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1 Motivating protomodular categories

Introduced by Bourn in [Bou91], the notion of a protomodular category is an
abstraction stemming from the category of groups Grp. As explained in
Section 4.2], pointed protomodular categories share some of the important
properties of Grp. Namely,

(P1) Monomorphisms in a pointed protomodular category are precisely the
morphisms with trivial kernel.

(P2) Regular epimorphisms in a pointed protomodular category are cokernels of
their kernels.

(P3) Pointed protomodular categories possess normal subobjects, which generalise
the notion of a normal subgroup.

(P4) A reflexive relation in a pointed protomodular category is an internal
equivalence relation (see [BB04, Section A.2]). To put it succinctly, pointed
protomodular categories are Mal'cev categories (see [BB04, Section 2.2]).
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(P5) Pointed protomodular categories possess a specific class of objects termed
commutative objects. Commutative objects generalise the notion of an
abelian group.

The scope of this project is to motivate and define protomodular categories, prove
various different characterisations of pointed protomodular categories and to show
that properties [[P1)] and [(P2)| hold in pointed protomodular categories.

We begin with the well-known characterisation of split short exact sequences in the
category of abelian groups Ab.

Definition 1.1. Let ¥ be a category and A, B,C, D be objects in €. Let
m : A — B be a monomorphism and f : C'— D be an epimorphism. We denote by
id 4 the identity map on A.

We say that f is a split epimorphism if there exists a morphism s : D — C such
that f os=1idp. We call the morphism s a section of f. Dually, we say that m is
a split monomorphism if there exists a morphism n : B — A such that

nom = ldA

Theorem 1.1. Suppose that we have the following short exact sequence of abelian
groups:

0 y H G L5 K > 0
Then, the following are equivalent:
1. f is a split monomorphism in Ab,
2. g is a split epimorphism in Ab,

3. There exists an isomorphism 6 : G — H @& K such that the following diagram
in Ab commutes:

0 s H LS ! K s 0
lidH l@ lid}(
0 s H « s HO K > K > 0

The group morphism H & K — K s projection onto the second direct summand.

A proof of Theorem [1.1}is given in [HS97, Lemma 4.6]. Note that the
monomorphisms and epimorphisms in Grp are simply the injective and surjective
group morphisms respectively (see [Leild, Example 5.1.31, Example 5.2.19]). The
point we want to accentuate here is that Theorem fails in the category Grp.

Example 1.1. Let S3 be the symmetric group and A3 < S3 denote the alternating
group. The groups S3 and Aj fit into the short exact sequence



0 y Ay —— Sy 2 {41} —— 0.
Explicitly, sgn is the group homomorphism

sgn: S; — {1}
o (—1)HEDEN28)1.23) | i<i o) >0,

For instance,
sgn((12)) = (—)HED = 1 and  sgn((123)) = (—1)HED03 = 1.

Observe that S3 2 A3 @ {£1} because A3 @ {£1} is abelian whereas S; is not
abelian. However, if we define the group homomorphism s by

s: {£1} — S;
-1 = (12
1 — (123)

then sgn o s = id41) and sgn is a split epimorphism in Grp.

In the category Grp, the presence of a split epimorphism instead yields [Boul7,
Observation (D), Section 3.6] which we highlight below.

Theorem 1.2. Let f : G — H be a split epimorphism in the category Grp and
s: H — G be a morphism satisfying f os =idy. Let K < G be a subgroup of G.
Ifker f C K and s(H) C K then K =G.

Proof. Assume that f: G — H is a split epimorphism in Grp and s : H — G is its
section. Let K be a subgroup of G such that ker f C K and s(H) C K.

To show: (a) G C K.
(a) Assume that g € G. Then

g=(sof)g)((sof)g™")g).

Observe that (so f)(g) € s(H) C K and (so f)(g7')g € ker f C K. Therefore,
g € K and G C K. By part (a), we deduce that G = K as required. ]

Rephrased in the language of posets, the conclusion of Theorem states that
G = s(H) \/ ker f. That is, G is the join of ker f and s(H) (see [SS15], Section
2.4]). Compare this with Theorem which says that in the category Ab,
G=H®ker f.

The notion of a protomodular category stems from generalising Theorem to
pointed, finitely complete categories. Before proceeding, let us fix some notation.
The zero object in a pointed category will be denoted by *. If A is an object in a
pointed category then a4 : x — A and 74 : A — % are the initial and terminal
morphisms on A respectively. If B, C are objects in a pointed category then the
composite ag o 7 : B — (' is called the zero map between B and C'. We denote
this morphism by Op c.



