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Chapter 1

Introduction

1.1 The scenario

Let A = (a;j) € Myx,(C) be a Hermitian matrix such that

A= Pdiag[\i,..., \] P (1.1)
where P € GL,(C) is unitary (P! = P*) and )y, ..., \, are distinct
eigenvalues of A. Let vy,...,v, be the corresponding eigenvectors. The

eigenvector v; is the j column of P.
Let k € Z~ such that k& < n. Define Zp; ,,) = {1,2,...,n} and

Ty =15 S Zpw | [S] =k}
Here, | S| refers to the cardinality of the set S. If L = {¢y,..., ¢} and
M ={my,...,my} are elements of T(n then let Ay ps be the k x k matrix

k
formed from rows /¢4, s, ..., f; of A and columns mq, mo, ..., m; of A. Also,
for j € {1,2,...,n} let j¢ = Z[l,n] —{j}

The question we would like to investigate is: Can we use equation to
gain information about the eigenvectors of the minor matrix Ac;.? The
main reason for beginning with A;c e is because Ajc e € M(n—l)x(n—l)((c) is
Hermitian. This is because A is Hermitian.

By the spectral theorem, there exists a unitary matrix R € GL,,_;(C) such
that

RflAlc’lcR = diag[p, t2, - -y fn—1]



where p1, o, . . ., ftn—1 are the eigenvalues of Ajec je.

Define ) € GL,,(C) as the block matrix

10
(b »)

Due to the block structure on ), we have
,1A _ a1 . * '

Q Q < * dzag[,ula s nun—l]

Here, * denotes unnecessary elements. Let B = Q7'AQ. Then,

B = (Q 'P)diag[\i, ..., \](PT'Q).
If j€{1,2,...,n} then

M — B = (Q'P)D,(PQ). (1:2)
where D; = diag[\; — \1,...,\; — \,). Now apply A" to both sides of
equation ((1.2)) and take the 1 1¢ element. We obtain on the LHS

n—1

(A NI = B)) e = [T = ) (1.3)

i=1
The expression obtained on the RHS is more difficult to compute. Firstly,
we have

A" (Dy) = diaglo,...,0, T] (A —X),0,....0]. (1.4)
i=1,i#j

The non-zero term [ i, .,;(A; — Ai) is the j¢, j¢ element of A"~'(D;).

The bottom rows of A" }(Q) and A" *(Q~!) which are indexed by 1¢ are
respectively,
[0,0,...,0,u] and [0,0,...,0,u™"]

where u = det(R) is a complex number of magnitude 1. Similarly, the
rightmost columns of A"*(Q) and A" *(Q~!), which are again indexed by
1¢ are respectively

0,0,...,0,u]"  and  [0,0,...,0,u"]"



IfL={b,....0}¢€ T(n> then we define vy, = vy, A--- Avy,. The vy, form
k
the columns of A¥(P). If M € T(n) then vy, )y denotes the M element of vy,.
k
Now fix r,s € {1,2,...,n}. Then,

A"HQT P e = Y (ATHQ e s (AT (P))pe = (AP (P))1e e

LET( n 1)
W
Hence,

(A" HQ ' P))iee = uH (A" H(P))1e e = u  0pe g (1.5)

By a similar computation, we find that

(A" M (P'Q))se1e = u(A"H(P71))geqe = (A" 1(P))je e = ulge e (1.6)

Finally, by applying A"~! to the RHS of equation (1.2)) and taking the 1¢,1¢
element, we obtain from equations (|1.4)), (1.5) and (1.6))

n n
H (N — N) uTjeqe ut vje e = H (N — Ni) |vjee]?
i=1,i#j i=1,ij

By equating with equation ([1.8)), we obtain

~1
2 _ [T (N — )

H?:l,i;éj(Aj - )‘i)
Notice that equation (|1.7)) is very similar to the eigenvector-eigenvalue
identity, as applied to the matrix Ajc ;.. In fact, we will prove
eigenvector-eigenvalue identity for the minor matrix Aje ;e in the next

section. The eigenvector-eigenvalue identity appears in [DPTZ22, Theorem
1].

