ∗ is the terminal object in C .

With products, we can give an equivalent definition of a finitely complete
category.
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Theorem 1.13.1. Let C be a category. Then, C is a finitely complete
category (has pullbacks and a terminal object) if and only if C has products
and equalizers of any parallel pair of morphisms.

Proof. Assume that C is a category.

To show: (a) If C is finitely complete then it has products and equalizers of
any parallel pair of morphisms.

(b) If C has products and equalizers of any parallel pair of morphisms then
it is finitely complete.

(a) Assume that C is finitely complete. Then, C has pullbacks and a
terminal object. We already argued that in a category with a terminal
object, the product is a special case of the pullback. Therefore, C must
have products.

Assume that h, h′ : X → Y is a (parallel) pair of morphisms. Since C has
products, we can consider the following diagram in C :

X

Y Y × Y

(h, h′)

∆

where ∆ is the diagonal map. Since C has pullbacks, we can form the
pullback square of the above diagram:

I X

Y Y × Y

i

g (h, h′)

∆

By Lemma 1.4.2, i = eq(h, h′). Consequently, C has equalizers.

(b) Assume that C has products and equalizers. Let ∗ be the empty
product in C — the product of zero objects in C . By the universal
property of the product, there exists a unique morphism from any object W
to ∗. The remainder of the statement of the universal property, as applied
to this situation, is vacuous. Therefore, ∗ is the terminal object in C .

Now suppose we have the following diagram in C :
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X

Y Z

f

g

Since C has products, we can form the product X × Y and its projections
πX and πY . Since C has equalizers, let e : P → X × Y be the equalizer of
the composites f ◦ πX and g ◦ πY . We claim that the commutative square

P X

Y Z

πX◦e

πY ◦e f

g

is the pullback square we are after. Suppose that we have the following
commutative square in C :

W X

Y Z

p

q f

g

By the universal property of the equalizer, there exists a unique morphism
d : W → P such that the following diagram commutes:

W

P X × Y Z

(p,q)
d

e
f◦πX

g◦πY

Consequently, d is the unique morphism which makes the following diagram
commute:

W

P X

Y Z

d

p

q
πX◦e

πY ◦e f

g

Hence, C has pullbacks and subsequently, C is a finitely complete
category.

Dually, we also have the notion of a finitely cocomplete category.
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Definition 1.13.4. Let C be a category. We say that C is a finitely
cocomplete category if it has pushouts and an initial object.

We also have a “dual version” of Theorem 1.13.1.

Theorem 1.13.2. Let C be a category. Then, C is a finitely cocomplete
category if and only if C has coproducts and coequalizers of any pair of
parallel morphisms.

We omit the proof here because it is quite long, especially given the fact
that the theory we have established previously deals with mostly pullbacks
and not pushouts. Fortunately, the proof proceed in a similar fashion to
Theorem 1.13.1.
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Chapter 2

Internal structures

2.1 Internal unitary magmas and internal

monoids

In this chapter, we will introduce internal structures within a finitely
complete category and discuss some of their properties.

Definition 2.1.1. Let C be a finitely complete category with terminal
object ∗. An internal unitary magma is a triple (M,m, e) consisting of
an object M of C , a morphism m : M ×M →M giving rise to an internal
binary operation and a morphism e : ∗ →M giving rise to an internal unit.

Moreover, the morphisms m and e make the following diagram in C
commute:

M M ×M M

M

(idM ,e◦τM )

idM
m

(e◦τM ,idM )

idM

Here, τM is the unique morphism from M to ∗ and idM is the identity
morphism on M .

We know that a monoid is a unitary magma with an associative binary
operation. This leads us straight to the definition of an internal monoid.

Definition 2.1.2. Let C be a finitely complete category. An internal
monoid is an internal unitary magma (M,m, e) in C such that the binary
operation m : M ×M →M is associative. This means that the following
diagram in C must commute:
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M ×M ×M M ×M

M ×M M

(m,idM )

(idM ,m) m

m

Definition 2.1.3. Let C be a finitely complete category and (M,m, e) and
(M ′,m′, e′) be internal unitary magmas in C . A unitary magma
homomorphism is a map f : (M,m, e)→ (M ′,m′, e′) which preserves the
internal unit and the internal binary operation.

Similarly, a monoid homomorphism is a map from one internal monoid
to another which preserves the internal unit and the internal binary
operation (alongside the associativity).

We will use UMg(C ) to denote the category of internal unitary magmas in
C and Mon(C ) to denote the category of internal monoids in C . In an
abuse of notation, we will use the same symbol UC to denote the forgetful
functors from UMg(C ) and Mon(C ) to C .

Example 2.1.4. The category Mon(Top) is the category of topological
monoids — monoids (M,m, 1) with a topology on M such that the binary
operation m is continuous.

The famous Eckmann-Hilton argument tells us that an internal unitary
magma in the category of unitary magmas UMg is actually a commutative
monoid.

Theorem 2.1.1. Let (M, ∗, e) be an internal unitary magma in the
category of unitary magmas UMg. Note that M is an object of UMg and
is itself a unitary magma. Consequently, M has a binary operation, which
we denote by ·. Then, the binary operations ∗ and · coincide and (M, ∗, e)
is a commutative monoid.

Proof. Assume that (M, ∗, e) is an internal unitary magma in UMg.
Equivalently, (M, ∗, e) is an object in the category UMg(UMg). Let · be
the binary operation on M as a unitary magma and e• ∈M be the unit
associated with ·.

To show: (a) If a, b, c, d ∈M then (a · b) ∗ (c · d) = (a ∗ c) · (b ∗ d).

(a) Assume that a, b, c, d ∈M . Using the fact that ∗ : M ×M →M is a
morphism in UMg, we compute directly that
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(a · b) ∗ (c · d) = ∗(a · b, c · d)

= ∗(a, c) · ∗(b, d)

= (a ∗ c) · (b ∗ d).

In particular, it is the second line where we used the fact that
∗ : M ×M →M is a unitary magma morphism.

To show: (b) The unit e of ∗ and the unit e• of · coincide.

(c) The operations · and ∗ both coincide.

(b) Using part (a), we compute directly that

e = e ∗ e
= (e · e•) ∗ (e• · e)
= (e ∗ e•) · (e• ∗ e)
= e• · e• = e•.

(c) We use both part (a) and part (b) to argue that

a ∗ b = (a · e•) ∗ (e• · b)
= (a ∗ e•) · (e• ∗ b) (Part (a))

= (a ∗ e) · (e ∗ b) (Part (b))

= a · b.

Hence, ∗ and · are the same binary operation on M .

To show: (d) ∗ is commutative.

(e) ∗ is associative.

(d) By direct computation, we have

a ∗ b = (e• · a) ∗ (b · e•)
= (e• ∗ b) · (a ∗ e•) (Part (a))

= (e ∗ b) · (a ∗ e) (Part (b))

= b · a = b ∗ a
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where the last equality follows from part (c) of the proof. Hence, ∗ is
commutative.

(e) To see that ∗ is associative, we also compute directly that

a ∗ (b ∗ c) = (a ∗ e) ∗ (b ∗ c)
= (a ∗ e) · (b ∗ c) (Part (c))

= (a · b) ∗ (e · c) (Part (a))

= (a · b) ∗ (e• · c) (Part (b))

= (a ∗ b) ∗ c.

Hence, the internal unitary magma (M, ∗, e) is a commutative monoid.

A major consequence of Theorem 2.1.1 is that the categories UMg(UMg),
UMg(Mon), Mon(UMg) and Mon(Mon) are isomorphic to the category
of commutative monoids CoM.

Our next task is to discuss the properties of the forgetful functor UC . There
are two important definitions here.

Definition 2.1.5. Let C and D be categories and H : C → D be a
functor. We say that the functor H is left exact if H preserves finite limits
(pullbacks, terminal objects, equalizers, products).

Here is a remark of caution. The term “left exact functor” also refers to a
functor which preserves left exact sequences. Obviously, we will use the
term “left exact functor” as defined above for these notes, but this is
something to keep in mind when one peruses the literature on category
theory.

Definition 2.1.6. Let C and D be categories and H : C → D be a
functor. We say that the functor H is conservative if H satisfies the
following property: If g : A→ B is a morphism in C such that H(g) is an
isomorphism in D then g is an isomorphism in C .

It is straightforward to see from the definition that the composite of left
exact functors is a left exact functor. Conservative functors are also well
behaved under composition.

Lemma 2.1.2. Let C ,D and E be categories. Let F : C → D and
G : D → E be functors.
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1. If F and G are conservative functors then G ◦ F is also conservative.

2. If G ◦ F is a conservative functor then F is also a conservative
functor.

Proof. Assume that C ,D and E are categories. Assume that F : C → D
and G : D → E are functors.

To show: (a) If F and G are conservative then G ◦ F is a conservative
functor.

(b) If G ◦ F is a conservative functor then F is a conservative functor.

(a) Assume that F and G are conservative functors. Assume that f is a
morphism in C such that (G ◦ F )(f) is an isomorphism in E . Since G is a
conservative functor, F (f) must be an isomorphism in D . Since F is a
conservative functor, f must be an isomorphism. Consequently, G ◦ F is a
conservative functor.

(b) Assume that G ◦ F is a conservative functor. Let f be a morphism in C
such that F (f) is an isomorphism. Then, (G ◦ F )(f) is an isomorphism in
E and since G ◦ F is a conservative functor, f must be an isomorphism.
Therefore, F is a conservative functor as required.

If we have a left exact functor between two finitely complete categories,
then the characterisation of a conservative functor can be weakened from
isomorphisms to monomorphisms.

Theorem 2.1.3. Let C and D be finitely complete categories. Let
H : C → D be left exact. Then, H is a conservative functor if and only if
H is “conservative on monomorphisms” — if f is a monomorphism such
that H(f) is an isomorphism then f is an isomorphism.

Proof. Assume that C and D are finitely complete categories. Assume that
H : C → D is a left exact functor.

To show: (a) If H is a conservative functor then H is conservative on
monomorphisms.

(b) If H is conservative on monomorphisms then H is a conservative
functor.
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(a) Assume that H is a conservative functor. By definition of a conservative
functor, H must be conservative on monomorphisms.

(b) Assume that H is conservative on monomorphisms. Assume that
f : X → Y is a morphism in C such that H(f) is an isomorphism in D .
Since C is finitely complete, we can consider the kernel equivalence relation
R[f ] of f :

R[f ] X Ypf1

pf0
sf0 f

Since H is a left exact functor, it maps the above equalizer in C to an
equalizer in D . Since H(f) is an isomorphism, we can apply Theorem 1.7.5
to show that H(sf0) is an isomorphism in D .

Recall that idX = pf0 ◦ s
f
0 . Since idX is an isomorphism, it must be a

monomorphism and an epimorphism. Now monomorphisms are preserved
under left cancellation. So, sf0 is a monomorphism such that H(sf0) is an
isomorphism in D .

Since H is conservative on monomorphisms, sf0 is an isomorphism. By
Theorem 1.7.5, we deduce that f is a monomorphism.

Since H is conservative on monomorphisms, f is a monomorphism and
H(f) is an isomorphism by assumption, we deduce that f is an
isomorphism in C . So, H is a conservative functor.

Example 2.1.7. This example is from [Bou17, Proposition 2.1.7]. Let C
be a finitely complete category. The forgetful functors UC : UMg(C )→ C
and UC : Mon(C )→ C are both left exact and conservative. In fact, the
forgetful functors UC are faithful.

We have already talked about commutativity in this particular section.
Now we will formally introduce commutativity in the context of internal
unitary magmas and internal monoids.

Definition 2.1.8. Let C be a finitely complete category and (M,m, e) be
an internal unitary magma (or an internal monoid). We say that (M,m, e)
is commutative if the following diagram commutes:

M ×M M ×M

M

twM,M

m m
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Here, twM,M : M ×M →M ×M is the twisting isomorphism, which maps
(m,m′) to (m′,m).

For this section and the next section, which deal with internal structures,
we assume that every category C is locally small.

Definition 2.1.9. We say that a category C is locally small if for any
pair of objects X,X ′ ∈ C , the class of morphisms HomC (X,X ′) is actually
a set.

Theorem 2.1.4. Let C be a finitely complete category and (M,m, e) be an
internal monoid in C . Assume that X ∈ C is an object and f : X → X ′ is
a morphism in C . Then, HomC (X,M) is a monoid and

HomC (f,M) : HomC (X ′,M)→ HomC (X,M)

is a monoid morphism.

Proof. Assume that C is a finitely complete category and (M,m, e) is an
internal monoid in C . Assume that X ∈ C is an object and f : X → X ′ is
a morphism in C .

To show: (a) HomC (X,M) is a monoid.

(b) HomC (f,M) is a monoid morphism.

(a) To be clear, HomC (X,M) is the set of morphisms from X to M . We
want to show that it is actually a monoid. First, we will define the binary
operation on HomC (X,M) by

µ : HomC (X,M)×HomC (X,M) → HomC (X,M)
(f, g) 7→ µ(f, g)(x) = m(f(x), g(x)).

Since M is an internal monoid, the internal binary operation m is
associative. Therefore, µ is also an associative binary operation.

Let ι : X →M be the morphism in C which sends x ∈ X to e(∗) ∈M ,
where ∗ is the terminal object in C . To see that ι is the unit in
HomC (X,M), we compute for f, g ∈ HomC (X,M) and x ∈ X that

µ(f, ι)(x) = m(f(x), ι(x)) = m(f(x), e(∗)) = f(x)

and
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µ(ι, g)(x) = m(ι(x), g(x)) = m(e(∗), g(x)) = g(x).

So, µ(f, ι) = f and µ(ι, g) = g. Hence, ι is the unit in HomC (X,M).
Consequently, HomC (X,M) is a monoid.

(b) Let µ′ be the binary operation on HomC (X ′,M) and ι′ be the unit in
HomC (X ′,M). Explicitly, the map HomC (f,M) is defined by

HomC (f,M) : HomC (X ′,M) → HomC (X,M)
g′ 7→ g′ ◦ f

First, we compute for x ∈ X that

HomC (f,M)(ι′)(x) = (ι′ ◦ f)(x) = ι′(f(x)) = e(∗).

Therefore, HomC (f,M)(ι′) = ι. If g′, h′ ∈ HomC (X ′,M) then

HomC (f,M)(µ′(g′, h′))(x) = (µ′(g′, h′) ◦ f)(x)

= µ′(g′, h′)(f(x))

= m(g′(f(x)), h′(f(x)))

= µ(g′ ◦ f, h′ ◦ f)(x)

= µ(HomC (f,M)(g′), HomC (f,M)(h′))(x).

Therefore, HomC (f,M) is a monoid morphism.

Theorem 2.1.4 tells us that the functor HomC (−,M) factorises through the
Mon, so that the following diagram commutes:

C op Mon

Set
HomC (−,M)

U

Here, U : Mon→ Set is the forgetful functor. Next, we will investigate a
particular situation in Theorem 2.1.4, where the internal monoid in C is
commutative.

Theorem 2.1.5. Let C be a finitely complete category and (M,m, e) be an
internal monoid in C . Let X be an object in C . Then, (M,m, e) is
commutative if and only if the monoid HomC (X,M) is commutative.
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Proof. Assume that C is a finitely complete category and (M,m, e) is an
internal monoid in C . Assume that X ∈ C is an object.

To show: (a) If (M,m, e) is commutative then the monoid HomC (X,M) is
commutative.

(b) If the monoid HomC (X,M) is commutative then the internal monoid
(M,m, e) is commutative.

(a) Assume that the internal binary operation m is commutative. Let µ be
the binary operation on HomC (X,M). If f, g ∈ HomC (X,M) and x ∈ X
then

µ(f, g)(x) = m(f(x), g(x)) = m(g(x), f(x)) = µ(g, f)(x).

So, µ(f, g) = µ(g, f) and the binary operation µ on HomC (X,M) is
commutative.

(b) Assume that the binary operation µ on HomC (X,M) is commutative.
If m1,m2 ∈M then there exists f1, f2 ∈ HomC (X,M) such that
f1(x) = m1 and f2(x) = m2 for some x ∈ X. So,

m(m1,m2) = m(f1(x), f2(x)) = µ(f1, f2)(x) = µ(f2, f1)(x) = m(m2,m1).

Therefore, the internal monoid (M,m, e) is commutative.

Consequently, if the internal monoid (M,m, e) is commutative then the
functor HomC (−,M) factorises through the category CoM, so that the
following diagram commutes:

C op CoM

Set
HomC (−,M)

U

Again, U : CoM→ Set is the forgetful functor.

2.2 Internal groups

We want to distinguish two different ways of defining a group from a
monoid. A group (G, ·, 1) is a monoid such that every g ∈ G has an inverse.

131



This definition actually requires extra data — the mapping g 7→ g−1. We
can also define a group (G, ·, 1) to be a monoid such that every g ∈ G is
invertible. Unlike the previous definition, invertibility is a property.

Although these definitions are equivalent, there is a subtle difference
between the extra mapping and the property which we will now elucidate.

Theorem 2.2.1. Let M be a monoid with binary operation
m : M ×M →M and unit e : 1→M . Here, 1 is the trivial monoid with
one element. Then, M is a group if and only if the following commutative
square in Set is a pullback:

M ×M M

M 1

m

pM0 τM

τM

where pM0 is projection onto the first factor of M ×M .

We abuse notation in Theorem 2.2.1 by using 1 to represent the trivial
monoid, its underlying singleton set and the element it contains.

Proof. Assume that M is a monoid with binary operation m and unit e(1).

To show: (a) If M is a group then the above commutative square is a
pullback square.

(b) If the above commutative square is a pullback square then M is a group.