Definition 1.2. Let % be a pointed, finitely complete category and f : X — Y be
a morphism in €. The kernel of f is a morphism £y : ker f — X in ¢ such that
the following commutative square in % is a pullback square:

ker f —7 4 X

Tker f l lf

« ——— Y
Y

Generally in a pointed finitely complete category, the kernel of a morphism
f:X — Y is defined as the equalizer of the pair (f,0xy). This definition is
equivalent to Definition [I.2] Moreover in the category Grp, we recover the usual
notion of the kernel of a group morphism. That is, if f : G — H is a group
morphism then

ker f={g9€ G| flg)=1}
and ky is the inclusion ker f < G. See [Riel7, Example 3.1.14].

Definition 1.3. Let € be a category and f:Y — X and g: Z — X be
morphisms in ¥. We say that the pair (f, g) is jointly extremally epic if the
following statement is satisfied: If m : A — X is a monomorphism which induces
factorisations in the commutative diagram

A S
- N
- N
- m ~
- N
- N
- ~
\ X y)
7 <

f g

Y A

then m is an isomorphism.

Using jointly extremally epic pairs of morphisms, we now rephrase Theorem
with category theory.

Theorem 1.3. Let f : G — H be a split epimorphism in the category Grp and
s: H — G be a morphism satisfying f os =idy. Let ks : ker f — G be the kernel
of f. Then, the pair (s, ky) is jointly extremally epic.

Proof. Assume that f : G — H is a split epimorphism in Grp with section

s: H — G. Assume that ky : ker f — G is the kernel of f. Suppose that

m : A — G is a group monomorphism which induces two factorisations making the
following diagram in Grp commute:

N
v 7 NG
4 m ~
- ~
.7 AN
> G

H ¢ 5 ker f

S

To be clear, m satisfies m oy = s and m o k = ky. Since m is a monomorphism in
Grp, it is injective. In order to show that m is an isomorphism, it suffices to show
that m is surjective. To this end, assume that ¢ € G. Then
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g="(s0£)(9)((s0of)g ")9).
where (so f)(g) € s(H) and (so f)(g7')g € ker f. The element

Y(f(9)r((so f)lghg) € A

satisfies
m(v(f(9)k(s(f(g7"))g)) = (moy)(f(g))(mor)(s(flg~"))g)
= s(f(9)ks(s(f(g7"))g)
=s(f(9)s(flg™))g =g

In the second last equality, we used the fact that the kernel k; of the group
morphism f is the inclusion morphism ker f < G. So, m is surjective and
consequently, m is a group isomorphism. We conclude that the pair of morphisms
(s,ky) is jointly extremally epic as required. O

2 Background material

2.1 Kernel equivalence relations

In this section, we collate background material which will prove useful in later
sections. In particular, the material in this section is needed to accurately state
our promised characterisation of pointed protomodular categories in Theorem [3.1]
Firstly, we need the following construction in a finitely complete category.

Definition 2.1. Let ¥ be a finitely complete category and f: X — Y be a
morphism in . Form the following pullback square:

P

R[f] — X
| lf (1)

By the universal property of the pullback, there exists a unique morphism
sl : X — R[f] making the following diagram commute:

The triple of morphisms (pg, p{ , sg ) is called the kernel equivalence relation of

f.



The kernel equivalence relation of a monomorphism is particularly nice.

Theorem 2.1. Let € be a finitely complete category and f: X — Y be a
morphism in €. Let (pg,p{, sg) be the kernel equivalence relation on f. Then, f is

a monomorphism if and only if 3{; : X — R|[f] is an isomorphism.

Proof. Assume that € is a finitely complete category, f : X — Y is a morphism in
¢ and (pf; , p{ , sg ) is the kernel equivalence relation on f. First assume that f is a

monomorphism. Since monomorphisms are stable under pullbacks, pf : R[f] — X

is also a monomorphism. So

Py © (55 0 py) = idx o p§ = py 0 idryy

and subsequently s! o pJ = id R[y)- Since s} is also a right inverse to p} by

construction of the kernel equivalence relation then sg must be an isomorphism.

Conversely, assume that sg is an isomorphism. Assume that g,h: Z — X are
morphisms in € satisfying f o g = f o h. By using the universal property of the
pullback square in diagram , there exists a unique morphism « : Z — R|f]
making the following diagram commute:

p

R[f] — X

f
1

~

Since s) : X — R|[f] is an isomorphism and p{ o s] = p/ o s} = idx then p] = p!.
By commutativity of the above diagram, we have g = h. So f is a monomorphism
in €. O

2.2 Conservative functors

A conservative functor is a functor which reflects isomorphisms.

Definition 2.2. Let ¥ and Z be categories and F : € — Z be a functor. We say
that F' is conservative if the following statement is satisfied: If f is a morphism
in ¢ and F(f) is an isomorphism in & then f is an isomorphism.