(1.7)

|/ch716

1.2 Proving the eigenvector-eigenvalue
identity

The idea is to take T"~! of both sides of equation (1.2]) and then take the

1,1 element. Once we do this, the LHS becomes

(TNl = B)),, = H(Aj — ). (1.8)



In order to compute the resulting expression on the RHS, we require a few

intermediate expressions. Since P and @) are invertible, we have

T H(P) = det(P)P~! = det(P)P*.
TP = det(P) P,
Q) = det(Q)Q .

THQ) = det(Q) Q-

We also have from the definition of Y"1

[Tz (N — N, i =1,

(T (Dj))ee = {07 04

(1.13)

All the non-diagonal entries of Y"1(D;) are zero because Y"1(D;) is a

diagonal matrix. We wish to compute the expression

(Y HQ'PD;P7'Q))11.

Using equations ([1.9), (1.10), (1.11)), (1.12)) and (1.13)), we compute for

s € {1,2,...,n} the following expressions:

(TP Q)s = (X HQY T (P,
=3 (X PT)

=) (det(Q)Q )1 ,(det(P) ™ P),.q

= det(Q) det(P)™* Z(Qil)l,rpr,s

r=1

= det(Q) det(P) ' Py .



(Y HQ 7 P))sa = (T HP)Y" Q™))

= > (T (P (T Q)

r=1
n

= (det(P)P*),,(det(Q) ' Q)1

r=1
n

= det(P) det(Q) ™ > (P*).rQn

= det(P) det(Q) " (P*),.1.

n

(TP QT D) = D (TP Q)1 (X" H(D)))rs
= (M (PN L(Y"H(D)))ss
= (NPT Qs [T = Moy
1=1,i#£j
= det(Q) det(P)_l ﬁ ()\J — Ai)Pl,sés,j-
i=1,i#j

The symbol 6, ; is the Kronecker delta. Putting all these computations
together, we have

(T HQ PP Q) = (TP QT (D) T QT P
Z T P TH(D))s (X7 HQTHP)).

(det(@)det(P)™" [ (A — X)Prsdsy)
s=1 i=1,i#j

(det(P) det(Q)_ (P")s.1)

Zpls 31533

— | H (Aj =) P (P")a

M:II

I

i=1,iAj
n n
= (N = A)viamir = o T Oy = M)
i=1,i4j i=1,i#j



By equating the above equation with equation ((1.8)), we obtain

n—1 n
[T =m) =lwia TT =)
i=1 1=1,i#7
and
n—1
vja]* = Ly O =) (1.14)

H?:Lz‘;éj()‘j - )‘i)
which is the eigenvector-eigenvalue identity applied to the minor matrix
Alc 1c.

Are we able to extend equation ([1.14]) to the other (n — 1) X (n — 1) minor

matrices of A? The answer is only partially. Assume that u € Zp ). Let

u(lu), ué"), e ,uSZ)I be the eigenvalues of the minor A,c . Let w, € GL,(C)

be the permutation matrix such that the product w,A is obtained from A
by swapping the first and u* rows of A and the product Aw, is obtained
from A by swapping the first and u** columns of A.

Since w? = I,,, we compute directly that

wy Aw, = (W, Pw,)(wydiag[Ay, . . ., Ap]wy) (we P~ wy,).
By applying equation ((1.14) to w,Aw,, we obtain

H?;ll(Aj _ Ngu)) (1.15)
H?:l,i;éj ()‘j - Ai)' .
By repeating the argument outlined in the first section for w, Aw,, we also
find that

|Uj,U|2 =

n—1 (u)
) i — U
2= Hﬁzl( i) (1.16)
Hi:17i7éj()‘j —Ai)
We are unable to extend this argument to a minor matrix A,e , with v and
v distinct because Aye e is not Hermitian in general.

|ijC,uc

1.3 Generalising the eigenvector-eigenvalue
identity

In this section, we prove generalisations of equations (1.15]) and (1.16]). We
will first state the generalisation of equation (|1.15)).
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Theorem 1.3.1. Let n, k € Z~q such that k < n. Let A € M,.,(C) satisfy
AA* = A*A and )\, ..., \, be the eigenvalues of A. Let vy, v, ..., v, be the
corresponding eigenvectors. If L = {ly,ly, ..., lx} € T(n) then define

k

’UL:Ull/\’UlQ/\"'/\Ulk.

