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Chapter 1

Introduction

1.1 The scenario

Let A = (aij) ∈Mn×n(C) be a Hermitian matrix such that

A = P diag[λ1, . . . , λn] P−1. (1.1)

where P ∈ GLn(C) is unitary (P−1 = P ∗) and λ1, . . . , λn are distinct
eigenvalues of A. Let v1, . . . , vn be the corresponding eigenvectors. The
eigenvector vj is the jth column of P .

Let k ∈ Z>0 such that k ≤ n. Define Z[1,n] = {1, 2, . . . , n} and

T(nk)
= {S ⊆ Z[1,n] | |S| = k}.

Here, |S| refers to the cardinality of the set S. If L = {`1, . . . , `k} and
M = {m1, . . . ,mk} are elements of T(nk)

then let AL,M be the k × k matrix

formed from rows `1, `2, . . . , `k of A and columns m1,m2, . . . ,mk of A. Also,
for j ∈ {1, 2, . . . , n} let jc = Z[1,n] − {j}.

The question we would like to investigate is: Can we use equation (1.1) to
gain information about the eigenvectors of the minor matrix A1c,1c? The
main reason for beginning with A1c,1c is because A1c,1c ∈M(n−1)×(n−1)(C) is
Hermitian. This is because A is Hermitian.

By the spectral theorem, there exists a unitary matrix R ∈ GLn−1(C) such
that

R−1A1c,1cR = diag[µ1, µ2, . . . , µn−1]
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where µ1, µ2, . . . , µn−1 are the eigenvalues of A1c,1c .

Define Q ∈ GLn(C) as the block matrix

Q =

(
1 0
0 R

)
.

Due to the block structure on Q, we have

Q−1AQ =

(
a11 ∗
∗ diag[µ1, . . . , µn−1]

)
.

Here, ∗ denotes unnecessary elements. Let B = Q−1AQ. Then,

B = (Q−1P )diag[λ1, . . . , λn](P−1Q).

If j ∈ {1, 2, . . . , n} then

λjIn −B = (Q−1P )Dj(P
−1Q). (1.2)

where Dj = diag[λj − λ1, . . . , λj − λn]. Now apply Λn−1 to both sides of
equation (1.2) and take the 1c, 1c element. We obtain on the LHS

(
Λn−1(λjIn −B)

)
1c,1c

=
n−1∏
i=1

(λj − µi). (1.3)

The expression obtained on the RHS is more difficult to compute. Firstly,
we have

Λn−1(Dj) = diag[0, . . . , 0,
n∏

i=1,i 6=j

(λj − λi), 0, . . . , 0]. (1.4)

The non-zero term
∏n

i=1,i 6=j(λj − λi) is the jc, jc element of Λn−1(Dj).

The bottom rows of Λn−1(Q) and Λn−1(Q−1) which are indexed by 1c are
respectively,

[0, 0, . . . , 0, u] and [0, 0, . . . , 0, u−1]

where u = det(R) is a complex number of magnitude 1. Similarly, the
rightmost columns of Λn−1(Q) and Λn−1(Q−1), which are again indexed by
1c are respectively

[0, 0, . . . , 0, u]T and [0, 0, . . . , 0, u−1]T
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If L = {`1, . . . , `k} ∈ T(nk)
then we define vL = v`1 ∧ · · · ∧ v`k . The vL form

the columns of Λk(P ). If M ∈ T(nk)
then vL,M denotes the M element of vL.

Now fix r, s ∈ {1, 2, . . . , n}. Then,

(Λn−1(Q−1P ))1c,rc =
∑

L∈T
( n
n−1)

(Λn−1(Q−1))1c,L(Λn−1(P ))L,rc = u−1(Λn−1(P ))1c,rc

Hence,

(Λn−1(Q−1P ))1c,rc = u−1(Λn−1(P ))1c,rc = u−1vrc,1c . (1.5)

By a similar computation, we find that

(Λn−1(P−1Q))sc,1c = u(Λn−1(P−1))sc,1c = u(Λn−1(P ))1c,sc = uvsc,1c . (1.6)

Finally, by applying Λn−1 to the RHS of equation (1.2) and taking the 1c, 1c

element, we obtain from equations (1.4), (1.5) and (1.6)

n∏
i=1,i 6=j

(λj − λi) u vjc,1c u−1 vjc,1c =
n∏

i=1,i 6=j

(λj − λi) |vjc,1c |2.