(a) Assume that M is a group. For each p ∈M , there exists p−1 ∈M such
that m(p, p−1) = m(p−1, p) = e(1). Suppose that we have the following
commutative square in Set:

N M

M 1

f

g τM

τM

Define the function (morphism of sets)

φ : N → M ×M
n 7→ (g(n), g(n)−1f(n))

This is a unique morphism of sets. It is easy to check that the following
diagram commutes:
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N

M ×M M

M 1

φ

f

g
m

pM0 τM

τM

Hence, the commutative square we began with must be a pullback square.

(b) Assume that the following commutative square in Set is a pullback
square:

M ×M M

M 1

m

pM0 τM

τM

Then, there exists a unique morphism α : M →M ×M such that the
following diagram commutes:

M

M ×M M

M 1

α

e◦τM

idM

m

pM0 τM

τM

If p ∈M and α(p) = (i1(p), i2(p)) then by commutativity of the above
diagram, i1(p) = p = idM(p) and m(p, i2(p)) = (e ◦ τM)(p) = e(1). It
remains to show that i2(p) is the left inverse for p. Note that we also have
m(i2(p), i2(i2(p))) = e(1).

To show: (ba) m(e(1), i2(i2(p))) = m(e(1), p).

(ba) Abbreviating m(a, b) as a · b, we argue as follows

e(1) · p = e(1) · p · e(1)

= (p · i2(p)) · p · (i2(p) · i2(i2(p)))

= (p · i2(p)) · (p · i2(p)) · i2(i2(p)) = e(1) · i2(i2(p)).

(b) Using part (ba), we have
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e(1) = i2(p) · i2(i2(p))

= (i2(p) · e(1)) · i2(i2(p))

= i2(p) · (e(1) · i2(i2(p)))

= i2(p) · (e(1) · p)
= (i2(p) · e(1)) · (e(1) · p)
= (i2(p) · p · i2(p)) · (i2(p) · i2(i2(p)) · p).

But

(i2(p) · p · i2(p)) · (i2(p) · i2(i2(p)) · p) = i2(p) · (p · i2(p)) · (i2(p) · i2(i2(p))) · p
= i2(p) · p.

By equating the two expressions together, we find that
i2(p) · p = m(i2(p), p) = e(1). So, i2(p) is a left and right inverse for p ∈M .
Hence, every element of M is invertible and consequently, M is a group.

From Theorem 2.2.1, the map i2 = pM1 ◦ α is the inverse mapping from M
to M . Here, α : M →M ×M is the unique group morphism defined in
part (b) of Theorem 2.2.1 and pM1 : M ×M →M denotes projection onto
the right factor of M ×M .

The characterisation of a group in Theorem 2.2.1 leads us straight to the
definition of an internal group in a finitely complete category.

Definition 2.2.1. Let C be a finitely complete category with terminal
object ∗. An internal group in C is an internal monoid (M,m, e) such
that the following commutative square in C is a pullback square:

M ×M M

M ∗

m

pM0 τM

τM

Again, pM0 : M ×M →M denotes projection onto the left factor.

An internal abelian group is an internal commutative monoid (M,m, e)
such that the same square above is a pullback square in C .
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We denote the category of internal groups in C by Grp(C ). The category
of internal abelian groups in C is denoted by Ab(C ).

In a similar vein to UMg(C ) and Mon(C ), the forgetful functors
UC : Grp(C )→ C and UC : Ab(C )→ C are left exact and conservative.

Example 2.2.2. The category Grp(Top) is the category of topological
groups — groups which are endowed with a topology which makes the
binary operation and the inverse mapping continuous functions.

The Eckmann-Hilton argument can also be applied to internal groups.

Theorem 2.2.2. Let (G, ∗, e) be an internal group in the category of
monoids Mon. Note that G is an object of Mon and is itself a monoid.
Consequently, M has a binary monoid operation, which we denote by ·.
Then, the binary operations ∗ and · coincide and (G, ∗, e) is an abelian
group.

Proof. Assume that (G, ∗, e) is an internal group in UMg. Equivalently,
(G, ∗, e) is an object in the category Grp(Mon). Let · be the binary
operation on G as a monoid and e• ∈M be the unit associated with ·.

To show: (a) If a, b, c, d ∈ G then (a · b) ∗ (c · d) = (a ∗ c) · (b ∗ d).

(a) Assume that a, b, c, d ∈ G. Using the fact that ∗ : G×G→ G is a
morphism in Mon, we compute directly that

(a · b) ∗ (c · d) = ∗(a · b, c · d)

= ∗(a, c) · ∗(b, d)

= (a ∗ c) · (b ∗ d).

In particular, it is the second line where we used the fact that
∗ : G×G→ G is a monoid morphism.

To show: (b) The unit e of ∗ and the unit e• of · coincide.

(c) The operations · and ∗ both coincide.

(b) Using part (a), we compute directly that
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e = e ∗ e
= (e · e•) ∗ (e• · e)
= (e ∗ e•) · (e• ∗ e)
= e• · e• = e•.

(c) We use both part (a) and part (b) to argue that

a ∗ b = (a · e•) ∗ (e• · b)
= (a ∗ e•) · (e• ∗ b) (Part (a))

= (a ∗ e) · (e ∗ b) (Part (b))

= a · b.

Hence, ∗ and · are the same binary operation on G.

To show: (d) ∗ is commutative.

(d) By direct computation, we have

a ∗ b = (e• · a) ∗ (b · e•)
= (e• ∗ b) · (a ∗ e•) (Part (a))

= (e ∗ b) · (a ∗ e) (Part (b))

= b · a = b ∗ a

where the last equality follows from part (c) of the proof. Hence, ∗ is
commutative and the internal group (G, ∗, e) is an abelian group.

A major consequence of Theorem 2.2.2 is that the categories Grp(Mon)
and Ab(Mon) are isomorphic to the category of abelian groups Ab. A
similar argument also reveals that the categories UMg(Grp) and
Mon(Grp) are isomorphic to Ab.

Before we continue, we would like to highlight a substantial application of
the Eckmann-Hilton argument to algebraic topology.

Example 2.2.3. Let G be a topological group and e be the identity
element of G. We want to prove that the fundamental group π1(G, e) is
abelian. Our strategy is to exploit the fact that the binary operation
µ : G×G→ G is continuous. First, we require the following lemma about
the fundamental group.
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Lemma 2.2.3. Let (X, x0) and (Y, y0) be pointed topological spaces. Then
the fundamental groups π1(X × Y, (x0, y0)) and π1(X, x0)× π1(Y, y0) are
isomorphic.

Proof. Assume that (X, x0) and (Y, y0) are pointed topological spaces. Let
f : [0, 1]→ X × Y be a loop with basepoint (x0, y0) so that
f(0) = f(1) = (x0, y0). Let πX : X × Y → X and πY : X × Y → Y denote
the canonical projection maps. These projections are continuous and hence,
by applying the functor π1 : Top∗ → Grp which maps a pointed
topological space to its fundamental group, we obtain the group morphisms

πX] : π1(X × Y, (x0, y0)) → π1(X, x0)
[f ] 7→ [πX ◦ f ]

and

πY ] : π1(X × Y, (x0, y0)) → π1(X, x0)
[g] 7→ [πY ◦ g]

Now define

ψ : π1(X × Y, (x0, y0)) → π1(X, x0)× π1(Y, y0)
[f ] 7→ ([πX ◦ f ], [πY ◦ f ])

We claim that ψ is a group isomorphism. Since ψ is the product of the
group morphisms πX] and πY ], ψ must be a group morphism itself.

To show: (a) ψ is well-defined.

(b) ψ is injective.

(c) ψ is surjective.

(a) Assume that [f ] = [g] in π1(X × Y, (x0, y0)). Then, there exists a
homotopy F : [0, 1]× [0, 1]→ X × Y rel {0, 1} such that F (0, t) = f(t),
F (1, t) = g(t), F (s, 0) = f(0) = g(0) and F (s, 1) = f(1) = g(1).

The composite πX ◦ F : [0, 1]× [0, 1]→ X continuous because it is the
composite of continuous functions. Furthermore,
(πX ◦ F )(0, t) = (πX ◦ f)(t), (πX ◦ F )(1, t) = (πX ◦ g)(t),

(πX ◦ F )(s, 0) = (πX ◦ f)(0) = (πX ◦ g)(0) = x0

and
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(πX ◦ F )(s, 1) = (πX ◦ f)(1) = (πX ◦ g)(1) = x0.

So, πX ◦ F is a homotopy rel {0, 1} between πX ◦ f and πX ◦ g. Similarly,
πY ◦ F is a homotopy rel {0, 1} between πY ◦ f and πY ◦ g. Hence,
[πX ◦ f ] = [πX ◦ g] in π1(X, x0) and [πY ◦ f ] = [πY ◦ g] in π1(Y, y0). So,

([πX ◦ f ], [πY ◦ f ]) = ([πX ◦ g], [πY ◦ g])

and consequently, ψ is well-defined.

(b) The kernel of ψ is given by

kerψ = {[f ] ∈ π1(X × Y, (x0, y0)) | πX ◦ f ' cx0 and πY ◦ f ' cy0}

where cx0 : [0, 1]→ X and cy0 : [0, 1]→ Y are the constant loops at x0 and
y0 respectively.

The idea is to write the loop f : [0, 1]→ X × Y as f(t) = (g(t), h(t)), where
g : [0, 1]→ X and h : [0, 1]→ Y are loops with basepoints x0 and y0

respectively. Let M ∈ Cts([0, 1]× [0, 1]→ X) be a homotopy between
πX ◦ f and cx0 and H ∈ Cts([0, 1]× [0, 1]→ Y ) be a homotopy between
πY ◦ f and cy0 . Then, M(0, t) = g(t), M(1, t) = cx0(t) = x0, H(0, t) = h(t)
and H(1, t) = y0.

Now define the function

F : [0, 1]× [0, 1] → X × Y
(s, t) 7→ (M(s, t), H(s, t))

The function F is continuous because it is the product of the homotopies
M and H, which are continuous by definition. Furthermore,
F (0, t) = (g(t), h(t)) = f(t) and F (1, t) = (x0, y0). This proves the
homotopy equivalence f ' c(x0,y0) and so, [f ] = [c(x0,y0)] as equivalence
classes. So, kerψ = {0} and ψ must be injective.

(c) Assume that g : [0, 1]→ X and h : [0, 1]→ Y are two loops with
basepoints x0 and y0 respectively. Then, (g(t), h(t)) : [0, 1]→ X × Y is a
loop with basepoint (x0, y0) and

ψ([(g, h)]) = ([πX ◦ (g, h)], [πY ◦ (g, h)]) = ([g], [h])

Hence, ψ is surjective.
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Combining parts (a) and (b) of the proof, we deduce that ψ defines a group
isomorphism between π1(X × Y, (x0, y0)) and π1(X, x0)× π1(Y, y0).

Since the binary operation µ : (G×G, (e, e))→ (G, e) of G is continuous, it
is a morphism in the category of pointed topological spaces Top∗.
Therefore, π1(µ) = µ] : π1(G×G, (e, e))→ π1(G, e) is a morphism in the
category of groups Grp. By precomposing with ψ−1 as defined in Lemma
2.2.3, we obtain the following binary operation on π1(G, e):

π1(µ) ◦ ψ−1 : π1(G, e)× π1(G, e) → π1(G, e)
([g], [h]) 7→ [µ ◦ (g, h)].

(2.1)

Before we proceed, let us iron out the notation for the three binary
operations involved. For g, h ∈ G, we will write the product µ(g, h) as gh.
For the binary operation in equation (2.1), we will write

(π1(µ) ◦ ψ−1)([g], [h]) as [g] · [h].

Then, ([g] · [h])(t) = [g(t)h(t)] in π1(G, e). For [g], [h] ∈ π1(G, e), let

g ∗ h =

{
g(2t), if t ∈ [0, 1/2],

h(2t− 1), if t ∈ [1/2, 1].

The original binary operation on the fundamental group π1(G, e) will be
denoted by �. That is, [g]� [h] = [g ∗ h].

To show: (a) There exists [k] ∈ π1(G, e) such that if [g] ∈ π1(G, e) then
[g] · [k] = [k] · [g] = [g].

(b) If [a], [b], [c], [d] ∈ π1(G, e) then

([a] · [b])� ([c] · [d]) = ([a]� [c]) · ([b]� [d]). (2.2)

(a) Let ce : [0, 1]→ G be the constant loop at e. Let [g] ∈ π1(G, e). We
claim that [ce] · [g] = [g] and [g] · [ce] = [g].

By construction in equation (2.1), we deduce that [ce] · [g] = [µ ◦ (ce, g)].
But, if t ∈ [0, 1] then

(µ ◦ (ce, g))(t) = µ(ce(t), g(t)) = ce(t)g(t) = eg(t) = g(t).

This shows that [µ ◦ (ce, g)] = [g] in π1(G, e). Therefore, [ce] · [g] = [g].
Similarly,
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(µ ◦ (g, ce))(t) = µ(g(t), ce(t)) = g(t)ce(t) = g(t)e = g(t).

So, [g] · [ce] = [µ ◦ (g, ce)] = [g]. Thus, [ce] ∈ π1(G, e) is the desired element
— it is the unit of the binary operation ·. Note that [ce] is also the unit of
the binary operation �.

(b) Assume that [a], [b], [c], [d] ∈ π1(G, e). We will compute the LHS and
RHS of equation (2.2) separately. The RHS of equation (2.2) is

([a]� [c]) ·([b]� [d]) = [a∗c] · [b∗d] =
[{a(2t)b(2t), if t ∈ [0, 1/2],

c(2t− 1)d(2t− 1), if t ∈ [1/2, 1].

]
Meanwhile, the LHS of equation (2.2) is

([a]·[b])�([c]·[d]) = [µ◦(a, b)]�[µ◦(c, d)] =
[{a(2t)b(2t), if t ∈ [0, 1/2],

c(2t− 1)d(2t− 1), if t ∈ [1/2, 1].

]
Therefore, equation (2.2) is satisfied.

Using parts (a) and (b) of the proof, we now argue that if [f ], [g] ∈ π1(G, e)
then

[f ]� [g] = ([f ] · [ce])� ([ce] · [g])

= ([f ]� [ce]) · ([ce]� [g]) (Equation (2.2))

= [f ] · [g] = ([ce]� [f ]) · ([g]� [ce])

= ([ce] · [g])� ([f ] · [ce]) = [g]� [f ].

This shows that π1(G, e) is an abelian group as required.

Returning to the more general scenario of internal groups, we want a
characterisation of an internal group which runs parallel to the
characterisation of an internal monoid in Theorem 2.1.4.

Theorem 2.2.4. Let C be a finitely complete category and (M,m, e) be an
internal monoid in C . Then, (M,m, e) is an internal group if and only if
for any object X ∈ C , HomC (X,M) is a group and for any morphism
f : X → X ′ in C , the map

HomC (f,M) : HomC (X ′,M)→ HomC (X,M)

is a group morphism.
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Proof. Assume that C is a finitely complete category and (M,m, e) is an
internal monoid in C . Assume that X,X ′ ∈ C are objects and f : X → X ′

is a morphism in C .

To show: (a) If (M,m, e) is an internal group then HomC (X,M) is a group
and HomC (f,M) is a group morphism.

(b) If HomC (X,M) is a group and HomC (f,M) is a group morphism then
(M,m, e) is an internal group.

(a) Assume that (M,m, e) is an internal group. Then, the following
diagram in C is a pullback square:

M ×M M

M ∗

m

pM0 τM

τM

where ∗ is the terminal object in C . We know from Theorem 2.2.1 that we
can use the universal property of the above pullback square to obtain the
inverse mapping (−)−1 : M →M such that if a ∈M then
m(a, a−1) = m(a−1, a) = e(∗).

We know from Theorem 2.1.4 that HomC (X,M) is a monoid, with binary
operation

µ : HomC (X,M)×HomC (X,M) → HomC (X,M)
(f, g) 7→ µ(f, g)(x) = m(f(x), g(x)).

We claim that if f ∈ HomC (X,M) then the composite
(−)−1 ◦ f ∈ HomC (X,M) a multiplicative inverse to f . Observe that if
x ∈ X then

µ(f, (−)−1 ◦ f)(x) = m(f(x), ((−)−1 ◦ f)(x))

= m(f(x), f(x)−1) = e(∗)

and

µ((−)−1 ◦ f, f)(x) = m(((−)−1 ◦ f)(x), f(x))

= m(f(x)−1, f(x)) = e(∗).
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Therefore, (−)−1 ◦ f is a multiplicative inverse to f . Consequently,
HomC (X,M) is a group.

To see that the monoid morphism HomC (f,M) is a group morphism, we
compute directly for g ∈ HomC (X ′,M) and x ∈ X that

HomC (f,M)((−)−1 ◦ g)(x) = ((−)−1 ◦ g ◦ f)(x)

= (−)−1 ◦ (g ◦ f)(x)

= ((g ◦ f)(x))−1

= (HomC (f,M)(g)(x))−1

So, HomC (f,M) is a group morphism.

(b) Conversely, assume that HomC (X,M) is a group and HomC (f,M) is a
group morphism. Suppose that we have the following commutative square
in C :

Z M

M ∗

z1

z2 τM

τM

Since HomC (X,M) is a group, there exists a unique multiplicative inverse
for z2, which we denote by z−1

2 . Define φ ∈ HomC (X,M ×M) by
φ = (z2, µ(z−1

2 , z1)). In a similar vein to Theorem 2.2.1, we find that the
following diagram commutes:

Z

M ×M M

M 1

φ

z1

z2
m

pM0 τM

τM

Hence, the square in C below is a pullback square:

M ×M M

M 1

m

pM0 τM

τM

and consequently, (M,m, e) is an internal group in C as required.
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Just like Theorem 2.1.4, Theorem 2.2.4 can be reformulated as a diagram.
In particular, Theorem 2.2.4 tells us that the functor HomC (−,M)
factorises through the category Grp, so that the following diagram
commutes:

C op Grp

Set

HomC (−,M)
U

Again, U the forgetful functor. Also, we have an analogue of Theorem 2.2.4
which applies to abelian groups.