For M € T(n), let v v € C be the M component of vy,. If T € C and
k
M,N € T(n) then
k

Z (H(T - Ae)) v Uy = (A¥(7I, — A))M’N.
LET(@ el

In particular, if j € {1,2,...,n}, M = N = {my,ma,...,my} and Apar is
the k X k matriz formed from rows my, ms, ..., my and columns
my, Mo, ..., my of A then

> (TIOv = 20) ol = (AL = 4),, = [TOG = )

LET(Z) leL =1

where pM pdt . uM are the eigenvalues of Ay

Proof. By the spectral theorem, A = UDU™!, where U € GL,(C) satisfies
U*=U""and D = diag[\y, ..., \,]. For 7 € C, let

D, = diag[T — M\, T — Xg, ..., T — A\
If reCthentl,— A=UD,U"! and

A* (71, — A) = AM(U)N*(D,)N*(U) .
We note that the columns of A*(U) are the wedge products vy, for L € T(Z)
We compute directly that if M, N € T; ) then



(N (7L = 4)) 5 = (AU)AD)ANU) )

o - P; (A'f(U))M,P(A’f(gj)V)p,L(A’“(U N
_ L; <k<)Ak(U>)M,L(A’f(DT))L,L(A’f(U e
_ L;T(‘j)(Ak(U))ML(Ak(DT))L,L(A’“(U)*)L,N
_ Lg%)(A’f(U))M,L(Ak(DT))L,LW
_ Z(fk) v (16— 2) 72
= L

If M =N and 7 = )\, for some j € {1,2,...,n} then,

Z (H()\j — Az)) oz = Z (H()‘f — )\g)) v UL

LGT( ) lel LGT(Z) lel

k = (A*(\ 1, — A))

= H(/\j —ui").

MM

]

Note that in Theorem [1.3.1], we did not assume that the eigenvalues of A
are distinct. Equation (1.16]) has a similar generalisation.

Theorem 1.3.2. Let n, k € Z~o such that k <n. Let A € M, «,(C) satisfy
AA* = A*A and M\, ..., \, be the eigenvalues of A. Let vy, vs,...,v, be the
corresponding eigenvectors. If L = {ly,ly, ..., lx} € T(ZL) then define

UL:Uh/\UlQ/\"'/\vlk-

For M € Ty, let vy ar € C be the M component of vp. If T € C and
() ’

k

M,N e T(Z) then



S (TI6=2) vn oo = (7757 L = 4))

LGT(E) LelLe

In particular, if j € {1,2,...,n}, M =N ={my,ma,...,my} and Ape pre

is the (n — k) x (n — k) matriz formed by deleting rows my, ma, ..., my and
columns my, ma, ..., my from A then
n—k
> (TT6=20) foral® = (0 k= A)), 0, = TTOG = #2)
LET,,\ (leLe i=1
(%)
where p™° pd o pd are the eigenvalues of Anpe are. The complements

L and M€ are taken with respect to the set {1,2,...,n}.

Proof. By the spectral theorem, A = UDU™!, where U € GL,(C) satisfies
U*=U""and D = diag[\, ..., \,]. For 7 € C, let

D, =diag[t — M, T — g, ..., T — A\
If reCthentl, — A=UD,U"! and
YR (1L, — A) = YRR (DAY RU).
Since U € GL,(C),

AF()Y R (U) = T RUOYARU) = det(U)I ().

So,
T HU) = det(U)A*(U)™  and  Y"*U)™! = det(U)*A*(U).

Moreover,

(T 9(D:)) 0y = (AH(D,))

MM Me,Me

Consequently, we compute for M, N € T() that
k
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(T MLy = A)),, = (T7HO) T H D) T H(U))

o _ L P; (Tnk(U)1)M,P(T""“(lﬂ?ij)v)p,L(T""“(U )N
_ L;T: 021‘”_]‘3(U)_1)M7L(Tn_k<DT))L,L(Tn_k(U))LJV
_ i )<Ak<U>>M,L<An—k<DT>>W (AMU) M)rn
— L;T%Q)(AWU»ML(A”’“(DT))LC,LC (AU
_ Li)(Ak(U))M’L(Ank(DT))LC,LCm
- f) o (T =) 7
LT eLe

Finally, we note that if M = N and 7 = \; for some j € {1,2,...,n} then,

Z ( H (A — Ae)) ‘UL,M|2 _ Z ( H (A — Ag)) vrLMm Vo

LET(TL) leLe LGT(n) LeLe
k k

= (T "\, — A))M’M
= (An_k(A][ A))MC’MC
n—k
= [T = ).
i=1
]

We observe that in the statements of Theorem [I.3.1] and Theorem [1.3.2] we
did not assume that A was Hermitian or that A had distinct eigenvalues.
This will be reflected in the example which follows.