In the proof of Theorem [3.1] we will make use of the following theorem stated in
[Boul7, Exercise 2.1.6].

Theorem 2.2. Let € and 2 be finitely complete categories and F : € — P be a
functor which preserves finite limits. Then, F' is conservative if and only if F is
conservative on monomorphisms — that is, if f is a monomorphism in € and
F(f) is an isomorphism in & then f is an isomorphism.



Proof. Assume that ¥ and & are finitely complete categories and F is a functor
which preserves finite limits. It suffices to show that if I’ is conservative on
monomorphisms then F' is conservative.

To this end, assume that F' is conservative on monomorphisms and that

f: X — Y is a morphism in ¢ such that F'(f) is an isomorphism in Z. Let
(pg, p{ , sg ) denote the kernel equivalence relation on f (see Definition . By
applying F' to diagram , we obtain the following commutative square in Z:

F(p})
—

F(X) — FY)
Since F' preserves finite limits then the commutative square in diagram is a
pullback square. More precisely, it is the kernel equivalence relation on F'(f).
Since F'(f) is an isomorphism then by Theorem [2.1) F' (s{; ) is an isomorphism in 2.
Consequently s is an isomorphism in ¢ because F' is conservative on
monomorphisms. By applying Theorem again, we deduce that f is a

monomorphism.

Now observe that f is a monomorphism in % such that F'(f) is an isomorphism in
2. Since F' is conservative on monomorphisms then f is an isomorphism and
subsequently, F' is a conservative functor as required. O]

2.3 Fibres above objects and base change functors

Following [BoulT, Section 1.6.5], we now define a category whose objects are split
epimorphisms with a specific target object.

Definition 2.3. Let ¥ be an arbitrary category and Y be an object in ¥’. The
fibre above Y, denoted by Pty (%), is the category whose objects are split
epimorphisms in ¢ with target Y and whose morphisms are commutative triangles.

Specifically, if f: X — Y and f': X’ — Y are objects in Pty (%) with sections
s:Y — X and ' : Y — X’ respectively then a morphism from f to f’ is a map
2 : X — X’ which makes the following diagram in % commute:

X z y X/

That is, x satisfies f = f'ox and ¢ = x 0 s in ¥. To be succinct, the object f in
Pty (%) with accompanying section s will be denoted as the pair (f,s) : X < Y.



We briefly remark that the category Pty (%) is a specific example of a fibre of a
fibration, a concept outside of the scope of this project. See [Bor94bl Section 8.1]
for a comprehensive introduction to fibrations. If € is a finitely complete category
then a morphism f: X — Y in % induces a base change functor

f*: Pty(€¢) — Ptx(%). In order to properly define this, we need the following
lemma.

Lemma 2.3. Let € be a finitely complete category and suppose we have the
following pullback square in € :

If f is a split epimorphism then p is also a split epimorphism.

Proof. Assume that we have the pullback square in ¢ as stated in the lemma.
Assume that f: X — Y is a split epimorphism and let s : Y — X be a section for
f. By the universal property of the pullback, there exists a unique morphism

t . Z — P such that the following diagram commutes:

soy

P2, Xx

Ll

So idy = pot and hence, p is a split epimorphism as required. O

Definition 2.4. Let & be a finitely complete category and f: X — Y be a
morphism in . The base change functor f*: Pty (%) — Ptx(%) is defined in
the following manner:

If g: Z <+ Y is an object in Pty (%) then f*(g) : P — X is a morphism in %
defined by pulling back g along f. By Lemma[2.3] f*(g) is an object in Pty (%)
and f* is well-defined on objects in Pty (7).

p—-*.7

rol] 1l

Now let (h,u) : X <> Y and (W/,u) : X’ <+ Y be objects in Pty (%). If

¢ : (hyu) = (W,u') is a morphism in Pty (%), f*((h,u)) = (j,v) and

(R, u)) = (4/,v") then by using the universal property of the pullback, f*(¢) is
defined to be the unique morphism in ¢ making the following diagram in ¢
commute:



XﬁY

Since the LHS triangle in the above diagram commutes then f*(¢) is a morphism
in Ptx (%) from (j,v) to (j/,v').

Obviously, there is some work required to show that base change functors are
indeed functors. In order to not lengthen the document too much, we will omit the
tedious details. Another fact we will use about fibres above objects is the following
theorem.

Theorem 2.4. Let € be a finitely complete category and X be an object in € .
Then the category Ptx(€) is also finitely complete. Moreover, if f: X — Y isa
morphism in € then the base change functor f*: Pty(¢) — Ptx(€) preserves
finite limats.