Theorem 2.2.5. Let C be a finitely complete category and (M,m, e) be an
internal monoid in C . Then, (M,m, e) is an internal abelian group if and
only if for any object X ∈ C , HomC (X,M) is an abelian group.

The proof of this is very similar to Theorem 2.1.5. Theorem 2.2.5 tells us
that the functor HomC (−,M) factorises through the category Ab. So, the
following diagram commutes:

C op Ab

Set
HomC (−,M)

U

2.3 The Yoneda embedding

Recall the definition of a natural transformation from Definition 1.1.6.

Definition 2.3.1. Let C and D be categories. The functor category
F(C ,D) is the category whose objects are functors F : C → D and
morphism are natural transformations between functors.

The isomorphisms in the functor category F(C ,D) are the natural
isomorphisms between functors from C to D .

In the previous two sections, we worked with the contravariant functor

HomC (−, X) : C op → Set.

for an object X ∈ C . Here, C is an arbitrary category. This gives rise to
the functor
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Y : C → F(C op,Set)
X 7→ Y (X) = HomC (−, X)

f : X → X ′ 7→ Y (f)
(2.3)

If f : X → X ′ is a morphism in C then Y (f) is a natural transformation
defined by the family of maps

{Y (f)A : HomC (A,X)→ HomC (A,X ′) | A ∈ C }
where we have for each object A ∈ C the morphism of sets

Y (f)A : HomC (A,X) → HomC (A,X ′)
g 7→ f ◦ g.

For two functors F : C → D and F ′ : C → D , we write Nat(F, F ′) to
denote the set of natural transformations from F to F ′. This notation is
adopted from [Mur16].

Lemma 2.3.1 (Yoneda lemma). Let C be a locally small category and
F : C op → Set be a functor. Let C ∈ C be an object. Define the map

ΦC,F : Nat(Y (C), F ) → F (C)
α 7→ αC(idC)

Explicitly, Y is the functor from equation (2.3), αC is a morphism of sets
from Y (C)(C) = HomC (C,C) to F (C) and idC is the identity map on the
object C. Then, ΦC,F is a bijection, which satisfies the following two
properties:

1. If f : C → C ′ is a morphism in C then the following square in Set
commutes:

Nat(Y (C), F ) F (C)

Nat(Y (C ′), F ) F (C ′)

ΦC,F

ΦC′,F

(−)◦Y (f) F (f)

2. If β : F → F ′ is a natural transformation then the following diagram in
Set commutes:

Nat(Y (C), F ) F (C)

Nat(Y (C), F ′) F ′(C)

ΦC,F

β◦(−) βC

ΦC,F ′
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Proof. Assume that C is a locally small category and C ∈ C is an object.
Assume that F : C op → Set is a functor.

To show: (a) The map ΦC,F is surjective.

(b) The map ΦC,F is injective.

(c) The first property in the statement of the lemma is satisfied.

(d) The second property in the statement of the lemma is satisfied.

(a) Assume that X ∈ F (C) and D is an object in C op. Define the map
N(X)D by

N(X)D : Y (C)(D) = HomC (D,C) → F (D)
g 7→ F (g)(X)

Recall that F is a contravariant functor by assumption so that F (g) is a
morphism in Set from F (C) to F (D).

To show: (aa) N(X) ∈ Nat(Y (C), F ).

(aa) We will show that if h : D → D′ is a morphism in C op then the
following diagram in Set commutes:

Y (C)(D′) Y (C)(D)

F (D′) F (D)

Y (C)(h)

N(X)D′ N(X)D

F (h)

Assume that ξ ∈ Y (C)(D′) = HomC (D′, C). We compute directly that

(N(X)D ◦ Y (C)(h))(ξ) = (N(X)D ◦HomC (h,C))(ξ)

= N(X)D(ξ ◦ h)

= F (ξ ◦ h)(X)

= (F (h) ◦ F (ξ))(X)

= (F (h) ◦N(X)D′)(ξ).

Hence, the above diagram in Set commutes and N(X) ∈ Nat(Y (C), F ).
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(a) We claim that ΦC,F (N(X)) = X. Using the definitions of ΦC,F and
N(X), we find that

ΦC,F (N(X)) = N(X)C(idC)

= F (idC)(X) = idF (C)(X) = X.

Therefore, the map ΦC,F is surjective.

(b) Assume that α, β ∈ Nat(Y (C), F ) such that ΦC,F (α) = ΦC,F (β).
Assume that f ∈ HomC (D,C) for some object D ∈ C . By naturality of α,
the following diagram in Set commutes:

Y (C)(C) Y (C)(D)

F (C) F (D)

Y (C)(f)

αC αD

F (f)

We then have

(F (f) ◦ ΦC,F )(α) = F (f)(αC(idC))

= (αD ◦ Y (C)(f))(idC)

= αD(HomC (f, C)(idC))

= αD(idC ◦ f) = αD(f).

Since ΦC,F (α) = ΦC,F (β) by assumption, αC(idC) = βC(idC). But, β is also
a natural transformation between the functors Y (C) and F . So, the
following diagram in Set commutes:

Y (C)(C) Y (C)(D)

F (C) F (D)

Y (C)(f)

βC βD

F (f)

If f ∈ HomC (D,C) = Y (C)(D) then
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αD(f) = αD(idC ◦ f)

= αD(HomC (f, C)(idC))

= (αD ◦ Y (C)(f))(idC)

= F (f)(αC(idC))

= F (f)(βC(idC)) (since αC(idC) = βC(idC))

= (βD ◦ Y (C)(f))(idC)

= βD(HomC (f, C)(idC)) = βD(f).

Therefore, αD = βD. Since the object D ∈ C was arbitrary, we deduce that
α = β as natural transformations from Y (C) to F . Therefore, ΦC,F is
injective.

Combining parts (a) and (b), we deduce that ΦC,F is indeed a bijective
map. Its inverse is given explicitly by

Φ−1
C,F : F (C) → Nat(Y (C), F )

X 7→ N(X)

where N(X) is the natural transformation in parts (a) and (aa). Recall
that it is defined by

N(X)D : Y (C)(D) = HomC (D,C) → F (D)
g 7→ F (g)(X)

(c) Now assume that f : C → C ′ is a morphism in C . We want to show
that the following square in Set commutes:

Nat(Y (C), F ) F (C)

Nat(Y (C ′), F ) F (C ′)

ΦC,F

ΦC′,F

(−)◦Y (f) F (f)

Assume that α ∈ Nat(Y (C ′), F ). We compute directly that

(ΦC,F ◦ (−) ◦ Y (f))(α) = ΦC,F (α ◦ Y (f))

= (α ◦ Y (f))C(idC)

= (αC ◦ Y (f)C)(idC)

= αC(Y (f)C(idC))

= αC(f ◦ idC) = αC(f)
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and

(F (f) ◦ ΦC′,F )(α) = F (f)(αC′(idC′)

= (F (f) ◦ αC′)(idC′)
= (αC ◦ Y (C ′)(f))(idC′) (Naturality of α)

= αC(HomC (f, C ′)(idC′))

= αC(f).

So, the above diagram in Set is commutative.

(d) Assume that β ∈ Nat(F, F ′). We want to show that the following
diagram in Set commutes:

Nat(Y (C), F ) F (C)

Nat(Y (C), F ′) F ′(C)

ΦC,F

β◦(−) βC

ΦC,F ′

Assume that χ ∈ Nat(Y (C), F ). We compute directly that

(βC ◦ ΦC,F )(χ) = βC(χC(idC))

= (βC ◦ χC)(idC)

= (β ◦ χ)C(idC)

= ΦC,F ′(β ◦ χ)

= (ΦC,F ′ ◦ β ◦ (−))(χ)

Therefore, the above diagram in Set commutes. This completes the
proof.

In the Yoneda lemma (Lemma 2.3.1), the property proved in part (c) tells
us that ΦC,F is natural in the object C ∈ C . Correspondingly, the property
proved in part (d) tells us that ΦC,F is natural with respect to the functor
F : C op → Set.

We can now state the major theorem pertaining to the Yoneda
embedding.

Theorem 2.3.2 (Yoneda embedding). Let C be a locally small category.
The Yoneda embedding, which is the functor
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Y : C → F(C op,Set)
X 7→ Y (X) = HomC (−, X)

f : X → X ′ 7→ Y (f)

is a fully faithful functor.

Proof. Assume that C is a locally small category and that the Yoneda
embedding Y is the functor defined as above. Let X,X ′ be objects in C .
Then, the functor Y induces a mapping

YX,X′ : HomC (X,X ′)→ HomF(C op,Set)(Y (X), Y (X ′))

Note that HomF(C op,Set)(Y (X), Y (X ′)) = Nat(Y (X), Y (X ′)) and
YX,X′(f) = Y (f).

To show: (a) YX,X′ is bijective.

(a) By Lemma 2.3.1, it suffices to show that YX,X′ is the inverse to the
bijection ΦX,Y (X′) : Nat(Y (X), Y (X ′))→ Y (X ′)(X). Assume that
f ∈ HomC (X,X ′). Then,

(ΦX,Y (X′) ◦ YX,X′)(f) = ΦX,Y (X′)(Y (f))

= Y (f)X(idX)

= f ◦ idX = f.

Hence, YX,X′ is a bijection as required.

Part (a) shows that the Yoneda embedding is a fully faithful functor as
required.

2.4 Finite limits

The goal of the next few sections is to prove the following important fact
about the Yoneda embedding in Theorem 2.3.2.

Theorem 2.4.1. Let C be a finitely complete category and
Y : C → F(C op,Set) denote the Yoneda embedding. Then, Y is a left exact
functor.
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In the previous sections, we have used the term limit loosely to refer to the
constructions of equalizers, pullbacks, terminal objects and products. In
order to prove Theorem 2.4.1, we will need to pin down what a limit really
is. The main reference we will follow for the next few sections is [Lei14,
Chapters 5 and 6].

Definition 2.4.1. A category C is said to be small if the collection of all
morphisms in C is a set.

Note that if a category C is small then the collection of objects ob(C ) is
also a set because objects are in a one-to-one correspondence with identity
morphisms.

Definition 2.4.2. Let C be a category and I be a small category. A
functor I→ C is called a diagram in C of shape I.

Definition 2.4.3. Let C be a category, I be a small category and
D : I→ C be a diagram in C . A cone on D is an object A ∈ C , called the
vertex of the cone, together with a family(

fI : A→ D(I)
)
I∈I

of morphisms in C such that if u : I → J is a morphism in I then the
triangle in C below commutes:

A D(I)

D(J)

fI

fJ
D(u)

Before we proceed to the tantalising definition of a limit, let us first
understand why the concept of a cone is relevant to the examples of limits
we already know.

Example 2.4.4. Let C be a category and P be the small category
depicted pictorially by

•

• •

Let D : P→ C denote the diagram in C which sends P to
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A1

A2 A3

f

g

A cone on D : P→ C is an object V ∈ C (the vertex), together with a
family of morphisms f1 : V → A1, f2 : V → A2 and f3 : V → A3 such that
the following triangles in C commute:

V A1

A3

f1

f3
f

V

A2 A3

f2
f3

g

We can combine these two commutative triangles to find that the cone of D
is the commutative square in C

V A1

A2 A3

f2

f1

f

g

In the above example, we obtained the commutative square associated with
a pullback from the definition of a cone, but we have yet to implement the
universal property of the pullback. This is exactly what a limit does.

Definition 2.4.5. Let C be a category, I be a small category and
D : I→ C be a diagram in C . A limit of D is a cone(

pI : L→ D(I)
)
I∈I

such that if we have another cone
(
fI : V → D(I)

)
I∈I on D then there

exists a unique morphism f̃ : V → L such that if I ∈ I then the following
diagram in C commutes:

V L

D(I)

f̃

fI
pI
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In a common abuse of notation, we refer to L as the limit of D. We write
the limit L as lim

←−I
D.

Example 2.4.6. Let us return to the previous example. The previous cone
of D is the following commutative square in C :

V A1

A2 A3

f2

f1

f

g

A limit of the diagram D : P→ C in C is another cone, which consists of
an object L ∈ C and morphisms pj : L→ Aj for j ∈ {1, 2, 3}. This time,
there exists a unique morphism f̃ : V → L such that if j ∈ {1, 2, 3} then
pj ◦ f̃ = fj. This is equivalent to saying that the following diagram in C
commutes:

V

L A1

A2 A3

f̃

f1

f2

p2

p1 f

g

The equation p3 ◦ f̃ = f3 is extraneous data and can be deduced from the
above diagram. Indeed, we have

f3 = f ◦ f1

= f ◦ (p2 ◦ f̃)

= (f ◦ p2) ◦ f̃
= p3 ◦ f̃ .

Hence, we have shown that the limit of D is the pullback of the following
diagram in C :

A1

A2 A3

f

g
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Therefore, the above example confirms that a pullback is a specific type of
limit. In the next example, we will show that equalizers are also limits.

Example 2.4.7. Let C be a category and E be the small category
depicted pictorially by

• •

Let D : E→ C denote the diagram in C which sends E to

A1 A2

f1

f2

A cone on D : E→ C is an object V ∈ C , together with morphisms
v1 : V → A1 and v2 : V → A2 such that f1 ◦ v1 = v2 and f2 ◦ v1 = v2. Hence,
a cone on D is the morphism v1 : V → A1 which equalizes the pair (f1, f2).

A limit of the diagram D : E→ C is another cone L ∈ C with
accompanying morphisms p1 : L→ A1 and p2 : L→ A2 such that there
exists a unique morphism f̃ : V → L which makes the following diagram in
C commute:

V

L A1 A2

v1
f̃

p1
f1

f2

Similarly to the example of a pullback, the equation p2 ◦ f̃ = v2 is an
extraneous condition, which can be determined from the commutative
diagram above. We have

v2 = f2 ◦ v1 = f2 ◦ (p1 ◦ f̃) = (f2 ◦ p1) ◦ f̃ = p2 ◦ f̃ .

Therefore, the limit of the diagram D is the equalizer of the following
diagram in C :

A1 A2

f1

f2

In the same way as the previous example, we will now show that the
product is also a limit.
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Example 2.4.8. Let C be a category and T be the small category
depicted pictorially by

• •

Let D : T→ C denote the diagram in C which sends T to

A1 A2

A cone on D : T→ C is an object V ∈ C , together with morphisms
v1 : V → A1 and v2 : V → A2. There are no commutative diagrams to deal
with here because there are no morphisms in T.

A limit of the diagram D : T→ C is another cone L ∈ C with
accompanying morphisms p1 : L→ A1 and p2 : L→ A2 such that there
exists a unique morphism f̃ : V → L which makes the following diagram in
C commute:

L

A1 V A2

p1 p2

v1

f̃

v2

Therefore, the limit of the diagram D is the product of the objects A1 and
A2.

Finally, we will show that the terminal object can also be thought of as a
limit.

Example 2.4.9. Let C be a category and 0 be the empty category, with
no morphisms or objects. Let D : 0→ C denote the diagram in C which
sends 0 to the empty subcategory of C .

A cone on D : 0→ C is just an object V ∈ C . This time, there are no
accompanying morphisms because there are no objects in the empty
category D(0).

A limit of the diagram D : 0→ C is another cone/object L ∈ C such that
there exists a unique morphism t : V → L. Therefore, the limit of the
diagram D is the terminal object L ∈ C .

154



Let D : I→ C be a diagram in C . The universal property associated with
a limit L of D can be interpreted as the bijective correspondence

{Morphisms A→ L} ↔ {Cones on D with vertex A}
g : A→ L 7→

(
pI ◦ g : A→ D(I)

)
I∈I

f̃ : A→ L ← [
(
fI : A→ D(I)

)
I∈I

(2.4)

The maps pI : L→ D(I) are the morphisms accompanying the limit L.
The universal property of the limit provides the direction from “right to
left” in the above correspondence — from a cone on D with vertex A to a
unique morphism A→ L.

So far, we have discussed limits in generality. In the next example, we will
discuss limits in our most familiar (finitely complete) category — Set.

Example 2.4.10. Let I be a small category and D : I→ Set be a diagram
in Set. The limit lim

I←−
D satisfies

lim
←−I

D ∼= HomSet({∗}, lim
←−I

D)

∼= {Cones on D with vertex {∗}}
∼= {(xI)I∈I | xI ∈ D(I) and (Du)(xI) = xJ for u : I → J in I}

For clarity, {∗} is a set with cardinality 1. The second isomorphism is by
the bijective correspondence in equation (2.4) and the third isomorphism is
straight from the definition of the cone. We highlight the result in this
example below, as it will be used later

lim
←−I

D ∼= {(xI)I∈I | xI ∈ D(I) and (Du)(xI) = xJ for u : I → J in I}.
(2.5)

We will also need the following lemma, which tells us when two morphisms
to a limit L are equal.

Lemma 2.4.2. Let C be a category and I be a small category. Let
D : I→ C be a diagram and L be the limit on D, with accompanying
morphisms pI : L→ D(I) for I ∈ I. If h, h′ : A→ L are morphisms
satisfying pI ◦ h = pI ◦ h′ for I ∈ I then h = h′.

Proof. Assume that C is a category and I is a small category. Assume that
D : I→ C is a diagram and L be the limit on D.
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Assume that h, h′ are morphisms from A to L such that pI ◦ h = pI ◦ h′ for
I ∈ I. By the definition of the limit L, there exists a unique morphism
f : A→ L such that pI ◦ f = pI ◦ h = pI ◦ h′ for I ∈ I. By uniqueness of f ,
we must have h = h′.

One can ask what happens when we have two different diagrams
D,D′ : I→ C and a natural transformation α : D → D′. The natural
transformation α induces a morphism between the limits on D and D′.