Example 1.3.1. Let

[ I

1 1 - 3v2 13\/5 3\/il 3v2
ATl T ',
Wi_'_ﬁz -5 1+62



Then, A = UDU*, where D = diag[l + 1,1, 1] and

1 1 1 1,
7§+7§’l —6——62 0

U= 1 L Ly 1y

Yo PR U

NG Vit BT

is unitary. Let A\ =144 and Ay = A3 = 1. In Theorem [1.3.2] set n = 3 and
k= 1. Let M = {3} so that M¢ = {1,2}. We compute directly that

1

3
> (JT0x =2) lonsl” = —5.
=1 l#q 6
The eigenvalues of Appe e are pi’” =1 and pd"" =1+ 2i. Notice that
1

<)\1 - Miwc)()\l - M§4> = _6-

So,
3
ST =) Jvisl? = (= ™) (A = p5™)

=1 {#£i
which agrees with Theorem Moreover, we can also compute that

5, c c
HO /\z |Uz',3|2:1+gzz(0_ﬂ1 )(0_M2 )
i=1  {#£i

which again agrees with Theorem [1.3.2]

Mw

Next, we will provide a second interpretation of Theorem and

Theo’rem .32 We know from Theorem [L.3.1] that
> (TI = 20) vews 7w = (A (7L = 4))
LET,\ (el
(%)
Setting M = N in T(@, we have
Z (H(T — /\g)) |UL,M|2 = (Ak(T]n — A))M,M

LGT(Z) lel

By definition of A*,

(Ak(T[n — A))M,M = det((T[n — A)M,M) = det(TIk — AM,M)

12



But, det(71 — Anrr) is the characteristic polynomial of the k x k matrix
Apr . Consequently, we have the corollary

Corollary 1.3.3. Let n, k € Z~o such that k < mn. Let A € M,x,(C) satisfy
AA* = A*A and Ay, ..., \, be the eigenvalues of A. If M € T(Z) then

purlr) = > Jo® (T = 20)

LET(Z> lel

is the characteristic polynomial of the k x k matriz Ay ar. Moreover,

qu(m) = > |vpul (H(T— /\e)>

LET(Z) lele

is the characteristic polynomial of the (n — k) X (n — k) matric Apze pre.

1.4 Eigenvectors of minor matrices — an
algorithm

Let A € M,»,(C) be a matrix satisfying AA* = A*A with eigenvalues
A1, A2, ...y Ay, By the spectral theorem, there exists a unitary matrix
U € GL,(C) such that

A =Udiag[Ay, ..., \JU™.
Let M € T(n), where k € {1,2,...,n — 1}. We have the following theorem,

k
which applies to A if the eigenvalues A, ..., A, are distinct.

Theorem 1.4.1. Let A € My« (C) and Ay, ..., N\, be distinct eigenvalues
of A with corresponding eigenvectors vy, ..., v,. Suppose that there exists a
unitary matriz U such that A = Udiag[\y, ..., \,JU*. If
L=A{i,... i} € T(n) with k € {1,...,n— 1}, define v, = vy A+ Avy,. If
k
M,P e T(n) and vp, a8 the M element of vy, then
k

1
AT Caa = A)) e (117)
[licr, acre(Pa — Az)) ( ale_L[c ) )

We will provide an algorithm for computing the eigenvectors of the k x k
matrix Ay as in the special case where the eigenvalues of Ay s are
distinct. Our algorithm is based heavily on Corollary and Theorem
4.1l

UL MVL,p = (

13



1. We will denote the 7, j element of A by a;;. By Corollary |1.3.3} the
characteristic polynomial of A s is

pu(m) = > |opul (H(T— Ae})-

LET,, el
(%)
One can compute the coefficients |v y/|? by diagonalising A and then
computing them directly or by using equation (|1.17]) if the eigenvalues
of A are distinct.