In [Bor94bl Proposition 8.5.2], Theorem [2.4] is proved in the more general context
of fibred categories and fibrations.

3 Definition, characterisations and examples

Stated below is the most important definition in the document; that of a
protomodular category. The definition originates from the proof of Theorem

Definition 3.1. Let € be a pointed and finitely complete category. We say that
% is protomodular if the following statement is satisfied: If f: X — Y is a split
epimorphism in ¢ with section s : Y — X and kernel map £ : ker f — X then the
pair (s, ky) is jointly extremally epic.

The main result of this section is Theorem [3.1] — a characterisation of pointed
protomodular categories. All of these characterisations, except for one, are stated
in [Boul7, Theorem 4.2.2]. The final characterisation of protomodular categories is
in [BB04l, Proposition 3.1.2] and can be thought of as a weakened form of the short
five lemma which holds in an abelian category (see [Wei94, Exercise 1.3.3]).

Definition 3.2. Let % be a pointed finitely complete category. We say that the
split short five lemma holds in % if the following statement is satisfied:
Suppose we have the following commutative diagram in &



k f
« — s kerf —L 5 B——= (C — «

S

;r—2 s v
* *

where f and ¢ are split epimorphisms with sections s and ¢ respectively. If a and ¢
are isomorphisms then b is also an isomorphism.

We now state and prove the main theorem of the section.

Theorem 3.1. Let € be a pointed finitely complete category. The following are
equivalent:

(C1) If (f,s): Y <> Z is a split epimorphism in €,y : X — Z is a morphism in
€ and the downwards directed square

P—=25Y

L
is a pullback then the pair of morphisms (s, x) is jointly extremally epic.

(C2) If y: X — Z is a morphism in € then the base change functor
y* : Ptz(€¢) — Ptx (%) is conservative.

(C8) If T is an object in € and ap : x — T is the initial map then the base change
functor ot : Ptp(€) — Pt.(€) is conservative.

(C4) € is a protomodular category.

(C5) Suppose we have the following commutative diagram in € :

/

X = X == X7
s”f sﬂf’ lf” (4)
Y —— Y o Y”

where f and [’ are split epimorphisms with sections s and s’ respectively. If
the whole rectangle and the downwards directed LHS square are pullbacks
then the RHS square is also a pullback.

(C6) The split short five lemma holds in € .
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Proof. Assume that % is a pointed finitely complete category.

Conditions [(C1)| and [(C2)| are equivalent:

Assume that the condition holds. To see that condition holds, it suffices
to show that if y : X — Z is a morphism in % then the base change functor

y* : Ptz(¢) — Ptx (%) is conservative on monomorphisms by Theorem [2.4] and
Theorem 2.2

To this end, assume that y : X — Z is a morphism in 4. Assume that

(f,s): A+ Z and (f,s): B <> Z are split eplimorphisms in € (objects in
Ptz(€)) and that m : (f',s") — (f,s) is a monomorphism in Ptz(%’). Then

m : A — B is a monomorphism in %. Applying the functor y*, we obtain pullback
squares

P44

T Al

Q —— B

I 6

and a monomorphism z = y*(m) : (¢',t') — (g,t). The two pullback squares fit
into the following commutative diagram in % by definition of the base change
functor (see Definition [2.4)):

In particular, z = y*(m) : P — @ is the unique morphism in % satisfying
mox’ = xoz Assume that z is an isomorphism in Ptx(%’). By commutativity of
diagram (), s = mo s’ and

mo(z' oz ) =(moa)oz = (z02)oz =2

Since the pair (s, ) is jointly extremally epic by condition |(C1)| then m is an
isomorphism in %. Hence, € satisfies condition |(C2)|

11



Conversely, assume that condition [(C2)| holds so that if y : X — Y is a morphism
in € then y* is conservative. Let (f,s) : X <> Y be a split epimorphism. Suppose
that we obtain the pullback square in diagram after taking the pullback of f
along y.

Now suppose that there exist a monomorphism m : A — B and morphisms
u:Q — A, f': Z — A such that

s=mos and r=mou.

Then m is a monomorphism in Ptz (%) from (f,s) to (f om,s’). By applying the
base change functor y* to (f,s), (f o m,s’) and m, we obtain the following
commutative diagram:

Now the downwards directed square (with vertices @, B, X, Z) and the downwards
directed outer trapezium (with vertices P, A, X, Z) are both pullbacks. Therefore,
the inner trapezium (with vertices P, A, @, B) is also a pullback by [Bor94al,
Proposition 2.5.9]. Consequently, there exists a unique morphism p : @ — P such
that the following diagram in € commutes:

Q u
\\\\p
\\)( )
P25 A
idg lz lm
Q —— B

Since m is a monomorphism and monomorphisms are stable under pullbacks then
z is also a monomorphism in €. So

zo(poz)=(zop)oz=idgoz=zoidp

and thus p o z = idp. Therefore, z = y*(m) is an isomorphism and since y* is
conservative, m is an isomorphism. So, the pair (s, x) is jointly extremally epic as
required.