Theorem 2.4.3. Let I be a small category and C be a category. Let
D,D′ : I→ C be diagrams and α : D → D′ be a natural transformation. Let(

pI : lim
←−I

D → D(I)
)
I∈I and

(
p′I : lim

←−I
D′ → D′(I)

)
I∈I

be the limits of D and D′ respectively. Then, there exists a unique
morphism lim

←−I
α : lim

←−I
D → lim

←−I
D′ such that if I ∈ I then the following

diagram in C commutes:

lim
←−I

D D(I)

lim
←−I

D′ D′(I)

pI

lim
←−I

α αI

p′I

Moreover, if we have two cones(
fI : A→ D(I)

)
I∈I and

(
f ′I : A′ → D′(I)

)
I∈I

and a morphism s : A→ A′ which makes the following diagram commute
for I ∈ I

A D(I)

A′ D′(I)

fI

s αI

f ′I

then the square below also commutes:

A lim
←−I

D

A′ lim
←−I

D′

f

s lim
←−I

α

f ′
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Proof. Assume that I is a small category and C is a category. Assume that
D,D′ : I→ C be diagrams and α : D → D′ be a natural transformation.

We will construct the unique morphism lim
←−I

α : lim
←−I

D → lim
←−I

D′. Making

use of the natural transformation αI , observe that we have the following
cone on D′: (

αI ◦ pI : lim
←−I

D → D′(I)
)
I∈I

By the universal property of the limit lim
←−I

D′, there exists a unique

morphism lim
←−I

α : lim
←−I

D → lim
←−I

D′ such that if I ∈ I then

p′I ◦ lim
←−I

α = αI ◦ pI . Thus, we obtain the following commutative diagram in

C :

lim
←−I

D D(I)

lim
←−I

D′ D′(I)

pI

lim
←−I

α αI

p′I

Next, assume that we have the two cones(
fI : A→ D(I)

)
I∈I and

(
f ′I : A′ → D′(I)

)
I∈I

and a morphism s : A→ A′ such that f ′1 ◦ s = αI ◦ fI . By the universal
property of the limits, we can construct unique morphisms f : A→ lim

←−I
D

and f ′ : A′ → lim
←−I

D′. Now observe that if I ∈ I then

p′I ◦ (lim
←−I

α) ◦ f = (p′I ◦ lim
←−I

α) ◦ f

= αI ◦ pI ◦ f
= αI ◦ fI = f ′I ◦ s
= p′I ◦ f ′ ◦ s.

By Lemma 2.4.2, we find that f ′ ◦ s = lim
←−I

α ◦ f . So, the following diagram

in C commutes

A lim
←−I

D

A′ lim
←−I

D′

f

s lim
←−I

α

f ′
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as required.

2.5 The Yoneda embedding preserves finite

limits

In the previous section, we have developed the theory of limits in order to
prove Theorem 2.4.1 and established a few results about limits we will use
in this section. Our next task is to define and prove a few results about
representable functors.

Definition 2.5.1. Let C be a locally small category and X : C op → Set be
a (contravariant) functor. We say that X is representable if X ∼= Y (A)
for some A ∈ C . Here, Y is the Yoneda embedding in equation (2.3).

A representation of the functor X is a choice of object A ∈ C and an
isomorphism from Y (A) to X in F(C op,Set).

The Yoneda lemma (see Lemma 2.3.1) provides us with another
characterisation of a representable Set-valued contravariant functor.

Lemma 2.5.1. Let C be a locally small category and X : C op → Set be a
functor. Then, a representation of X consists of an object A ∈ C together
with an element u ∈ X(A) such that if B ∈ C and x ∈ X(B) then there
exists a unique morphism x : B → A such that X(x)(u) = x.

Proof. Assume that C is a locally small category and X is an object in the
functor category F(C op,Set). Assume that A ∈ C and u ∈ X(A).

By the definition of a representation of X, it suffices to show that the
natural transformation

N(u) : Y (A)→ X

is a natural isomorphism if and only if for B ∈ C and x ∈ X(B), there
exists a unique morphism x : B → A such that X(x)(u) = x. For the
definition of N(u), see the proof of Lemma 2.3.1.

Now observe that N(u) is a natural isomorphism if and only if the
morphism of sets

N(u)B : Y (A)(B) = HomC (B,A) → X(B)
g 7→ X(g)(u)
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is a bijection for each B ∈ C . But, N(u)B is a bijection if and only if for
B ∈ C and x ∈ X(B), there exists a morphism x : B → A in C such that

N(u)B(x) = X(x)(u) = x.

We will give an example of representations of a particular functor which is
relevant to our goal.

Example 2.5.2. Let I be a small category, C be a category and D : I→ C
be a diagram. Let A ∈ C and Cone(A,D) denote the set of cones on D
with vertex A.

Define the functor

Cone(−, D) : C op → Set
A 7→ Cone(A,D)

s : A→ B 7→ Cone(s,D) : Cone(B,D)→ Cone(A,D)

In particular, let us describe explicitly how the morphism of sets
Cone(s,D) : Cone(B,D)→ Cone(A,D) works. Suppose that we have cone(

fI : B → D(I)
)
I∈I

on D with vertex B. The map Cone(s,D) sends each morphism fI to fI ◦ s
and the vertex B to A. This works because(

fI ◦ s : A→ D(I)
)
I∈I

is a cone on D with vertex A.

What are representations of the functor Cone(−, D)? Using Lemma 2.5.1,
we see that a representation of Cone(−, D) consists of an object A ∈ C ,
together with an element

u =
(
uI : A→ D(I)

)
I∈I ∈ Cone(A,D)

such that if B ∈ C and

x =
(
xI : A→ D(I)

)
I∈I ∈ Cone(B,D)

then there exists a unique morphism x : B → A such that
Cone(x,D)(u) = x. This means that if I ∈ I then uI ◦ x = xI .
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Therefore, a representation of a functor Cone(−, D) is literally a limit on D
with some vertex.

Another method of interpreting this example is that we have a bijective
correspondence of sets

Cone(A,D) ↔ HomC (A, lim
←−I

D)

(fI)I∈I 7→ f
(pI ◦ g)I∈I ←[ g

(2.6)

The morphisms pI : lim
←−I

D → D(I) are the morphisms associated with the

limit. The map f is the unique morphism formed by using the universal
property of the limit. We find that equation (2.6) is the same as equation
(2.4).

In our next lemma, we present the set Cone(A,D) as a limit in Set.

Lemma 2.5.2. Let I be a small category, C be a locally small category and
D : I→ C be a diagram. Let A ∈ C . Define the functor

C (A,D) : I → Set
I 7→ HomSet(A,D(I))
f 7→ D(f) ◦ (−)

Then, we have the equality of sets

Cone(A,D) = lim
←−I

C (A,D).

Proof. Assume that I is a small category, C is a locally small category and
D : I→ C is a diagram. Assume that A ∈ C and C (A,D) is the functor
defined as above.

The key observation is that C (A,D) is a functor from a small category to
Set. Hence, its limit is given by equation (2.5). Equation (2.5) tells us that
lim
←−I

C (A,D) is a set consisting of families(
fI : A→ D(I)

)
I∈I

such that if u : I → J is a morphism in I then

(C (A,D)(u))(fI) = fJ .

By definition of the functor C (A,D), the above equation tells us that
D(u) ◦ fI = fJ for any morphism u : I → J in I. Therefore, the elements of
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lim
←−I

C (A,D) are cones of D with vertex A. So, lim
←−I

C (A,D) = Cone(A,D)

as required.

Our first major result of this section demonstrates that a particular
Set-valued functor preserves limits. The functor in question is very similar
to the output of the Yoneda embedding. Hence, it is wise to go over
equation (2.3) before launching into the following theorem and proof.

Theorem 2.5.3. Let C be a locally small category and A ∈ C . Define the
functor

C (A,−) : C → Set
B 7→ HomC (A,B)
f 7→ f ◦ (−)

Then, the functor C (A,−) preserves limits.

Proof. Assume that C is a locally small category and A ∈ C . Let I be a
small category and D : I→ C be a diagram. Suppose that D has a limit
lim
←−I

D. We have the isomorphism of sets

C (A, lim
←−I

D) ∼= Cone(A,D) = lim
←−I

C (A,D).

The first isomorphism follows from equation (2.6) and the second equality
follows from Lemma 2.5.2.

The isomorphism C (A, lim
←−I

D) ∼= lim
←−I

C (A,D) in Theorem 2.5.3 tells us that

if we feed a limit in C into the functor C (A,−) then we obtain a limit in
Set. So, C (A,−) must preserve limits.

The Yoneda embedding maps from a category to a functor category. Hence,
we must understand how limits behave in a functor category. Let C and D
be categories. If A ∈ C is an object then there exists a functor

evA : F(C ,D) → D
F 7→ F (A)
α 7→ αA

called the evaluation functor at A. Given a diagram D : I→ F(C ,D),
we have for each A ∈ C the composite functor

evA ◦D : I → D
I 7→ D(I)(A)
α 7→ D(α)A

In the next theorem, we will write the composite evA ◦D as D(−)(A).
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Theorem 2.5.4. Let I be a small category and C and A be locally small
categories. Let D : I→ F(A,C ) be a diagram and assume that if A ∈ A
then the diagram D(−)(A) : I→ C has a limit. Then, there exists a cone
on D whose image under the evaluation functor evA is a limit on D(−)(A)
for each A ∈ A. Moreover, a cone on D which satisfies the aforementioned
property is a limit.

Proof. Assume that I is a small category and C and A are locally small
categories. Assume that D : I→ F(A,C ) is a diagram and that if A ∈ A
then the diagram D(−)(A) : I→ C has a limit.

Suppose that (
pI,A : L(A)→ D(I)(A)

)
I∈I

is such a limit.

To show: (a) There is a unique way of extending L to a functor on A such
that

(
pI : L→ D(I)

)
I∈I is a cone on D.

(b) The cone
(
pI : L→ D(I)

)
I∈I on D is a limit.

(a) Let f : A→ A′ be a morphism in A. By applying the functor, D, we
obtain the natural transformation (morphism in F(A→ C ))

D(f) = D(−)(f) : D(−)(A)→ D(−)(A′).

Now we can apply the construction in Theorem 2.4.3 to obtain a unique
morphism L(f) : L(A)→ L(A′) such that if I ∈ I then the following
diagram in C commutes:

L(A) D(I)(A)

L(A′) D(I)(A′)

pI,A

L(f) D(I)(f)

pI,A′

It is tedious, but straightforward to check that L is a functor from A to C .
Commutativity of the above diagram in C tells us that if I ∈ I then the
map

pI : L→ D(I) such that (pI)A = pI,A

is a natural transformation. Hence, we have constructed the following
family of maps
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(
pI : L→ D(I)

)
I∈I

in the functor category F(A,C ). We know that L(A) is a cone on D(−)(A)
for any A ∈ A. Hence,

(
pI : L→ D(I)

)
I∈I must be a cone on D.

(b) Now let
(
qI : X → D(I)

)
I∈I be a cone on D in F(A,C ). If A ∈ A then

we have a cone
(
qI,A : X(A)→ D(I)(A)

)
I∈I on D(−)(A) in C .

Since
(
pI,A : L(A)→ D(I)(A)

)
I∈I is a limit on D(−)(A), there exists a

unique map qA : X(A)→ L(A) such that pI,A ◦ qA = qI,A for I ∈ I.

It remains to prove that qA is natural with respect to A. Since qI is a
natural transformation, if f : A→ A′ is a morphism in A then the following
diagram commutes:

X(A) D(I)(A)

X(A′) D(I)(A′)

qI,A

X(f) D(I)(f)

qI,A′

Consequently by Theorem 2.4.3, the following diagram must commute:

X(A) L(A)

X(A′) L(A′)

qA

X(f) L(f)

qA′

So, q : X → L is a unique natural transformation such that pI ◦ q = qI
because pI,A ◦ qA = qI,A for A ∈ A. Therefore,

(
pI : L→ D(I)

)
I∈I is a limit

on D as required.

We can now finally prove Theorem 2.4.1.

Proof of Theorem 2.4.1. It suffices to show that if C is a locally small
category then the Yoneda embedding Y : C → F(C op,Set) preserves limits.

Assume that C is a locally small category and D : I→ C is a diagram in
C . Let (

pI : lim
←−I

D → D(I)
)
I∈I

163



be a limit on D. If A ∈ C then observe that the composite functor
evA ◦ Y = C (A,−). By Theorem 2.5.3, evA ◦ Y preserves limits. Hence, for
an object A ∈ A,(

(evA ◦ Y )(pI) : (evA ◦ Y )(lim
←−I

D)→ (evA ◦ Y )(D(I))
)
I∈I

is a limit on the diagram evA ◦ Y ◦D. Now we can apply Theorem 2.5.4 to
the diagram Y ◦D in F(C op,Set), to find that(

Y (pI) : Y (lim
←−I

D)→ Y (D(I))
)
I∈I

is a limit. Thus, the Yoneda embedding Y preserves limits.

2.6 Embeddings for internal structures

In this chapter, we have addressed two main ideas — internal structures
and the Yoneda embedding. In this final section, we will tie these two ideas
together and study embeddings of internal structures into functor
categories.

Let (M,m, e) be an internal unitary magma in the finitely complete, locally
small category C . Recall from Theorem 2.1.4 that the functor HomC (−,M)
factorises through UMg so that the following diagram commutes:

C op UMg

Set

HomC (−,M)
U

The forgetful functor U : UMg→ Set induces a functor between functor
categories

F(C op, U) : F(C op,UMg) → F(C op,Set)
F 7→ U ◦ F

The factorisation of HomC (−,M) through UMg can be restated with
functor categories and the Yoneda embedding.

UMg(C ) F(C op,UMg)

C F(C op,Set)

UC

Y UMg

F(C op,U)

Y
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Recall that the forgetful functor UC : UMg(C )→ C is left exact,
conservative and faithful. We claim that the induced functor Y UMg is fully
faithful and left exact.

First, let us show that Y UMg is a faithful functor. Since UC and Y are
faithful functors, Y ◦ UC = F(C op, U) ◦ Y UMg is a faithful functor. By
Lemma 1.10.3, the functor Y UMg is faithful.

Next, we will show that Y UMg is full. Let (M,m, e), (M ′,m′, e′) ∈ UMg(C )
be internal unitary magmas in C . Let θ : HomC (−,M)→ HomC (−,M ′)
be a natural transformation — a morphism in the functor category
F(C op,UMg). It suffices to construct a morphism f : M →M ′ such that
Y UMg(f) = θ.

The idea here is that the natural transformation θ has an underlying
natural transformation θSet : HomC (−,M)→ HomC (−,M ′), which is a
morphism in F(C op,Set). Since the Yoneda embedding Y is full (see
Theorem 2.4.1), there exists a morphism of sets f : M →M ′ such that
Y (f) = θSet. To see that f is a morphism of internal unitary magmas, we
will use the Yoneda embedding and the magma structure in Theorem 2.1.4.

First, we will show that f preserves internal units. That is, f ◦ e = e′.
Recall that ιA,M ∈ HomC (A,M) is the unit of HomC (A,M), which sends
any a ∈ A to the internal unit e(∗) where ∗ is the terminal object in C . By
applying the Yoneda embedding to f ◦ e, we find that for A ∈ C and
g ∈ HomC (A, ∗),

Y (f ◦ e)A(g) = (Y (f)A ◦ Y (e)A)(g) = Y (f)A(e ◦ g) = Y (f)A(ιA,M)

Since Y (f)A = θA is a morphism of unitary magmas,
Y (f)A(ιA,M) = ιA,M ′ = Y (e′)A(g). If A ∈ C then Y (f ◦ e)A = Y (e′)A,
Y (f ◦ e) = Y (e′) and because Y is full, f ◦ e = e′.

Next, we show that f ◦m = m′ ◦ (f, f). Assume that
g = (g1, g2) ∈ HomC (A,M ×M). Let µ and µ′ denote the internal binary
operations on HomC (A,M) and HomC (A,M ′) respectively. We then have
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Y (f ◦m)A(g1, g2) = (Y (f)A ◦ Y (m)A)(g1, g2)

= Y (f)A(m ◦ (g1, g2))

= Y (f)A(µ(g1, g2))

= µ′(Y (f)A(g1), Y (f)A(g2))

= m′ ◦ (Y (f)A, Y (f)A)(g1, g2)

= (Y (m′)A ◦ (Y (f)A, Y (f)A))(g1, g2)

= Y (m′ ◦ (f, f))A(g1, g2).

Since A ∈ C and g ∈ HomC (A,M ×M) were arbitrary,
Y (m′ ◦ (f, f)) = Y (f ◦m) and by fullness of Y , m′ ◦ (f, f) = f ◦m.
Therefore, f is an internal unitary magma satisfying Y (f) = θ. So, Y UMg is
a full functor.

Finally, to see that Y UMg is a left exact functor, note that the functors UC

and Y are all left exact. So, the composite Y ◦ UC = F(C op, U) ◦ Y UMg

must be left exact. Consequently, Y UMg is left exact.

So, Y UMg is a fully faithful, left exact functor.

Since we have Theorem 2.1.5, Theorem 2.2.4 and Theorem 2.2.5, we can
repeat the above argument for internal monoids and internal groups. We
conclude that the induced functors

Y Mon : Mon(C ) → F(C op,Mon)
Y CoM : CoM(C ) → F(C op,CoM)
Y Grp : Grp(C ) → F(C op,Grp)
Y Ab : Ab(C ) → F(C op,Ab)

are all fully faithful and left exact. In [Bou17, Exercise 2.3.4], the above
functors are called structure embeddings.

The argument we outlined in this section to prove that Y UMg is fully
faithful and left exact is a special case of the enriched Yoneda lemma. A
good reference for this is [Kel05, Section 2.4].
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Chapter 3

The four major observations

3.1 Pointed categories

In this chapter, we want to better understand the relationships between the
categories Mon, CoM, Grp and Ab. There are four major observations
about this quartet of categories which we will investigate and describe in
this chapter. First, we will point out a common feature of these categories
in this section.