2. After computing the characteristic polynomial py/(7), find its k& roots,
which are the eigenvalues pd/, ... uM of Aysar. Recall that
ot are distinet by assumption.

3. The assumption that the eigenvalues of Ay, ) are distinct means that
we can apply Theorem to obtain for I,p,q € {1,2,... k}

1
(' T — A)) -
[Loald = ")) (g |

UV1pUlg = <

We obtain k? equations, which we can solve to obtain the elements
v, and hence, the eigenvectors [v;1, V2, . .., v k]T of An s for

le{l,2,...,k}.

Let us give concrete examples of the algorithm in action.

Example 1.4.1. Let

2; 1 1 . 1 1 .
L3t 755758 Taa e
7

1 1 . 1
ATl Ty ‘

6
1.
Wﬁ—i_ﬁl 1+El

Recall that the eigenvalues of A are A\ =147 and \y = A3 = 1. We will
use the algorithm to compute the eigenvectors of the 2 x 2 matrix

142 —l _ 1y
A{L?}»{l,?} = (L _ ll 3\{54— liﬁ '
3v2 32 6

Step 1: By Corollary [1.3.3] we need to compute the coefficients

vyl lvpenps? and gyl

14



Since A does not have distinct eigenvalues, we proceed by direct

computation. We find that |U{172}7{172 |2 = 1/27 |U{172}7{173}|2 = 1/3 and
[vg1.23,42,33 17 = 1/6. So, by Corollary

paa(n) = 5(r =1 =) 1)+ 30— 1=i)(r = 1) + 57— 1?

2 3
_ (24 gi)f +5(1 + gi)
=(r—1)(r—1- 62)

Step 2: The eigenvalues of Ay 9y 11,2) are therefore, iy = 1 and pp = 1 + %i.
This is obtained by finding the roots of the characteristic polynomial

paay(r) = (1= 1)(r =1 = %i).

Step 3: Let wy, wsy be the eigenvectors corresponding to pq and ps. Since
Af123,41,2) has distinct eigenvalues, we can apply Theorem to find that

L Jwq]* = mim (pola — Apioy 1,23)11 = 1/5.

2. |U}1,2‘2 = uzim (M212 - A{l,2},{1,2})2,2 = 4/5-

3. wy Wi = uzim (p2ls — Ay )2 = \/?5 - \/?51
4o Wwi g = e (pele — Apaypy)en = 4 + R
5. |U}2,1‘2 = miuz (MlIQ - A{l,2},{1,2})1,1 = 4/5-

6. |w2,2‘2 = ﬁ(ﬂﬂz - A{1,2},{1,2})2,2 = 1/5-

T wo Wap = - (nlo — Aoy ioy)i2 = _\/?5 T \/TQZ
8. Wy wap = m(ﬂllz — Ap2yq2y)21 = —? - \/?il

From the computations, we can write

1. ’LU171 = |7VU171|62‘6’1 = Leith

1
2. wy g = |wyale® = %ew?
3. Way = |wa, e = \%eml
4. wog = |wyple’™? = \%eia?

15



where 01,05, a1, as € (—7, w]. Upon substitution into the equations for
wWy,1W1 2 and W2,1W2 2, WE deduce that

- 1 1 -
i(01—02) __ e .8
e = — — —]=¢ ‘4
V2 V2
and
ellar—az) _i + 1 ei%’r

=
V2 V2
So, 6 — 0y = —m/4 and oy — ay = 37/4. We can set 6; = a; = 0 so that
0 = w/4 and oy = —37/4. Hence,

1 —371'1'/4‘

1 2 .
w11 Wi = —67”/4, W1 = and Wo 2 = —56

VA

One can check that the matrix

1 2

W= (W W2r) V5 V5
- - 2 mi/4 1 _—3mi/4

Wi,2 W22 —\/56 —\/56

satisfies W1 Ag 0y 1.2y W = diag[1,1 + %Z] as required.

2
V5

Note that we have freedom in choosing the angles 6; and a; because
0y = 01 + w/4 and s = oy — 37/4. For instance, if we choose ¢, = 7/4 and

a1 = /2 then
1 mi/4 2 im/2
W= | ° 4/ V5© /
leﬂ'l/2 Lefm/4
V5 V5
which still satisfies the equation WA 2y (1.0yW = diag[1,1 + 2i].
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