Conditions [(C2)| and |(C3)| are equivalent:
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It is clear that condition follows from condition Conversely, assume
that if 7" is an object in % then the base change functor o : Pty (%) — Pt1(%) is
conservative. Assume that y : X — Z is a morphism in . Then az = y o ax and
we have the natural isomorphism

ay = (yoax) ~axoy".
This is a natural isomorphism because taking pullbacks is associative (as explained

in [BB04, Page 150]). The base change functors o and o are both conservative

by assumption. By [BoulT, Exercise 2.1.5], y* must also be conservative and ¢
satisfies condition |(C2)|as required.

Conditions [(C3)| and |(C4)| are equivalent:

The equivalence of conditions |(C3)| and |(C4)| follows from exactly the same
argument used to show the equivalence of conditions|(C1)| and [(C2)| with an initial
map ay : *x — Z in place of the arbitrary morphism y : X — Z.

Conditions [(C2)| and |(C5)| are equivalent:

Assume that & satisfies condition . Assume that we have the commutative
diagram in diagram and that the whole rectangle and the downwards LHS
square in diagram are pullbacks. Taking the pullback of f” along v yields the
pullback square

X L X

1
!

124
Y Y

Now there exists a unique morphism ¢ : X' — X’ such that the following diagram
commutes:

X 4, X (7)

N

Y’ - Yy
Y

Now observe that ¢ is a morphism in Pty (%) from (f’,s’) to (?l, ¢os'). Applying
the base change functor y* to ¢, we obtain the commutative diagram (as in

Definition
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Now form the commutative diagram

pox

X y X 2 X"

s f d)OS/)I\ ?l f//

Y —— YV ——= Y
Yy

The whole rectangle and the RHS square are both pullbacks by diagram and
by construction respectively. Therefore the LHS square is also a pullback.
Subsequently,

y(F.pos)=(fs) and  y*(¢) =id,).

Since y*(¢) is an isomorphism then by condition [(C2)| ¢ is also an isomorphism
and by diagram , the RHS square in diagram is a pullback square.

Conversely, assume that condition is satisfied. Assume that y: X — Z is a
morphism in 4. We want to show that the base change functor y* is conservative.
To this end, assume that (f',s') : A <> Z and (f,s) : B <> Z are split
eplimorphisms in & (objects in Ptz (%)) and that m : (f',s') — (f,s) is a
morphism in Ptz (€). By applying y* to m, we obtain diagram ().

Assume that z = y*(m) : (¢',t') — (g,t) is an isomorphism in Ptx(%). Then we
have the following commutative diagram:

t'||g s f f (8)

X s J —— 7

The downwards directed LHS square is a pullback. We claim that the outer square
is also a pullback. Suppose that the following square in ¥ commutes:
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R——+ B

LD

) QA

Since the square with vertices ), B, X, Z in diagram @ is a pullback square, there
exists a unique morphism w : R — () such that the following diagram commutes:

Using the commutativity of diagram @, we observe that z ! ow : R — P is the
unique morphism which makes the following diagram commute:

Therefore, the outer rectangle in diagram is also a pullback. By assumption,
we deduce that the RHS square in is a pullback square. Since isomorphisms are
stable under pullbacks and the identity map idz is an isomorphism then m must
also be an isomorphism. So the base change functor y* is conservative and

condition |(C2)| holds.

Conditions [(C3)| and [(C6)| are equivalent:

First assume that condition holds; that is, the split short five lemma holds in
€. Assume that C'is an object in €. To see that af, is conservative, assume that
b:(f,s) — (g,t) is a morphism in Pt (%). Then we have the following
commutative diagram in €

/
*—>kerfL>B<:>C—>*
a b ido (9)

* —r kerg —— B — = C —
9 t

Applying the base change functor af. to b, we obtain the following commutative
diagram:

15



ker f

ag(b)
ker g M
t| |9
— C

Assume that af,(b) : ker f — ker g is an isomorphism. Recall that o, (b) is the
unique morphism which makes the LHS triangle (with vertices ker f, ker g, %) and
the upper trapezium (with vertices ker f, B, ker g, B') commute. However, we also
have k, 0 a =bo ky. So a also makes the upper trapezium in diagram ([10))
commute. By definition of the initial and terminal morphisms, a makes the LHS
triangle in commute. Thus by uniqueness, o (b) = a and a is an isomorphism.
Since the split short five lemma holds in € then b must be an isomorphism by
diagram @D So a¢ is a conservative functor and condition is satisfied.