Definition 3.1.1. Let C be a category. We say that C is pointed if there
exists an object 1 ∈ C such that 1 is both a terminal object and an initial
object. The object 1 is called a zero object.

The categories Mon, CoM, Ab and Grp are all pointed, with the zero
object being the trivial monoid for Mon and CoM and the trivial group
for Grp and Ab.

Example 3.1.2. Let Set∗ be the category of pointed sets. The objects in
Set∗ are the pairs (X, x0) consisting of a set X and a point x0 ∈ X. The
morphisms in Set∗ are maps f : (X, x0)→ (Y, y0) such that f : X → Y is a
morphism of sets and f(x0) = y0.

The category Set∗ is pointed, with the zero object being the pair ({∗}, ∗),
where {∗} is the singleton set.

Let us establish some notation regarding the zero object of a pointed
category.

Definition 3.1.3. Let C be a pointed category with zero object 1. Let
X ∈ C be an object. The initial map from 1 to X will be denoted by αX ,
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whereas the terminal map from X to 1 is denoted by τX .

If X, Y ∈ C is any pair of objects then the composite αY ◦ τX : X → Y is
called the zero map between X and Y . It is usually denoted by 0X,Y .

One might ask whether the internal categories discussed in the previous
chapter are pointed. It turns out that they are and we will prove this for
the category UMg(C ).

Theorem 3.1.1. Let C be a finitely complete category with terminal object
∗. Then, the category of internal unitary magmas UMg(C ) is pointed and
finitely complete.

Proof. Assume that C is a finitely complete category.

To show: (a) The category UMg(C ) is finitely complete.

(b) The category UMg(C ) is pointed.

(a) By Theorem 1.13.1, it suffices to show that UMg(C ) has products and
equalizers.

Assume that (M,m, e) and (N, n, f) are internal unitary magmas. Since C
is finitely complete, we can construct the product M ×N as an object in C
which satisfies the universal property of products. Define the maps

m× n : (M ×N)× (M ×N) → M ×N
((m1, n1), (m2, n2)) 7→ (m(m1,m2), n(n1, n2))

and

e× f : ∗ 7→ M ×N
∗ 7→ (e(∗), f(∗))

To see that e× f is an internal unit for M ×N , we compute directly that if
(x, y) ∈M ×N then

(m× n)((x, y), (e(∗), f(∗))) = (m(x, e(∗)), n(y, f(∗)))
= (x, y) = (m(e(∗), x), n(f(∗), y))

= (m× n)((e(∗), f(∗)), (x, y)).

Since, m,n, e and f are all morphisms in C , m× n and e× f are also
morphisms in C . Hence, m× n is an internal binary operation on M ×N
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and consequently, M ×N is an internal unitary magma.

Next, let h1, h2 : M → N be two morphisms of internal unitary magmas.
Since C is finitely complete, we can construct an equalizer of h1 and h2 in
C so that we have the following diagram in C :

E M N
η

h1

h2

We will construct an internal binary operation and an internal unit on E by
using the universal property of the equalizer. First, define the morphism in
C

φ : E × E → M
(a1, a2) 7→ m(η(a1), η(a2))

Observe that

(h1 ◦ φ)(a1, a2) = h1(m(η(a1), η(a2)))

= n((h1 ◦ η)(a1), (h1 ◦ η)(a2))

= n((h2 ◦ η)(a1), (h2 ◦ η)(a2))

= h2(m(η(a1), η(a2)))

= (h2 ◦ φ)(a1, a2).

By the universal property of the equalizer, there exists a unique morphism
mE : E × E → E in C such that the following diagram in C commutes:

E × E

E M N

φ
mE

η
h1

h2

Now since h1 and h2 are morphisms of internal unitary magmas,

h1(e(∗)) = f(∗) = h2(e(∗)).

We can again apply the universal property of the equalizer to deduce the
existence of a morphism eE : ∗ → E such that the following diagram in C
commutes:
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∗

E M N

e
eE

η
h1

h2

To see that eE is an internal unit for E, observe that if x ∈ E then

(η ◦mE)(x, eE(∗)) = φ(x, eE(∗))
= m(η(x), η(eE(∗)))
= m(η(x), e(∗)) = η(x)

and similarly, (η ◦mE)(eE(∗), x) = η(x). Since η is an equalizer, it must be
a monomorphism by Theorem 1.2.1 and consequently,
mE(eE(∗), x) = mE(x, eE(∗)) = x. So, eE defines an internal unit on E.

By commutativity of both diagrams, we have e = η ◦ eE and
φ = m ◦ (η, η) = η ◦mE. Hence, η is a morphism of internal unitary
magmas and E is an internal unitary magma.

It is straightforward but tedious to check that (M ×N,m× n, e× f) and
(E,mE, eE) respectively satisfy the universal properties of the product and
equalizer in UMg(C ). This works because M ×N and E are the product
and equalizer respectively in C . Therefore, UMg(C ) is a finitely complete
category.

(b) Consider the terminal object ∗ in C . By defining the morphisms

m∗ : ∗ × ∗ → ∗
(∗, ∗) 7→ ∗

and

e∗ : ∗ → ∗
∗ 7→ ∗

we find that (∗,m∗, e∗) is an internal unitary magma in C .

Now let (M,m, e) be another internal unitary magma in C . Since ∗ is a
terminal object in C , there exists a unique morphism τM : M → ∗ in C . To
see that τM is a morphism of internal unitary magmas, we compute for
x, y ∈M that
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τM(m(x, y)) = ∗ = m∗(∗, ∗) = m∗(τM(x), τM(y))

and τM(e(∗)) = ∗ = e∗(∗). Therefore, τM : M → ∗ is a morphism of internal
unitary magmas.

Now we will show that e : ∗ →M is a unique morphism of internal unitary
magmas. To see that it is a morphism of internal unitary magmas, we
compute directly that

e(m∗(∗, ∗)) = e(∗) = m(e(∗), e(∗))

and e(e∗(∗)) = e(∗). So, e is a morphism of internal unitary magmas. To
see that e is unique, suppose that we have another morphism of internal
unitary magmas e′ : ∗ →M . Then, e′(e∗(∗)) = e′(∗) = e(∗) because e′

preserves internal units. So, e′ = e and e must be unique.

Thus, (∗,m∗, e∗) is a zero object in the category UMg(C ). So, UMg(C ) is
a pointed category.

A similar argument to the proof of Theorem 3.1.1 can be devised to show
that the categories Mon(C ),CoM(C ),Ab(C ) and Grp(C ) are pointed
and finitely complete.

3.2 Kernels, cokernels and exact sequences

In pointed categories, we are able to recover particular tools used in the
category of groups — namely, the concepts of kernels, cokernels and exact
sequences. First, we will like to generalise the kernel of a group morphism
to morphisms in a pointed category.

In the category of groups Grp, we are used to talking about the kernel of a
morphism f : G→ H as a normal subgroup of G. In the context of
category theory, a kernel is instead a morphism.

Theorem 3.2.1. Let f : G→ H be a group morphism. Then, the following
commutative square in Grp is a pullback square:

ker f G

1 H

ι

τK f

αH
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Here, 1 denotes the trivial group, which is the zero object in Grp and
ι : ker f ↪→ G is the inclusion morphism.

Proof. Assume that f : G→ H is a group morphism. Assume that 1 is the
trivial group and ι : ker f ↪→ G is the inclusion morphism. By definition of
the kernel ker f and the fact that αH ◦ τK is the zero map, the following
square in Grp commutes:

ker f G

1 H

ι

τK f

αH

To see that the above square is a pullback square, suppose that the
following square in Grp commutes:

Y G

1 H

β

τY f

αH

By commutativity, if y ∈ Y then β(y) ∈ ker f . Hence, the following diagram
must commute:

Y

ker f G

1 H

β

β

τY

ι

τK f

αH

To see that β : Y → ker f is unique, suppose that γ : Y → ker f is a group
morphism which also makes the above diagram commute. Then,
ι ◦ β = ι ◦ γ. Since the inclusion ι is an injective group morphism, it is a
group monomorphism. So, β = γ.

Consequently, the commutative square

ker f G

1 H

ι

τK f

αH

is a pullback square in Grp.
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Theorem 3.2.1 provides us with the appropriate generalisation of a kernel to
pointed categories.

Definition 3.2.1. Let C be a pointed category and f : X → Y be a
morphism in C . The kernel of f is a morphism kf : ker f → X in C such
that the following commutative square in C is a pullback square:

ker f X

∗ Y

kf

τK f

αY

Here, ∗ is the zero object in C .

To acquaint ourselves with the definition of a kernel in a pointed finitely
complete category, we will first see what happens to the kernel when we
replace the initial map αY : 1→ Y with a different morphism.

Theorem 3.2.2. Let C be a pointed finitely complete category. Let
f : X → Y and y : Y ′ → Y be morphisms in C and suppose that we have
the following pullback square in C :

X ′ Y ′

X Y

f ′

x y

f

Then, there exists a unique morphism k′ : ker f → X ′ such that the
following diagram in C commutes:

ker f X ′ Y ′

ker f X Y

k′

∼=

0

f ′

x y

kf f

Here, 0 : ker f → Y ′ denotes the zero map.

Proof. Assume that C is a pointed finitely complete category. Assume that
we have the following pullback square in C :

X ′ Y ′

X Y

f ′

x y

f
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Observe that the composite y ◦ 0 is the zero map from ker f to Y because
the group morphism y must preserve units. So, the following diagram in C
commutes:

ker f Y ′

X Y

0

kf y

f

The morphism kf : ker f → X is the kernel of f . By the universal property
of the pullback, there exists a unique morphism k′ : ker f → X ′ such that
the following diagram in C commutes:

ker f

X ′ Y ′

X Y

k′

0

kf

f ′

x y

f

Theorem 3.2.2 tells us that k′ : ker f → X ′ is the kernel of f ′. So, f and f ′

have the same “kernel object” ker f .

The next theorem tells us that we can construct unique maps between
kernel objects.

Theorem 3.2.3. Let C be a pointed, finitely complete category. Let
f : X → Y and y : Y ′ → Y be morphisms in C . Suppose that the following
square in C commutes:

X ′ Y ′

X Y

f ′

x y

f

Then, there exists a unique morphism K(x) : ker f ′ → ker f such that the
LHS square of the following diagram commutes:

ker f ′ X ′ Y ′

ker f X Y

kf ′

K(x)

f ′

x y

kf f
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Moreover, if the RHS square is a pullback square then K(x) : ker f ′ → kerx
is an isomorphism.

Proof. Assume that C is a pointed, finitely complete category. Assume
that we have the following commutative square in C :

X ′ Y ′

X Y

f ′

x y

f

Let kf : ker f → X and kf ′ : ker f ′ → X be the kernels of f and f ′

respectively. Using the commutative diagram above, we have

f ◦ (x ◦ kf ′) = (f ◦ x) ◦ kf ′ = (y ◦ f ′) ◦ kf ′ = y ◦ 0ker f ′,Y ′ = 0ker f ′,Y

where 0ker f ′,Y ′ : ker f ′ → Y ′ is the zero map from ker f ′ to Y ′. Hence, the
following square in C commutes:

ker f ′ X

∗ Y

x◦kf ′

τK′ f

αY

By the universal property of the pullback, there exists a unique morphism
K(x) : ker f ′ → ker f such that the following diagram commutes:

ker f ′

ker f X

∗ Y

K(x)

x◦kf ′

τK′

kf

τK f

αY

Therefore, the diagram in C commutes:

ker f ′ X ′ Y ′

ker f X Y

kf ′

K(x)

f ′

x y

kf f

Now assume that the RHS square is a pullback square in C . The key is to
form the following cube in C :
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ker f ′ ∗

X ′ Y ′

ker f ∗

X Y

τK′

kf ′

K(x)

id

αY ′

f ′

y
τK

kf
αY

f

x

By assumption, the top, front and bottom faces of the cube are pullback
squares in C . By the Dice lemma (see Lemma 1.4.6), the back face of the
cube

ker f ′ ∗

ker f ∗

τK′

K(x) id

τK

is a pullback square in C . The identity map id : ∗ → ∗ is an isomorphism.
By Lemma 1.4.1, K(x) must also be an isomorphism as required.

Next, we will describe the kernel kf of a morphism f as an equalizer. This
is the definition Borceux uses for the kernel in [Bor94b, Definition 1.1.5].

Theorem 3.2.4. Let C be a pointed, finitely complete category. Let
f : X → Y be a morphism in C and 0X,Y : X → Y be the zero map. The
kernel kf : ker f → X of f is the equalizer of f and 0X,Y . Consequently, kf
is a monomorphism.

Proof. Assume that C is a pointed finitely complete category. Assume that
f : X → Y is a morphism in C and 0X,Y : X → Y is the zero map.

To see that the kernel kf : ker f → X equalizes the pair (f, 0X,Y ), we
compute directly from the definition of the kernel that

f ◦ kf = αY ◦ τK = 0ker f,Y = 0X,Y ◦ kf
where τK : X → ∗ is the unique terminal map from X to the zero object
∗ ∈ C and αY : ∗ → Y is the unique initial map from ∗ to Y .

To see that kf is the equalizer of f and 0X,Y , suppose that we have a
morphism φ : Z → X such that f ◦ φ = 0X,Y ◦ φ. Then, the following square
in C commutes:
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Z X

∗ Y

φ

τZ f

αY

By the universal property of the pullback, there exists a unique morphism
ρ : Z → ker f such that the following diagram commutes:

Z

ker f X

∗ Y

ρ

φ

τZ

kf

τK f

αY

This means that the following diagram in C commutes:

Z

ker f X Y

φ
ρ

kf
f

0X,Y

So, the kernel kf is the equalizer of f and 0X,Y . Moreover, by Theorem
1.2.1, kf must be a monomorphism.

The cokernel of a morphism is defined dually to the kernel.

Definition 3.2.2. Let C be a pointed category and f : X → Y be a
morphism in C . The cokernel of f is a morphism qf : Y → coker f such
that the following commutative square in C is a pushout square:

coker f Y

∗ X

qf

αC

τX

f

Here, ∗ is the zero object in C .

With the definition of a cokernel, we will prove the dual result of Theorem
3.2.4.

Theorem 3.2.5. Let C be a pointed category. Let f : X → Y be a
morphism in C and 0X,Y : X → Y be the zero map. The cokernel
qf : Y → coker f is the coequalizer of f and 0X,Y . Moreover, qf is an
epimorphism.
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Proof. Assume that C is a pointed category. Assume that f : X → Y is a
morphism in C and 0X,Y : X → Y is the zero map.

To see that the cokernel qf : Y → coker f coequalizes the pair (f, 0X,Y ), we
use the definition of the cokernel to compute that

qf ◦ f = αC ◦ τX = 0X,coker f = qf ◦ 0X,Y .

To see that qf is the coequalizer of f and 0X,Y , suppose that γ : Y → Z is a
morphism in C such that γ ◦ f = γ ◦ 0X,Y . Then, the following diagram in
C commutes:

Z Y

∗ X

γ

αZ

τX

f

By the universal property of the pushout, there exists a unique morphism
δ : coker f → Z such that the following diagram in C commutes:

Z

coker f Y

∗ X

δ

qf

γ

αC
αZ

τX

f

This means that the following diagram commutes:

Z

X Y coker f
f

0X,Y
qf

γ
δ

So, the cokernel qf is the coequalizer of the morphisms f and 0X,Y . Since qf
is a coequalizer, it must be an epimorphism.

As another example of a kernel, we will construct a kernel from the
pullback square involving the product.

Lemma 3.2.6. Let C be a pointed, finitely complete category. Let X and
Y be objects in C . Consider the following pullback square:
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X × Y Y

X ∗

πY

πX τY

τX

Then, there exists a unique section jX : X → X × Y of πX such that the
following square in C commutes:

X × Y Y

X ∗

πY

jX

τX

αY

Correspondingly, there exists a unique section jY : Y → X × Y of πY such
that the following square in C commutes:

X × Y X

Y ∗

πX

jY

τY

αX

Proof. Assume that C is a pointed, finitely complete category. Assume
that X and Y are objects in C . Then, the following square in C commutes:

X Y

X ∗

0X,Y

idX τY

τX

Here, idX denotes the identity morphism on X. Using the universal
property of the pullback, there exists a unique morphism jX : X → X × Y
such that the following diagram commutes:

X

X × Y Y

X ∗

jX

0X,Y

idX

πY

πX τY

τX

So, πX ◦ jX = idX , which means that jX is a unique section of πX .
Moreover, πY ◦ jX = 0X,Y = αY ◦ τX as required.
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The unique section jY : Y → X × Y of πY is constructed in a very similar
manner. One can check directly from the commutative diagrams that
jX = (idX , 0X,Y ) and jY = (0Y,X , idY ).

Now, we will show that the section jY is the kernel of the projection map
πX .

Theorem 3.2.7. Let C be a pointed, finitely complete category. Let X and
Y be objects in C . Suppose that we have the following pullback square in C :

X × Y Y

X ∗

πY

πX τY

τX

Let jX : X → X × Y and jY : Y → X × Y be the sections constructed in
Lemma 3.2.6. Then, jY is the kernel of the projection map
πX : X × Y → X. That is, the following commutative square in C is a
pullback square:

Y X × Y

∗ X

jY

τY πX

αX

Correspondingly, the section jX is the kernel of the projection map πY .

Proof. Assume that C be a pointed finitely complete category. Assume
that X and Y are objects in C . Assume that jX : X → X × Y and
jY : Y → X × Y are the sections of the projections πX and πY respectively,
which were constructed in Lemma 3.2.6.