(10)

Conversely, assume that condition holds and that we have diagram in ¢.
Assume that a and ¢ are both isomorphisms. We want to show that b is an
isomorphism. Since ¢ is an isomorphism then ¢! o g : B’ — C'is a split
epimorphism with section t o ¢: C'— B’. So, b is a morphism in Pt (%) from
(f,s) to (ctog,toc). Now apply the base change functor o, to obtain the
commutative diagram

kg

ker f

(11)

ac

From diagrams and ,

kgoa="boks=ke1,50ap(b).

Since k, and a are both monomorphisms (as a is an isomorphism) then
ke-104 © af:(b) is a monomorphism. Since k.-1,, is a monomorphism then af.(b) is a
monomorphism. Next observe that by commutativity of diagram ,

—1 —1
¢ ©o0go kc—log = Q¢ O Tker(c—log) = € =~ O g’ O Tiker(c—1og)-
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S0 g o ke-10g = Qo7 O Tier(c—10g) and by the universal property of the pullback, there
exists a unique morphism w : ker(c¢™! o g) — ker g such that the following diagram
commutes:

*a—>0'
c/

1

The morphism a~! o w : ker(¢™ o g) — ker f satisfies

-1 1

0w) = (ke 1og 0 a5(B) 00~ 0w
= (boks)oa'ow  (by diagram (L))
=kyoaoa tow (by diagram (9))

ko104 0 (a:(b) 0 a

=kgow = ke-144.
Since k.-1,4 is & monomorphism then

ag(b) o (a7 ow) = idyer(c-10g)-

Additionally, a(b) o (a™! cw o o (b))
then

al(b) and since af(b) is a monomorphism

(CL_1 e} w) e} Oézv(b) = idkerf~

Therefore o (b) is an isomorphism and since of, is a conservative functor by
condition |[(C3)[then b is an isomorphism. So condition |(C6)| holds, thereby
completing the proof. O

One important consequence of Theorem [3.1|is that conditions [(C1)} |(C2)| and |(C5)|
do not use the assumption that % is pointed. Thus, we can define protomodularity
in the case where % is not pointed.

Definition 3.3. Let € be a finitely complete category. We say that € is
protomodular if any one of the equivalent conditions [(C1)} |(C2)| and [(C5)| hold in
%.

Theorem and Definition yield many examples of pointed and non-pointed
protomodular categories.

Example 3.1. By Theorem [I.3] the category of groups Grp is the archetypal
example of a (pointed) protomodular category. The subcategory of abelian groups
Ab is also protomodular.
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If € is a pointed finitely complete category then the functor category F (%, Grp)
and the internal category Grp(%) (see [Bor94al Section 8]) are also protomodular.
One can verify that these categories are protomodular by definition in a similar
vein to Theorem for Grp. In particular, if Top is the category of topological
spaces then Grp(Top), the category of topological groups, is protomodular.

Example 3.2. If &/ is an abelian category then .7 is a protomodular category.
This is because .« satisfies the short five lemma and hence, the split short five
lemma as stipulated by condition . For instance, if R is a commutative ring
then the category of R-modules R-Mod is protomodular.

Example 3.3. The dual of the category of sets Set® and the category of unitary
rings URg are examples of non-pointed protomodular categories, as stated in
[BoulT, Page 46].

To provide more examples of protomodular categories, we will use the following
theorem as stated in [BB04, Example 3.1.9].

Theorem 3.2. Let € and 2 be finitely complete categories and F : € — P be a
functor which preserves finite limits and is conservative. If & is protomodular then
€ is also protomodular.

Proof. Assume that € and Z are finitely complete categories. Assume that
F ¢ — 2 is a functor which preserves finite limits and is conservative. Assume
that 2 is protomodular. We will show that condition holds in €.

Suppose that (f,s) : Y <> Z is a split epimorphism in % and that the downwards
directed square in diagram ([12)) is a pullback in €

P—=5Y

Ll -

We want to show that the pair (s, ) is jointly extremally epic. So assume that

m : (Q — Y is a monomorphism in % satisfying the following statement: there exist
morphisms v : P — @) and v : Z — ) such that mou =2 and mowv = s. By
applying the functor F to diagram (12)), we obtain a pullback square in & because
F preserves finite limits. Since & is protomodular then the pair of morphisms
(F(s), F(x)) in Z is jointly extremally epic. Now F(m) is a monomorphism
satisfying F'(m) o F(u) = F(x) and F'(m) o F(v) = F(s). Therefore, F(m) is an
isomorphism and using the fact that F' is conservative, we deduce that m is an
isomorphism in €. So the pair (s, z) is jointly extremally epic and % is
protomodular by condition . O]

Example 3.4. By using Theorem the following are true:

1. If ¥ is an additive category with finite limits then it is protomodular. The
proof uses the facts that the category Add(%, Ab) of additive functors from
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% to Ab is abelian (and hence protomodular) and that the Yoneda
embedding

Y: € — Add(¢%, Ab)
X +— Homg(—,X)

preserves finite limits and is conservative. See [BB04, Example 3.1.13].