Consider the following commutative diagram in C :

Y X × Y Y

∗ X ∗

jY

τY

πY

πX τY

αX τX

The outside square and the right hand side square of the above diagram are
pullback squares. By Lemma 1.4.5, the LHS square is a pullback square.
So, jY is the kernel of the projection map πX .

A similar argument demonstrates that jX is the kernel of the projection
map πY .
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With the kernel and cokernel, we are now able to define exact sequences.

Definition 3.2.3. Let C be a pointed category with zero object ∗. An
exact sequence in C is a sequence

∗ K X Y ∗k f

where k is the kernel of f and f is the cokernel of k.

The above definition of an exact sequence is not the mainstream definition
of an exact sequence. We will show in the next example how the definition
we gave is connected to the mainstream definition.

Example 3.2.4. We will work in the pointed category Grp. An exact
sequence in Grp is a sequence

1 K X Y 1k f

where k is the kernel of f and f is the cokernel of k. Here, 1 denotes the
trivial group which is the zero object in Grp. Since k is the kernel of f , the
following diagram in Grp is a pullback square:

ker f X

1 Y

k

τK f

αY

Since f is the cokernel of k, the following square in Grp is a pushout
square:

coker k X

∗ ker f

f

αC

τK

k

So, K = ker f and Y = coker k. Moreover, since f is a coequalizer by
Theorem 3.2.5, f must be an epimorphism in Grp and subsequently, a
surjective group morphism.

Recall that in Grp, the kernel of f is the inclusion map k : ker f ↪→ X.
Notice that im k = ker f . Since f is surjective, im f = Y , which is the
kernel of the terminal map τY : Y → 1. Finally, ker k = {eX}, where eX is
the identity element of X. This is equal to the image of the initial map
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αK : 1→ K.

Thus, we have shown that in Grp, the definition of an exact sequence we
gave is equivalent to the mainstream definition of an exact sequence — the
image of any morphism in the sequence is equal to the kernel of the next
morphism in the sequence. In fact, our definition of an exact sequence in
Grp is a short exact sequence in Grp.

The five lemma is a useful result concerning morphisms between exact
sequences. We will state it for the category Grp. Since our definition of
exact sequences corresponds to short exact sequences in Grp, we will
generalise and state the five lemma for exact sequences in Grp, where we
use the mainstream definition.

Lemma 3.2.8. Suppose that the top and bottom rows of the following
diagram in Grp are exact sequences:

A B C D E

F G H I J

α

f

β

g

ξ

h

δ

k l

φ γ η ι

Suppose that f, g, k and l are isomorphism. Then, h is also an isomorphism.

Proof. Assume that f, g, k and l are isomorphisms in the above diagram.
Assume that the top and bottom rows of the above diagram are exact
sequences in Grp.

To show: (a) h is injective.

(b) h is surjective.

(a) Consider the three commutative squares on the left:

A B C D

F G H I

α

f

β

g

ξ

h k

φ γ η

Assume that ΦC ∈ C such that h(ΦC) = 0. Then, (η ◦ h)(ΦC) = 0 and by
the commutativity of the square with corners, C,D,H and I,

(η ◦ h)(ΦC) = (k ◦ ξ)(ΦC) = 0.
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Since k is an isomorphism, it must be injective. Consequently, ξ(ΦC) = 0
and by exactness of the top row, ΦC ∈ ker ξ = im β. So, there exists
ΦB ∈ B such that β(ΦB) = ΦC .

By applying the morphism h to both sides, we deduce that
(h ◦ β)(ΦB) = h(ΦC) = 0. However, by the commutativity of the square
with corners B,C,G and H,

(h ◦ β)(ΦB) = (γ ◦ g)(ΦB) = 0.

This means that g(ΦB) ∈ ker γ = im φ, by the exactness of the bottom row.
So, there exists ΦF ∈ F such that φ(ΦF ) = g(ΦB).

Since f is also an isomorphism, it is surjective. So, there exists ΦA ∈ A
such that f(ΦA) = ΦF and by commutativity of the square with corners
A,B, F and G,

(φ ◦ f)(ΦA) = (g ◦ α)(ΦA) = g(ΦB).

Since g is injective, α(ΦA) = ΦB. By exactness of the top row,
ΦB ∈ im α = ker β. Therefore,

β(ΦB) = ΦC = 0.

So, ΦC = 0 and consequently, h is injective.

(b) Consider the three commutative squares on the right:

B C D E

G H I J

β

g

ξ

h

δ

k l

γ η ι

Assume that λH ∈ H. Since k is an isomorphism, it must be surjective. So,
there exists λD ∈ D such that k(λD) = η(λH).

Next, we use the commutativity of the rightmost square (the square with
corners D,E, I and J). In particular,

(ι ◦ k)(λD) = (l ◦ δ)(λD).

By exactness of the bottom row, im η = ker ι. This means that

0 = (ι ◦ η)(λH) = (ι ◦ k)(λD) = (l ◦ δ)(λD).
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Since l is an isomorphism, it must be injective. Since l(δ(λD)) = 0,
δ(λD) = 0. By exactness again, λD ∈ ker δ = im ξ. Thus, there exists
λC ∈ C such that ξ(λC) = λD.

Using commutativity of the middle square (with corners C,D,H and I), we
have

(k ◦ ξ)(λC) = (η ◦ h)(λC)

and

k(λD) = η(λH) = (η ◦ h)(λC).

Since η is a group morphism, η(λH − h(λC)) = 0. By exactness of the
bottom row, λH − h(λC) ∈ ker η = im γ. Thus, there exists λG ∈ G such
that

γ(λG) = λH − h(λC).

Since g is an isomorphism, it must be surjective. Thus, there exists λB ∈ B
such that g(λB) = λG. By using the commutativity of the square with
corners B,C,G and H, we have

(γ ◦ g)(λB) = γ(λG) = (h ◦ β)(λB).

So,

(h ◦ β)(λB) = γ(λG) = λH − h(λC)

Consequently,

λH = h(β(λB) + λC)

and h must be surjective.

Parts (a) and (b) together demonstrate that h is a bijective group
morphism. Therefore, h is an isomorphism as required.

3.3 Observation A

In the following sections, we will introduce the observations about the
categories Mon, CoM, Grp and Ab that we want to generalise.
Observation A concerns the category of monoids Mon.
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Example 3.3.1 (Observation A). Let M,N ∈Mon be monoids. If
(x, y) ∈M ×N then

(x, y) = (x, eN) · (eM , y) = (eM , y) · (x, eN)

where eM and eN are the identity elements of M and N respectively and ·
is the monoid operation on the product M ×N .

We want to rephrase observation A with category theory. Observation A
introduces the pair of monomorphisms in Mon.

(M, ·) (M, ·)× (N, ·) (N, ·)
jM=(idM ,0M,N ) jN=(0N,M ,idN )

Recall that jM and jN are the sections constructed in Lemma 3.2.6.
Observation A tells us that the monoid M ×N is generated by the
submonoids jM(M) and jN(N). Alternatively the only submonoid of
M ×N which contains jM(M) and jN(N) is M ×N itself.

This conclusion is rewritten in [Bou17] as follows: any monomorphism
m : L→ X in Mon which produces the following factorisations

L

M M ×N N

m

jM jN

is necessarily an isomorphism. This motivates the definition we will now
make.

Definition 3.3.2. Let C be a category and u : U → X and v : V → X be
monomorphisms in C . We say that the pair (u, v) is a covering pair if any
monomorphism m : Z → X which induces the factorisations

Z

U X V

m

u v

is necessarily an isomorphism.

More generally, a pair of morphisms (f, f ′) with the same image X is called
jointly extremally epic if any monomorphism m : Z → Z which induces
the factorisations
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Z

Y X Y ′

m

f f ′

is necessarily an isomorphism.

Let us give our first example of a jointly extremally epic pair of morphisms.

Example 3.3.3. Let C be a category with coproducts. Let X, Y ∈ C be
objects. The coproduct X t Y has two canonical morphisms — the maps
ιX : X → X t Y and ιY : Y → X t Y .

We claim that (ιX , ιY ) is jointly extremally epic. Suppose that
m : Z → X t Y is a monomorphism which induces the following
factorisations in C :

Z

X X t Y Y

m

ιX

φX

ιY

φY

To see that m is an isomorphism, we use the universal property of the
coproduct to obtain the unique morphism α : X t Y → Z such that the
following diagram in C commutes:

X t Y

X Z Y

α
ιX

φX

ιY

φY

By commutativity of the two diagrams, we have

ιY = m ◦ φY = m ◦ (α ◦ ιY ) = (m ◦ α) ◦ ιY .

Similarly, ιX = (m ◦ α) ◦ ιX . Note that m ◦ α makes the following diagram
commute:

X t Y

X X t Y Y

m◦αιX

ιX

ιY

ιY
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However, the identity map idXtY also makes the above diagram commute.
By uniqueness, m ◦ α = idXtY . Subsequently,

m ◦ (α ◦m) = (m ◦ α) ◦m = m = m ◦ idZ .
Since m is a monomorphism, α ◦m = idZ . Therefore, α is the inverse
morphism for m and m is an isomorphism. So, the pair (ιX , ιY ) is jointly
extremally epic.

Here is an important observation regarding equalizers and jointly
extremally epic pairs.

Theorem 3.3.1. Let C be a category with equalizers. Let f : X → Z and
f ′ : Y → Z be morphisms in C . Suppose that the pair (f, f ′) is jointly
extremally epic. Then, (f, f ′) is jointly epic; that is, a parallel pair of
morphisms h, h′ : Z → T are equal if and only if they are equalized by both
f and f ′.

Proof. Assume that C is a category with equalizers. Assume that (f, f ′) is
a jointly extremally epic pair of morphisms. Assume that h, h′ : Z → T is a
parallel pair of morphisms.

To show: (a) If h = h′ then the pair (h, h′) is equalized by both f and f ′.

(b) If the pair (h, h′) is equalized by both f and f ′ then h = h′.

(a) Assume that h = h′. Then, h ◦ f = h′ ◦ f and h ◦ f ′ = h′ ◦ f ′ so that the
pair (h, h′) is equalized by both f and f ′.

(b) Assume that the pair (h, h′) is equalized by both f and f ′. So,
h ◦ f = h′ ◦ f and h ◦ f ′ = h′ ◦ f ′. Suppose that e = eq(h, h′) is the equalizer
of h and h′, where e is a morphism from E to Z. Then, we have the
following commutative diagram in C :

E Z Te
h

h′

By the universal property of the equalizer, there exists unique morphisms
eX : X → E and eY : Y → E such that the following diagrams in C
commute:

X

E Z T

f
eX

e
h

h′
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Y

E Z T

f ′
eY

e
h

h′

These two commutative diagrams can be combined to form the
commutative diagram

Z

X Z Y

e

f

eX

f ′

eY

Since e is an equalizer, it must be a monomorphism by Theorem 1.2.1.
Since the pair (f, f ′) is jointly extremally epic, e must therefore be an
isomorphism and hence, both a monomorphism and an epimorphism.

Since h ◦ e = h′ ◦ e and e is an epimorphism, h = h′. This completes the
proof.

Using covering pairs, observation A in Example 3.3.1 can be restated as
follows: Let M,N ∈Mon be monoids. Then, the pair of morphisms
(jM , jN) is a covering pair. Recall that jM = (idM , 0M,N) and
jN = (0N,M , idN).

In fact, it is easy to see that observation A holds in the category UMg
because we did not need to use associativity of the binary operation. Let us
extend this reasoning to internal categories.

Theorem 3.3.2. Let C be a category and D be a pointed finitely complete
category. Then, the functor category F(C ,D) is a pointed finitely complete
category.

Proof. Assume that C is a category and D is a pointed finitely complete
category.

To show: (a) The functor category F(C ,D) is finitely complete.

(b) The functor category F(C ,D) is pointed.

(a) By Theorem 1.13.1, it suffices to show that F(C ,D) has products and
equalizers.
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Let F,G : C → D be functors (objects in F(C ,D)). We will define the
product F ×G. The key idea is that D is a finitely complete category and
thus, D has products and equalizers. Keeping this in mind, we define

F ×G : C → D
C 7→ F (C)×G(C)

f : C → C ′ 7→ F (f)×G(f) : F (C)×G(C)→ F (C ′)×G(C ′)

It is straightforward to check that F ×G is a functor (because F and G are
both functors). We will show that F ×G satisfies the universal property of
the product. First, we define for an object A ∈ C , the maps
πF : F ×G→ F and πG : F ×G→ G by

(πF )A : F (A)×G(A) → F (A)
(α, β) 7→ α

and

(πG)A : F (A)×G(A) → G(A)
(α, β) 7→ β

To show: (aa) πF and πG are natural transformations.

(aa) Assume that f : A→ A′ is a morphism in C . We must show that
F (f) ◦ (πF )A = (πF )A′ ◦ (F ×G)(f). From the definition of F ×G, we have
for (α, β) ∈ F (A)×G(A),

((πF )A′ ◦ (F ×G)(f))(α, β) = (πF )A′ ◦ (F (f)×G(f))(α, β)

= (πF )A′(F (f)(α), G(f)(β))

= F (f)(α)

= (F (f) ◦ (πF )A)(α, β).

So, F (f) ◦ (πF )A = (πF )A′ ◦ (F ×G)(f) and consequently, πF is a natural
transformation. In a similar fashion, one can show that
G(f) ◦ (πG)A = (πG)A′ ◦ (F ×G)(f). So, πG is also a natural transformation.

(a) Suppose that σF : H → F and σG : H → G are morphisms in the
functor category F(C ,D) (natural transformations). Define the map
θ : H → F ×G for an object A ∈ C by

θA : H(A) → F (A)×G(A)
h 7→ ((σF )A(h), (σG)A(h))
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To show: (ab) θ is a natural transformation.

(ab) Again, let f : A→ A′ be a morphism in C . We compute directly for
h ∈ H(A) that

(θA′ ◦H(f))(h) = θA′(H(f)(h))

= ((σF )A′(H(f)(h)), (σG)A′(H(f)(h)))

= (((σF )A′ ◦H(f))(h), ((σG)A′ ◦H(f))(h))

= ((F (f) ◦ (σF )A)(h), (G(f) ◦ (σG)A)(h))

= (F ×G)(f)((σF )A(h), (σG)A(h))

= ((F ×G)(f) ◦ θA)(h)

In the third last equality, we used the assumption that σF and σG are
natural transformations. Hence, θA′ ◦H(f) = (F ×G)(f) ◦ θA and
θ : H → F ×G is a natural transformation.

(a) From the definitions, it is easy to check for A ∈ C that
(πF )A ◦ θA = (σF )A and (πG)A ◦ θA = (σG)A. Hence, the following diagram
in F(C ,D) commutes:

F ×G

F H G

πF πG

σF

θ

σG

It is also simple to check that θ : H → F ×G is the unique morphism in
F(C ,D) which makes the above diagram commute. Hence, we have
successfully defined the product F ×G in F(C ,D).

Now, we will define equalizers in F(C ,D). Suppose that F,G : C → D are
functors and γ, δ : F → G is a pair of natural transformations. If A ∈ C is
an object then we obtain a pair of morphisms in D :

F (A) G(A)
γA

δA

Since D is a finitely complete category, it has equalizers. So, we form the
equalizer of the pair of morphisms (γA, δA):

E(A) F (A) G(A)
εA

γA

δA

190



Let f : A→ A′ be a morphism in C . We want to define a corresponding
morphism E(f) : E(A)→ E(A′) in D . We claim that the composite

E(A) F (A) F (A′)
εA F (f)

equalizes the pair of morphisms (γA′ , δA′). We compute directly that

γA′ ◦ (F (f) ◦ εA) = (γA′ ◦ F (f)) ◦ εA
= (G(f) ◦ γA) ◦ εA
= G(f) ◦ (γA ◦ εA)

= G(f) ◦ (δA ◦ εA)

= δA′ ◦ (F (f) ◦ εA).

By the universal property of the equalizer, there exists a unique morphism
E(f) : E(A)→ E(A′) such that the following diagram in D commutes:

E(A)

E(A′) F (A′) G(A′)

F (f)◦εA
E(f)

εA′
γA′

δA′

Now, we claim that E : C → D is a functor and ε : E → F is a natural
transformation.

To show: (ac) E : C → D is a functor.

(ad) ε : E → F is a natural transformation.

(ac) Suppose that A ∈ C and idA : A→ A is the identity morphism on A.
Then,

εA ◦ E(idA) = F (idA) ◦ εA = idF (A) ◦ εA = εA

Note also that εA ◦ idE(A) = εA = F (idA) ◦ εA. By uniqueness, we must have
E(idA) = idE(A).

Next, assume that p : A→ B and q : B → C are morphisms in C . Then,

εC◦E(q◦p) = F (q◦p)◦εA = F (q)◦(F (p)◦εA) = F (q)◦(εB◦E(p)) = εC◦(E(q)◦E(p)).
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By uniqueness, we find that E(q ◦ p) = E(q) ◦ E(p). Therefore, E is a
functor and thus, an object in F(C ,D).

(ad) By construction, if f : A→ A′ is a morphism in C then
εA′ ◦E(f) = F (f) ◦ εA. Therefore, ε : E → F is a natural transformation —
a morphism in F(C ,D).

(a) Next, we will show that ε : E → F is the equalizer of the pair (γ, δ) in
the functor category F(C ,D). Suppose that χ : H → F is a natural
transformation which satisfies γ ◦ χ = δ ◦ χ. If A ∈ C is an object then by
the universal property of the equalizer, there exists a unique morphism
ξA : H(A)→ E(A) in D such that the following diagram commutes:

H(A)

E(A) F (A) G(A)

χA
ξA

εA
γA

δA

Since εA ◦ ξA = χA for an arbitrary object A ∈ C , ε ◦ ξ = χ. It remains to
show that ξ is a natural transformation.