2. If € is protomodular and Y is an object in € then the slice and coslice
categories /Y and Y'\% are both protomodular (see [BB04, Example
3.1.14]). In particular if G is a group then the slice category Grp/G is an
example of a non-pointed protomodular category (see [Boul7, Example
4.2.6)).

Example 3.5. In the paper [Bou04], Bourn proved that the dual category of an
elementary topos € (see [Bor94c, Chapter 5]) is protomodular.

4 Some consequences of protomodularity

4.1 Property [(P1)]— monomorphisms

This section is dedicated to proving a few of the major consequences of a pointed
finitely complete category being protomodular. The first one we will focus on is
property — a characterisation of the monomorphisms in a pointed
protomodular category.

In order to prove that property (P1)| holds for a pointed protomodular category,
we need to construct a particular pullback square involving kernel equivalence

relations (see Definition [2.1]).

Theorem 4.1. Let € be a finitely complete category. Suppose that we have the
commautative square

pP-rsXx
g lf

in €. Let (pl,pl,sl) and (p%, p?, s%) be the kernel equivalence relations of f and q
respectively. Let R(p) : Rlq] — R[f] be the unique morphism which makes the
following diagram commute




so that we obtain the following commutative diagram:

Pg

Rlq] * P17z
Pl

R(p) p 9 (13)

7
Po f

R[f] « X » Y
f
Py

If the RHS square in diagram 15 a pullback square then the downwards
directed LHS squares indexed by 0 and 1 are both pullback squares.

Proof. Assume that % is a finitely complete category and that we have diagram
. Assume that the RHS square in diagram is a pullback square. The idea
is to consider the following commutative diagram in ¢

R[q] » P
q )| N
Po q
R(p) s 7
(14)

| |
R[f] — X 9
o s x y

The top, bottom, front and right faces of the cube in diagram are all pullback
squares. By [Boul7, Corollary 1.6.3], the remaining two faces must also be
pullback squares. O

Theorem 4.2. Let € be a protomodular category. Suppose that we have the
following pullback square in € :

P24 X

ml lf (15)

If m is a monomorphism then f is also a monomorphism.

Proof. Assume that € is a protomodular category. Suppose that we have the
pullback square in diagram . Assume that p is a monomorphism. Let
(pd,pl, sy and (p, p, s7) be the kernel equivalence relations of f and m
respectively. Form the commutative diagram
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Po ¥
R[f] < X Y

2\

By Theorem the LHS downwards directed squares indexed by 0 and 1 in the
above diagram are pullback squares. Observe that 50 is a morphism in the
category Ptx(€) from (idx,idx) to (p},sl). The key idea is to use the definition
of the base change functor from Definition [2.4{ to compute the morphism ¢ (30).
After some verification, we find that ¢*(s}) is the unique morphism making the
following diagram in 4 commute:

Rlm] —2 R[f /
P(y)n sg

P——"F—X

Notice that s{' : P — R[m] also makes the above diagram commute. By
uniqueness, q*(s(’)c ) = sg'. Since m is a monomorphism then by Theorem 50" s
an isomorphism. By Definition [3.3] the base change functor ¢* is conservative
because ¢ satisfies condition Therefore s is an isomorphism and by another
application of Theorem we deduce that f is a monomorphism as required. []

Corollary 4.3. Let € be a pointed protomodular category and f : X —Y be a
morphism in €. Then f is a monomorphism if and only if ker f = % (the kernel of
f is the zero object).

Proof. Assume that % is a pointed protomodular category and that f: X — Y is
a morphism in €. First assume that f is a monomorphism. By Definition we
have the following pullback square in %"

kerfLX

Tker f l lf

* ———— Y
Y

Since monomorphisms are stable under pullback then the terminal morphism 7y, f
is a monomorphism. We also have Tye, f 0 Qier f = ids. So

Tker f © (akerf O Tker f) - Zd* O Tker f = Tker f © 7;dkerf
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and subsequently ey f © Tker f = dier f- Therefore 7ye, f is an isomorphism and
ker f & x.

Conversely assume that ker f = *. Then the terminal morphism 7y, ¢ is an
isomorphism and thus a monomorphism. By Theorem 4.2 f must also be a
monomorphism. We conclude that property holds for pointed protomodular
categories. O

4.2 Property |(P2)|— regular epimorphisms

Recall the notion of a regular epimorphism from [Bor94al, Definition 4.3.1].