We compute directly for a morphism f : A→ A′ in C that

εA′ ◦ (ξA′ ◦H(f)) = (εA′ ◦ ξA′) ◦H(f)

= χA′ ◦H(f)

= F (f) ◦ χA.

Also,

εA′ ◦ (E(f) ◦ ξA) = (εA′ ◦ E(f)) ◦ ξA
= (F (f) ◦ εA) ◦ ξA
= F (f) ◦ χA.

So, both E(f) ◦ ξA and ξA′ ◦H(f) make the following diagram in D
commute:

H(A)

E(A′) F (A′) G(A′)

F (f)◦χA
E(f)◦ξA

εA′
γA′

δA′
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Once again by uniqueness, we must have E(f) ◦ ξA = ξA′ ◦H(f). So, ξ is a
natural transformation and consequently, ε is the equalizer of γ and δ in
F(C ,D).

Since F(C ,D) has products and equalizers, we can use Theorem 1.13.1 to
show that F(C ,D) is a finitely complete category.

(b) Let ∗ be the zero object in D . We want to define a zero object in the
functor category F(C ,D). Define the functor

0 : C → D
C 7→ ∗

f : C → C ′ 7→ id∗

where id∗ : ∗ → ∗ is the identity morphism on the terminal object ∗ ∈ D .
Now let H : C → D be a functor. We will construct unique natural
transformations τH : H → 0 and αH : 0→ H.

Since ∗ is the terminal object in D , for any object A ∈ C , there exists a
unique morphism (τH)A : H(A)→ ∗. To see that τH is a natural
transformation, if f : A→ A′ is a morphism in C and h ∈ H(A) then

(0(f) ◦ (τH)A)(h) = 0(f)(∗)
= id∗(∗) = ∗
= (τH)A′(H(f)(h)) = ((τH)A′ ◦H(f))(h).

Hence, τH is a unique natural transformation from H to 0.

Since ∗ is the zero object in D , for any A ∈ C , there exists a unique
morphism (αH)A : 0(A)→ H(A). A similar argument as before reveals that
αH is also a natural transformation.

Therefore, 0 ∈ F(C ,D) is a zero object.

By combining parts (a) and (b), we find that the functor category F(C ,D)
is pointed and finitely complete.

The product of two functors, defined in Theorem 3.3.2, will play an
important role in the next result.

Theorem 3.3.3. Let C be a category. Then, the functor category
F(C ,UMg) is pointed and finitely complete by Theorem 3.3.2. Let
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H,K : C → UMg be two functors and H ×K be the product functor
defined in Theorem 3.3.2. Let πH : H ×K → H and πK : H ×K → K be
the natural transformations defined in Theorem 3.3.2. Let jH : H → H ×K
and jK : K → H ×K be the unique sections constructed in Lemma 3.2.6.
Then, (jH , jK) is a covering pair.

Proof. Assume that C is a category. Suppose that H,K : C → UMg are
functors and H ×K is the product functor. Assume that jH : H → H ×K
and jK : K → H ×K are the unique sections constructed in Lemma 3.2.6.
Recall that jH = (idH , 0H,K) and jK = (0K,H , idK).

Suppose that we have the following factorisation in F(C ,UMg):

L

H H ×K K

m

jH jK

where m : L→ H ×K is a monomorphism.

To show: (a) m : L→ H ×K is a natural isomorphism.

(a) Notice that if A ∈ C is an object then we have the following
factorisation in UMg:

L(A)

H(A) H(A)×K(A) K(A)

mA

(jH)A (jK)A

Since m is a monomorphism, the morphism mA : L(A)→ H(A)×K(A) in
UMg is a monomorphism. Since ((jH)A, (jK)A) is a covering pair for
H(A)×K(A), mA must be an isomorphism. Since the object A ∈ C was
arbitrary, we find that m must be a natural isomorphism as required

Hence, (jH , jK) is a covering pair for H ×K.

Observe that in Theorem 3.3.3, we can freely replace the category UMg
with Mon, CoM, Ab or Grp and obtain the same result. We can do this
because observation A in Example 3.3.1 also applies to the pointed, finitely
complete categories UMg, CoM, Ab and Grp.
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Theorem 3.3.4. Let C be a finitely complete category. By Theorem 3.1.1,
UMg(C ) is a pointed finitely complete category. Let (M,N) be a pair of
internal unitary magmas in C . Let jM : M →M ×N and
jN : N →M ×N be the morphisms defined in Lemma 3.2.6. Then,
(jM , jN) is a covering pair for the product M ×N .

Proof. Assume that C is a finitely complete category. Recall the structure
embedding functor Y UMg : UMg(C )→ F(C op,UMg), which is fully
faithful and left exact.

Let M and N be internal unitary magmas in C . Assume that
jM : M →M ×N and jN : N →M ×N are the morphisms defined in
Lemma 3.2.6. Suppose that we have the following factorisation in the
category UMg(C ):

L

M M ×N N

m

jM jN

Here, m : L→M ×N is a monomorphism. Notice that
Y UMg(jM) = jY UMg(M). By Theorem 3.3.3 and the fact that Y UMg is left

exact, (jY UMg(M), jY UMg(N)) is a covering pair for Y UMg(M)× Y UMg(N)

and Y UMg(m) is a monomorphism in F(C op,UMg). By Theorem 3.3.3,
Y UMg(m) must be an isomorphism in F(C op,UMg).

Since the functor Y UMg is fully faithful, m must be an isomorphism in
UMg(C ). Consequently, (jM , jN) is a covering pair for M ×N .

Again, Theorem 3.3.4 still holds when we replace the internal category
UMg(C ) with Mon(C ),CoM(C ),Ab(C ) or Grp(C ).

3.4 Observations B and B’

Observations B and B’ concern the category of commutative monoids
CoM. Let us first deal with observation B.

Example 3.4.1 (Observation B). Let (M,+) be a commutative monoid.
Then, the binary operation

+ : M ×M → M
(m1,m2) 7→ m1 +m2
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is a morphism of commutative monoids. To see why this is the case, assume
that (m1,m2), (n1, n2) ∈M ×M . Using the commutativity of M , we
compute directly that

+
(
(m1,m2) + (n1, n2)

)
= +(m1 + n1,m2 + n2)

= (m1 + n1) + (m2 + n2)

= (m1 +m2) + (n1 + n2)

= +(m1,m2) + +(n1, n2).

We want to emphasise that commutativity was used in the third equality in
the above computation.

Now, let f, f ′ : N →M be a parallel pair of morphisms in CoM. Consider
the composite

N M ×M M
(f,f ′) +

This is a composite of commutative monoid morphisms and is thus, a
commutative monoid morphism. This tells us that the sum f + f ′, which
maps n ∈ N to f(n) + f ′(n) ∈M , is itself a morphism in CoM. This does
not happen in Mon.

The key to rephrasing observation B with category theory is that the
product of two commutative monoids M ×N doubles as a coproduct.

Theorem 3.4.1. Let M and N be commutative monoids. Let
jM : M →M ×N and jN : N →M ×N denote the morphisms constructed
in Lemma 3.2.6. Recall that jM = (idM , 0M,N) and jN = (0N,M , idN). Then,
the triple (M ×N, jM , jN) is a coproduct in the category of commutative
monoids CoM.

Proof. Assume that M and N are commutative monoids. Assume that jM
and jN are the morphisms defined above. Assume that f : M → L and
g : N → L are morphisms in CoM.

The map

φ : M ×N → L
(m,n) 7→ f(m) + g(n)

is a morphism in CoM (see Example 3.4.1) which makes the following
diagram in CoM commute:
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M ×N

M L N

φ
jM

f

jN

g

It remains to show that φ is unique. Suppose that there exists another
morphism ψ : M ×N → L such that f = ψ ◦ jM and g = ψ ◦ jN . By
Theorem 3.3.3, (jM , jN) is a covering pair. Since CoM has equalizers, we
can apply Theorem 3.3.1 to deduce that the pair (jM , jN) is jointly epic.

Now, since the morphisms ψ and φ are both equalized by jM and jN , φ = ψ
because (jM , jN) is jointly epic. Hence, φ must be unique.

In a similar vein to Theorem 3.3.3, we can devise a similar argument and
use Theorem 3.4.1 to prove the following theorem.

Theorem 3.4.2. Let C be a category. Then, the functor category
F(C ,CoM) is pointed and finitely complete by Theorem 3.3.2. Let
H,K : C → CoM be two functors and H ×K be the product functor
defined in Theorem 3.3.2. Let jH : H → H ×K and jK : K → H ×K be
the unique morphisms constructed in Lemma 3.2.6. Then, (H ×K, jH , jK)
is a coproduct in the functor category F(C ,CoM).

Finally, we can use Theorem 3.4.2 to extend observation B to internal
categories.

Theorem 3.4.3. Let C be a finitely complete category. We know that
CoM(C ) is a pointed finitely complete category. Let (M,N) be a pair of
internal commutative monoids in C . Let jM : M →M ×N and
jN : N →M ×N be the morphisms defined in Lemma 3.2.6. Then,
(M ×N, jM , jN) is a coproduct in CoM(C ).

Proof. Assume that C is a finitely complete category. Recall the structure
embedding functor Y CoM : CoM(C )→ F(C op,CoM), which is fully
faithful and left exact.

Let M and N be internal commutative monoids in C . Assume that
jM : M →M ×N and jN : N →M ×N are the morphisms defined in
Lemma 3.2.6. Suppose that we have the following diagram in the category
CoM(C ):

M ×N

M L N

jM

f

jN

g
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Since Y CoM is left exact,

Y CoM(M ×N) = Y CoM(M)× Y CoM(N).

Notice that Y CoM(jM) = jY CoM (M). By Theorem 3.4.2, there exists a unique
morphism ψ such that

ψ ◦ jY CoM (M) = Y CoM(f) and ψ ◦ jY CoM (N) = Y CoM(g).

Since the functor Y CoM is fully faithful, there exists a unique morphism φ
in CoM(C ) such that the following diagram commutes:

M ×N

M L N

φ
jM

f

jN

g

Hence, (M ×N, jM , jN) is a coproduct in CoM(C ).

Note that Theorem 3.4.3 also applies to the internal category Ab(C ).

We turn to observation B’. We have already encountered observation B’ —
the Eckmann-Hilton argument in Theorem 2.1.1. In particular, the category
UMg(UMg) coincides with CoM. It is worth going through the proof of
Theorem 2.1.1 again because we will generalise it to internal categories.

Theorem 3.4.4 (Observation B’). Let C be a finitely complete category.
Let (M,m, e) be an internal unitary magma in UMg(UMg(C )). Then,
(M,m, e) is a commutative monoid. Consequently, the category
UMg(UMg(C )) = CoM(C ).

Proof. Assume that C is a finitely complete category and (M,m, e) is an
internal unitary magma, which is an object in the category
UMg(UMg(C )). By Theorem 2.1.4, HomC (X,M) is a unitary magma for
an object X ∈ C .

Let n : (M,m, e)× (M,m, e)→ (M,m, e) be an internal binary operation
with unit in UMg(C ). Then, the map

HomC (X,n) : HomC (X,M)×HomC (X,M) → HomC (X,M)
(f, g) 7→ HomC (X,n)(f, g)(x) = n(f(x), g(x))

defines an internal binary operation on the unitary magma HomC (X,M),
giving HomC (X,M) an internal unitary magma structure. By the
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Eckmann-Hilton argument in Theorem 2.1.1 and the original binary
operation µ on HomC (X,M) in Theorem 2.1.4, we deduce that if
f, f ′ ∈ HomC (X,M) and x ∈ X then

m(f(x), f ′(x)) = n(f(x), f ′(x)).

Let π1 : M ×M →M be the projection morphism onto the first factor and
π2 be the projection morphism onto the second factor. If
(m1,m2) ∈M ×M then

m(m1,m2) = m(π1(m1,m2), π2(m1,m2))

= n(π1(m1,m2), π2(m1,m2)) = n(m1,m2).

Therefore, m = n. Moreover, the Eckmann-Hilton argument applied to the
unitary magma HomC (X,M) shows that HomC (X,M) is a commutative
monoid. By Theorem 2.1.5, we deduce that (M,m, e) is an internal
commutative monoid in C as required.

3.5 Observation C

Our next observation concerns split epimorphisms in the category Ab.

Example 3.5.1 (Observation C). In the category of abelian groups Ab, let
f : A→ B be a split epimorphism. Then, there exists a section s : B → A
such that f ◦ s = idB, where idB is the identity element on B.

We will use addition to represent the binary operation on A. If a ∈ A then

a = s(f(a)) + (a− s(f(a))).

where s(f(a)) ∈ s(B) and a− s(f(a)) ∈ ker f . We claim that the above
representation of a is unique.

Suppose that a = s(b) + k, where b ∈ B and k ∈ ker f . Then,

s(f(a))− s(b) = k + a− s(f(a)).

Applying f to both sides, we find that

f(a)− b = 0
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where 0 ∈ A is the identity element of A. Therefore, f(a) = b. Now,
a = s(f(a)) + (a− s(f(a))) = s(f(a)) + k. So, k = a− s(f(a)). Hence, the
decomposition

a = s(f(a)) + (a− s(f(a)))

is unique. This means that A is the direct sum A = s(B)⊕ ker f .

Observation C in Example 3.5.1 tells us that the morphism in Ab

φ : B × ker f → A
(b, k) 7→ s(b) + k

(3.1)

is an isomorphism. Let us construct this morphism explicitly.

First, let jB : B → B × ker f and jK : ker f → B × ker f be the morphisms

jB = (idB, 0B,ker f ) and jK = (0ker f,B, idker f )

which were explicitly constructed in Lemma 3.2.6. Since Ab is a
subcategory of CoM, Theorem 3.4.1 tells us that the triple
(B × ker f, jB, jK) is a coproduct in CoM and hence, a coproduct in Ab.
Thus, there exists a unique morphism φ : B × ker f → A such that the
following diagram in Ab commutes:

B × ker f

B A ker f

φ
jB

s

jK

kf

One can check by the commutativity of the above diagram that φ is the
morphism given in equation (3.1).

Because φ is an isomorphism according to Observation C, we obtain a
particular coproduct in Ab.

Theorem 3.5.1. Let f : A→ B be a split epimorphism in the category Ab
so that there exists a morphism s : B → A such that f ◦ s = idB. Let
kf : ker f → A be the kernel of f . Then, the triple (A, s, kf ) is a coproduct
in Ab.

Proof. Assume that f : A→ B is a split epimorphism in the category Ab.
Then, there exists a morphism s : B → A such that f ◦ s = idB. Assume
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that kf : ker f → A is the kernel of f .

Assume that α1 : B → C and α2 : ker f → C are two morphisms in Ab.
Define the morphisms jB : B → B × ker f and jK : ker f → B × ker f by

jB = (idB, 0B,ker f ) and jK = (0ker f,B, idker f ).

Recall that these maps were constructed in Lemma 3.2.6. The category Ab
is a subcategory of CoM. Thus, by Theorem 3.4.1, the triple
(B × ker f, jB, jK) is a coproduct in Ab.

By invoking the universal property of the coproduct, there exists a unique
group morphism ψ : B × ker f → C such that the following diagram in Ab
commutes:

B × ker f

B C ker f

ψ
jB

α1

jK

α2

Now let φ denote the isomorphism in equation (3.1). Then, the composite
ψ ◦ φ−1 : A→ C is the unique group morphism making the following
diagram in Ab commute:

A

B C ker f

ψ◦φ−1s

α1

kf

α2

In the above diagram, we used the fact that in our construction of φ,
s = φ ◦ jB and kf = φ ◦ jK . Therefore, the triple (A, s, kf ) is a coproduct in
Ab.

As with Theorem 3.4.1 and Theorem 3.3.3, we can extend Theorem 3.5.1 to
the functor category F(C ,Ab).

Theorem 3.5.2. Let C be a category. Then, the functor category
F(C ,Ab) is pointed and finitely complete by Theorem 3.3.2. Let
H,K : C → Ab be functors and f : H → K be a split epimorphism in
F(C ,Ab) so that there exists s : K → H such that s ◦ f = idK. Let
kf : ker f → H be the kernel of f . Then, the triple (H, s, kf ) is a coproduct
in F(C ,Ab).
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Proof. Assume that C is a category. Assume that H,K : C → Ab are
functors and f : H → K is a split epimorphism in the functor category
F(C ,Ab). Then, there exists a morphism s : K → H such that f ◦ s = idK .

Assume that kf : ker f → H is the kernel of f . This exists because
F(C ,Ab) is a pointed finitely complete category by Theorem 3.3.2.

Assume that p : K → L and q : ker f → L are morphisms in F(C ,Ab). For
any object A ∈ C , we have the following diagram in Ab:

H(A)

K(A) L(A) (ker f)(A)

sA

pA

(kf )A

qA

By Theorem 3.5.1, there exists a unique morphism φA : H(A)→ L(A) such
that the diagram in Ab commutes:

H(A)

K(A) L(A) (ker f)(A)

φA
sA

pA

(kf )A

qA

We claim that φ : H → L is a natural transformation. Assume that
f : A→ A′ is a morphism in C . We compute directly that

(φA′ ◦H(f)) ◦ sA = φA′ ◦ (H(f) ◦ sA)

= φA′ ◦ sA′ ◦K(f)

= pA′ ◦K(f)

= L(f) ◦ pA
= (L(f) ◦ φA) ◦ sA.

By a similar argument,

(φA′ ◦H(f)) ◦ (kf )A = (L(f) ◦ φA) ◦ (kf )A.

Now observe that φA′ ◦H(f) and L(f) ◦ φA both make the following
diagram in Ab commute:
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H(A)

K(A) L(A′) (ker f)(A)

sA

pA′◦K(f)

(kf )A

qA′◦K(f)

By uniqueness, we must have φA′ ◦H(f) = L(f) ◦ φA. So, φ : H → L is the
unique natural transformation which makes the following diagram in
F(C ,Ab) commute:

H

K L ker f

φs

p

kf

q

Therefore, the triple (H, s, kf ) is a coproduct in the functor category
F(C ,Ab).

Again, we use Theorem 3.5.2 to demonstrate that observation C in
Example 3.5.1 holds for internal abelian groups.

Theorem 3.5.3. Let C be a finitely complete category. We know that
Ab(C ) is a pointed finitely complete category. Let f : A→ B be a split
epimorphism in Ab(C ) so that there exists a morphism s : B → A such that
f ◦ s = idB, where idB is the identity morphism on B. Let kf : ker f → A
be the kernel of f . Then, the triple (A, s, kf ) is a coproduct in Ab(C ).

Proof. Assume that C is a finitely complete category. Assume that
f : A→ B is a split epimorphism in Ab(C ) with section given by
s : B → A. Assume that kf : ker f → A is the kernel of f .

Assume that we have the following diagram in Ab(C ):

A

B C ker f

s

p

kf

q

Recall that the structure embedding Y Ab : C → F(C op,Ab) is fully faithful
and left exact. Since it is left exact, we can apply it to the previous
diagram to obtain the following diagram in F(C op,Ab):
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Y Ab(A)

Y Ab(B) Y Ab(C) Y Ab(ker f)

Y Ab(s)

Y Ab(p)

Y Ab(kf )

Y Ab(q)

By Theorem 3.5.2, there exists a unique morphism φ : Y Ab(A)→ Y Ab(C)
such that the following diagram commutes:

Y Ab(A)

Y Ab(B) Y Ab(C) Y Ab(ker f)

φ
Y Ab(s)

Y Ab(p)

Y Ab(kf )

Y Ab(q)

Since the functor Y Ab is fully faithful, there exists a unique morphism
ψ : A→ C such that the diagram in Ab(C ) commutes:

A

B C ker f

ψs

p

kf

q

Therefore, (A, s, kf ) is a coproduct in the internal category Ab(C ) as
required.

3.6 Observation D

Our final observation deals with the category Grp. Without the
commutativity afforded by Ab, observation C in Example 3.5.1 does not
apply. Nonetheless, we can make a similar observation to observation C
about Grp.

Example 3.6.1 (Observation D). In the category of groups Grp, let
f : X → Y be a split epimorphism. So, there exists a group morphism
s : Y → X such that f ◦ s = idY . If x ∈ X then

x = sf(x) · (s(f(x−1))x).

This means that if X ′ is a subgroup of X which contains the subgroups
ker f and s(Y ) then X = X ′. By considering the subgroups of X as a
lattice, we say that X = s(Y )

∨
ker f . That is, X is the supremum (join) of

s(Y ) and ker f .
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As with the other observations, we rephrase Example 3.6.1 in terms of
category theory.

Theorem 3.6.1. Let f : X → Y be a split epimorphism in Grp so that
there exists a group morphism s : Y → X such that f ◦ s = idY . Let
kf : ker f → X be the kernel of f . Then, the pair (s, kf ) is a covering pair.

Proof. Assume that f : X → Y is a split epimorphism in Grp, which has
unique section s : Y → X. Assume that kf : ker f → X is the kernel of f .

Suppose that m : Z → X is a group monomorphism which induces two
factorisations, making the following diagram in Grp commute:

Z

Y X ker f

m

s

γ

kf

κ

So, m ◦ γ = s and m ◦ κ = kf . We will now prove that m is an isomorphism
using observation D in Example 3.6.1.

Assume that x ∈ X. By observation D,

x = sf(x) · (s(f(x−1))x)

where sf(x) ∈ s(Y ) and s(f(x−1))x ∈ ker f . Define the map

n : X → Z
x = sf(x) · (s(f(x−1))x) 7→ γ(f(x))κ(s(f(x−1))x).

If x ∈ X then

(m ◦ n)(x) = (m ◦ n)(sf(x) · (s(f(x−1))x))

= m(γ(f(x))κ(s(f(x−1))x))

= (m ◦ γ)(f(x))(m ◦ κ)(s(f(x−1))x)

= s(f(x))kf (s(f(x−1))x)

= s(f(x))s(f(x−1))x = x.

In the second last equality, we used the fact that kf is the inclusion
morphism ker f ↪→ X.

So, m ◦ n = idX . Observe that m ◦ (n ◦m) = m = m ◦ idZ . Since m is a
monomorphism by assumption, n ◦m = idZ . Thus, m is an isomorphism
and the pair of morphisms (s, kf ) is a covering pair.
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In the same fashion as the previous observations, we can generalise
Theorem 3.6.1, first to the functor category F(C ,Grp) and then to the
internal category Grp(D) for a finitely complete category D . This time, we
will omit the proofs because they follow in a similar fashion to how the
previous observations were generalised.

Theorem 3.6.2. Let C be a category. Then, the functor category
F(C ,Grp) is pointed and finitely complete by Theorem 3.3.2. Let
H,K : C → Grp be functors and f : H → K be a split epimorphism in
F(C ,Grp) so that there exists s : K → H such that s ◦ f = idK. Let
kf : ker f → H be the kernel of f . Then, the pair (s, kf ) is a covering pair.

Theorem 3.6.3. Let C be a finitely complete category. We know that
Grp(C ) is a pointed finitely complete category. Let f : A→ B be a split
epimorphism in Grp(C ) so that there exists a morphism s : B → A such
that f ◦ s = idB, where idB is the identity morphism on B. Let
kf : ker f → A be the kernel of f . Then, the pair (s, kf ) is a covering pair
in Grp(C ).

3.7 Natural structures

The main idea of this section concerns the following definition.

Definition 3.7.1. Let C be a finitely complete category. Let
UUMg : UMg(C )→ C be the forgetful functor. We say that any object
X ∈ C is endowed with a natural unitary magma structure if there
exists a section SUMg : C → UMg(C ) such that UUMg ◦ SUMg = idC , where
idC is the identity functor on C .

Similar definitions apply when we replace UMg with Grp, Ab, CoM and
Mon. By the Eckmann-Hilton argument in Theorem 2.1.1 and Theorem
3.4.4, we can show that certain natural structures are equivalent to each
other.

Theorem 3.7.1. Let C be a finitely complete category. The following are
equivalent:

1. Any object X ∈ C is endowed with a natural unitary magma structure.

2. Any object X ∈ C is endowed with a natural monoid structure.

3. Any object X ∈ C is endowed with a natural commutative monoid
structure
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4. The forgetful functors UUMg, UMon and UCoM are isomorphisms of
categories.

Proof. Assume that C is a finitely complete category. We will first show
that the first three statements are equivalent to each other.

Assume that any object X ∈ C is endowed with a natural unitary magma
structure. Then, there exists a functor SUMg : C → UMg(C ) such that
UUMg ◦ SUMg = idC , where idC is the identity functor.

Set SUMg(X) = (X,mX , eX). We know that the forgetful functor UUMg is
left exact and conservative. Since UUMg ◦ SUMg = idC , the functor SUMg

must be left exact and hence, it preserves products. Moreover, the map
mX : X ×X → X is a unitary magma morphism. By the Eckmann-Hilton
argument, (X,mx, eX) is an internal commutative monoid and any X ∈ C
is endowed with a natural commutative monoid structure. Therefore, the
first three statements are equivalent.

By definition of an isomorphism, the first statement is a consequence of the
fourth statement. It remains to prove that the fourth statement follows
from the first. Without loss of generality, suppose that any object X ∈ C is
endowed with a natural unitary magma structure. Let (M,m, e) be an
internal unitary magma in UMg(C ). Then, SUMg(M) = (M,mM , eM),
where a priori, the internal binary operation mM and the internal unit eM
differ from m and e respectively. But, by the Eckmann-Hilton argument,
e = eM and m = mM . Therefore,

(SUMg ◦ UUMg)(M,m, e) = (M,mM , eM) = (M,m, e)

So, SUMg ◦ UUMg = idUMg(C ). By assumption, UUMg ◦ SUMg = idC .
Therefore, the forgetful functor is an isomorphism of categories as
required.

Of course, we can repeat the above argument to prove

Theorem 3.7.2. Let C be a finitely complete category. The following are
equivalent:

1. Any object X ∈ C is endowed with a natural abelian group structure.

2. Any object X ∈ C is endowed with a natural group structure.

3. The forgetful functors UGrp and UAb are isomorphisms of categories.
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Chapter 4

Unital and protomodular
categories

4.1 Examples and basic properties

The goal of this chapter is to generalise the observations in Example 3.3.1,
Example 3.4.1, Example 3.5.1 and Example 3.6.1 by making some apt
definitions.

Definition 4.1.1. Let C be a finitely complete category. We say that C is
unital if C is pointed and if X, Y ∈ C then the pair of monomorphisms
jX0 : X → X × Y and jY0 : Y → X × Y is a covering pair.

Again, we recall the construction of the morphisms jX0 and jY0 from Lemma
3.2.6. In particular, jX0 and jY0 are monomorphisms because their left
inverses are the projection maps πX : X × Y → X and πY : X × Y → Y
respectively. The definition of a unital category generalises Observation A
in Example 3.3.1.

Definition 4.1.2. Let C be a finitely complete and pointed category. We
say that C is protomodular if for any split epimorphism f : X → Y in C
with section s : Y → X and kernel map kf : ker f → X, the pair (s, kf ) is a
covering pair.

The definition of a protomodular category generalises Observation D in
Example 3.6.1. In the previous chapter, we have some basic examples of
unital and protomodular categories.

Example 4.1.3. Let C be a category. The categories Mon, CoM,
F(C ,Mon) and F(C ,CoM) are all unital categories. If C is finitely
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complete then the internal categories Mon(C ) and UMg(C ) are unital
categories. See Theorem 3.3.3 and Theorem 3.3.4.

The categories Ab, Grp, F(C ,Ab) and F(C ,Grp) are all protomodular
categories. If C is finitely complete then the internal categories Grp(C )
and Ab(C ) are protomodular categories. See Theorem 3.6.1, Theorem 3.6.2
and Theorem 3.6.3.

Here is the first instance of how unital and protomodular categories are
related.

Theorem 4.1.1. Let C be a finitely complete and pointed category. If C is
protomodular then C is a unital category.

Proof. Assume that C is a finitely complete and pointed category. Assume
that C is a protomodular category. Let X, Y ∈ C be objects.

To show: (a) The pair (jX0 , j
X
1 ) of monomorphisms is a covering pair.

(a) Suppose that m : Z → X × Y is a monomorphism which induces the
factorisations depicted by the following diagram in C :

Z

X X × Y Y

m

jX0

mX

jY0

mY

We need to show that m is an isomorphism in C . By Lemma 3.2.6,
πX ◦ jX0 = idX and πY ◦ jY0 = idY . In particular, the projection morphisms
πX : X × Y → X and πY : X × Y → Y are split epimorphisms in C .

Recall from Theorem 3.2.7 that the kernel of the projection morphism πX is
jY0 . Since C is a protomodular category and we have the above
commutative diagram, m must be an isomorphism.

Consequently, C is a unital category.

The next theorem provides us with some more examples of unital and
protomodular categories.

Theorem 4.1.2. Let C and D be pointed and finitely complete categories.
Let U : C → D be a left exact and conservative functor. If D is unital then
C is unital. Analogously, if D is protomodular then C is protomodular.
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Proof. Assume that C and D are pointed and finitely complete categories.
Assume that U : C → D is a left exact, conservative functor. Recall the
definition of a left exact functor from Definition 2.1.5 and the definition of a
conservative functor from Definition 2.1.6.

To show: (a) If D is unital then C is unital.

(b) If D is protomodular then C is protomodular.

(a) Assume that D is a unital category. Let X, Y ∈ C be objects and
suppose that we have the following factorisation in C :

Z

X X × Y Y

m

jX0

mX

jY0

mY

Here, m : Z → X × Y is a monomorphism in C . The idea is to apply the
functor U to this above diagram. Since U is left exact, it must preserve
products. So, U(X × Y ) = U(X)× U(Y ) and the U(πX) = πU(X) and
U(πY ) = πU(Y ), where πX , πY , πU(X) and πU(Y ) are projection morphisms.

Furthermore, by uniqueness in Lemma 3.2.6, U(jX0 ) = j
U(X)
0 and

U(jY0 ) = j
U(Y )
0 . Now since U preserves pullbacks, U(m) must be a

monomorphism in D because m itself is a monomorphism, which satisfies
the pullback square in Theorem 1.7.5.

So, we have the following factorisation in D :

U(Z)

U(X) U(X)× U(Y ) U(Y )

U(m)

U(jX0 )=j
U(X)
0

U(mX)

U(jY0 )=j
U(Y )
0

U(mY )

Since D is a unital category, U(m) must be an isomorphism in D . By
Theorem 2.1.3, we deduce that m is an isomorphism. Hence, C is a unital
category.

(b) Assume that D is a protomodular category. By using a similar
argument to part (a) of the proof, we conclude that C is a protomodular
category.
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Example 4.1.4. By Theorem 4.1.2, the category of rings Ring is a
pointed protomodular category. This is because the forgetful functor
U : Ring→ Ab is left exact (because it is a right adjoint functor) and
conservative. Similarly, the category of commutative rings CoMRing is
also a pointed protomodular category.

4.2 Characterisation of unital categories

We make the following definition.

Definition 4.2.1. Let C be a category and X, Y ∈ C be objects. A span
between the objects X and Y is a pair of morphisms (f0, f1) : Z → X × Y
in C . For clarity, f0 ∈ HomC (Z,X) and f1 ∈ HomC (Z, Y ).

A relation between the objects X and Y is a pair of morphisms
f0 ∈ HomC (Z,X) and f1 ∈ HomC (Z, Y ) such that the induced morphism
(f0, f1) : Z → X × Y is a monomorphism in C .

Our characterisation of unital categories relies on a particular type of
span/relation — the notion of a punctual span/relation.

Definition 4.2.2. Let C be a pointed category and X, Y ∈ C be objects.
A span/relation (f0, f1) : Z → X × Y is said to be punctual if there exists
a pair of morphisms s : X → Z and t : Y → Z in C such that

f0 ◦ s = idX , f1 ◦ s = 0X,Y , f0 ◦ t = 0Y,X and f1 ◦ t = idY .

Here, 0X,Y : X → Y denotes the zero map from X to Y .

Equivalently, (f0, f1) : Z → X × Y is punctual if there exists morphisms
s : X → Z and t : Y → Z in C such that the following diagram commutes:

Z

X X × Y Y

(f0,f1)

jX0

s

jY0

t

Note that by the construction of the morphisms jX0 and jY0 in Lemma 3.2.6,
jX0 = (idX , 0X,Y ) and jY0 = (0Y,X , idY ). This explains why the two
definitions of a punctual relation/span given above are equivalent.

We now state a characterisation of a unital category.
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Theorem 4.2.1 (Unital category characterisation). Let C be a pointed,
finitely complete category. Then, the following are equivalent:

1. C is a unital category.

2. If X and Y are objects in C and (d0, d1) : R→ X × Y is a punctual
relation then (d0, d1) is an isomorphism.

3. If X and Y are objects in C and (f0, f1) : Z → X × Y is a punctual
span then (f0, f1) is an extremal epimorphism.

Proof. Assume that C is a pointed, finitely complete category.

To show: (a) If statement 1 holds then statement 2 holds.

(b) If statement 2 holds then statement 3 holds.

(c) If statement 3 holds then statement 1 holds.

(a) Assume that C is a unital category. Assume that X, Y ∈ C and
(d0, d1) : R→ X × Y is a punctual relation. Then, there exists morphisms
s : X → Z and t : Y → Z in C such that the following diagram commutes:

Z

X X × Y Y

(d0,d1)

jX0

s

jY0

t

SInce (d0, d1) is a relation, it is a monomorphism. Since C is unital, (d0, d1)
must be an isomorphism.

(b) Assume that the second statement holds. Assume that
(f0, f1) : Z → X × Y is a punctual span. Assume that (f0, f1) = m ◦ f ′,
where f ′ ∈ HomC (Z,R) and m : R→ X × Y is a monomorphism. Since
(f0, f1) is a punctual span, there exists there exists morphisms s : X → Z
and t : Y → Z in C such that the following diagram commutes:

Z

R

X X × Y Y

f ′

m

jX0

s

jY0

t
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Thus, we obtain the following factorisation in C :

R

X X × Y Y

m

jX0

f ′◦s

jY0

f ′◦t

Since statement 2 holds and m is a monomorphism, m must be an
isomorphism in C . Consequently, (f0, f1) is an extremal epimorphism.

(c) Assume that the third statement holds. Assume that m : Z → X × Y is
a monomorphism in C which factorises in the following manner:

Z

X X × Y Y

m

jX0

s

jY0

t

By the universal property of the product, m = (πX ◦m,πY ◦m), where
πX : X × Y → X and πY : X × Y → Y are the projection morphisms in C .

So, m = (πX ◦m,πY ◦m) : Z → X × Y defines a punctual span between X
and Y . Since statement 3 holds, m is an extremal epimorphism. Since m is
also a monomorphism, we deduce from Theorem 1.11.1 that m is an
isomorphism. Therefore, (jX0 , j

Y
0 ) is a covering pair and C is a unital

category.

In the setting of a unital category, we can also establish stronger relations
between projection morphisms and their sections as constructed in Lemma
3.2.6.

Theorem 4.2.2. Let C be a unital category and X, Y ∈ C be a pair of
objects. Then, the projection morphism πY : X × Y → Y is the cokernel of
the section jX0 : X → X × Y .

Similarly, the projection morphism πX : X × Y → X is the cokernel of the
section jY0 : Y → X × Y .

In particular, it is much easier to see that Theorem 4.2.2 holds in an
abelian category C because a monomorphism is the kernel of its cokernel
and an epimorphism is the cokernel of its kernel.
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