Definition 4.1. Let € be a category. Let f : X — Y be a morphism in €. We
say that f is a regular epimorphism if there exists a pair of morphisms
g,h: Z — X such that f is the coequalizer of the pair (g, h).

If € is a finitely complete category and f: X — Y is a morphism in % then it is
not too difficult to show that the following statements are equivalent:

1. fis a regular epimorphism,

2. f is the coequalizer of the pair (pg , p{ ) where (pg , p{ , s{; ) is the kernel
equivalence relation of f.

In what follows, we will use the second characterisation of regular epimorphisms in
a finitely complete category. This particular characterisation appears in [BoulT,
Definition 1.7.5].

Example 4.1. In the categories Set, Grp and Ab, the regular epimorphisms are
exactly the surjective morphisms (see [Bor94a, Example 4.3.10.a]). Let Ban; be
the category whose objects are Banach spaces and whose morphisms are linear
operators with operator norm less than or equal to 1. The regular epimorphisms in
Ban,; turn out to be isometric, injective linear operators. See [Bor94al, Example
4.3.10.¢].

In order to prove that property (P2)| holds for a pointed protomodular category,
we will make use of the following result which is proved by applying the definitions
of a jointly extremally epic pair of morphisms and an equalizer.

Theorem 4.4. Let € be a finitely complete category. Let f: X — Z and

f' Y — Z be morphisms in €. Suppose that the pair (f, f') is jointly extremally
epic. Then, (f, f') is jointly epic — namely it satisfies the following property: If
h,h' : Z — T are morphisms in € then h = h' if and only if ho f = h o f and

h o f/ — h/ o f/'

Theorem 4.5. Let € be a protomodular category and f: X — Y be a morphism
in €. Suppose that we have the pullback square in € :
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P52z
"l g (16)

If f is a reqular epimorphism and p is an epimorphism then diagram 15 a
pushout square from the top left corner.

Proof. Assume that % is a protomodular category and that we have the pullback
square in diagram . Assume that f is a regular epimorphism and that p is an
epimorphism. Consider the following commutative diagram:

o

RIp] < Ptz
P
R(q) q g
v} ;
R[f] < = X > Y
p1

By Theorem the downwards directed LHS square indexed by 0 is a pullback
square. Since % is a protomodular category then it satisfies condition and so
the pair of morphisms (s!, R(q)) is jointly extremally epic. By Theore

(sh, R(q)) is jointly epic.

P

Now suppose that we have the following commutative square in %"

N

p
—

VSR
%
e

S
~

u

By direct computation, we have

(uop))osh =u=(uop{)os}
and
(wop}) o R(q) = (uoq)oph
= (vop)opy = (vop)op}
= (uoq)op} = (uop])oR(q).

Since the pair (s}, R(¢)) is jointly epic then u o pf = wop]. Now f is a regular

epimorphism and is thus the coequalizer of the pair (pg, p{ ). By the universal
property of the coequalizer, there exists a unique morphism y : Y — T such that
the following diagram commutes:
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Note that the triangle with vertices Z,Y and T' commutes because p is an
epimorphism. So diagram (16| is a pushout from the top left corner. This
completes the proof. n

In the proof of Corollary the notion of cokernel that we will use is simply the
dual definition to Definition [1.2} In particular, in a pointed finitely complete
category, the cokernel of a morphism ¢ : Y — Z is the coequalizer of the pair
(9,0y.z) where Oy z : Y — Z is the zero map.

Corollary 4.6. Let € be a pointed protomodular category and f: X —Y be a
morphism in €. Then f is a regular epimorphism if and only if

f = coker(ky : ker f — X).

Proof. Assume that % is a pointed protomodular category and f: X — Y is a
morphism in €. If f is the cokernel of its kernel map k¢ : ker f — X then f is the
coequalizer of k¢ and the zero map Oyer 7, x. By definition, f is a regular
epimorphism.

Conversely, assume that f is a regular epimorphism. By Theorem [4.5], the pullback
square

ker f —7 X
Tker fl lf

is also a pushout from the top left corner since the terminal map 7ie 5 is an
epimorphism. Observe that

f o ]{,‘f = Qy O Tker f = Okerf,Y = f © Okerf,X-

Now assume that g : X — T satisfies g o by = g 0 Oger ;. x. Then the following
square is commutative

kerfLX

Tker f l lg

¥ — T

goax

and by the universal property of the pushout, there exists a unique morphism
y : Y — T making the following diagram commute:
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goax
Hence, f = coker(ky) and property holds in a pointed protomodular
category. O
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