By equating with equation (1.8), we obtain

|vjc,1c|2 =

∏n−1
i=1 (λj − µi)∏n

i=1,i 6=j(λj − λi)
(1.7)

Notice that equation (1.7) is very similar to the eigenvector-eigenvalue
identity, as applied to the matrix A1c,1c . In fact, we will prove
eigenvector-eigenvalue identity for the minor matrix A1c,1c in the next
section. The eigenvector-eigenvalue identity appears in [DPTZ22, Theorem
1].

1.2 Proving the eigenvector-eigenvalue

identity

The idea is to take Υn−1 of both sides of equation (1.2) and then take the
1, 1 element. Once we do this, the LHS becomes

(
Υn−1(λjIn −B)

)
1,1

=
n−1∏
i=1

(λj − µi). (1.8)
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In order to compute the resulting expression on the RHS, we require a few
intermediate expressions. Since P and Q are invertible, we have

Υn−1(P ) = det(P )P−1 = det(P )P ∗. (1.9)

Υn−1(P−1) = det(P )−1P. (1.10)

Υn−1(Q) = det(Q)Q−1. (1.11)

Υn−1(Q−1) = det(Q)−1Q. (1.12)

We also have from the definition of Υn−1

(Υn−1(Dj))`,` =

{∏n
i=1,i 6=j(λj − λi), if ` = j,

0, if ` 6= j.
(1.13)

All the non-diagonal entries of Υn−1(Dj) are zero because Υn−1(Dj) is a
diagonal matrix. We wish to compute the expression

(Υn−1(Q−1PDjP
−1Q))1,1.

Using equations (1.9), (1.10), (1.11), (1.12) and (1.13), we compute for
s ∈ {1, 2, . . . , n} the following expressions:

(Υn−1(P−1Q))1,s = (Υn−1(Q)Υn−1(P−1))1,s

=
n∑
r=1

(Υn−1(Q))1,r(Υ
n−1(P−1))r,s

=
n∑
r=1

(det(Q)Q−1)1,r(det(P )−1P )r,s

= det(Q) det(P )−1
n∑
r=1

(Q−1)1,rPr,s

= det(Q) det(P )−1P1,s.
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(Υn−1(Q−1P ))s,1 = (Υn−1(P )Υn−1(Q−1))s,1

=
n∑
r=1

(Υn−1(P ))s,r(Υ
n−1(Q−1))r,1

=
n∑
r=1

(det(P )P ∗)s,r(det(Q)−1Q)r,1

= det(P ) det(Q)−1
n∑
r=1

(P ∗)s,rQr,1

= det(P ) det(Q)−1(P ∗)s,1.

(Υn−1(P−1Q)Υn−1(Dj))1,s =
n∑
r=1

(Υn−1(P−1Q))1,r(Υ
n−1(Dj))r,s

= (Υn−1(P−1Q))1,s(Υ
n−1(Dj))s,s

= (Υn−1(P−1Q))1,s

n∏
i=1,i 6=j

(λj − λi)δs,j

= det(Q) det(P )−1
n∏

i=1,i 6=j

(λj − λi)P1,sδs,j.

The symbol δs,j is the Kronecker delta. Putting all these computations
together, we have

(Υn−1(Q−1PDjP
−1Q))1,1 = (Υn−1(P−1Q)Υn−1(Dj)Υ

n−1(Q−1P ))1,1

=
n∑
s=1

(Υn−1(P−1Q)Υn−1(Dj))1,s(Υ
n−1(Q−1P ))s,1

=
n∑
s=1

(
det(Q) det(P )−1

n∏
i=1,i 6=j

(λj − λi)P1,sδs,j
)

(
det(P ) det(Q)−1(P ∗)s,1

)
=

n∏
i=1,i 6=j

(λj − λi)
n∑
s=1

P1,s(P
∗)s,1δs,j

=
n∏

i=1,i 6=j

(λj − λi)P1,j(P
∗)j,1

=
n∏

i=1,i 6=j

(λj − λi)vj,1vj,1 = |vj,1|2
n∏

i=1,i 6=j

(λj − λi).
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By equating the above equation with equation (1.8), we obtain

n−1∏
i=1

(λj − µi) = |vj,1|2
n∏

i=1,i 6=j

(λj − λi)

and

|vj,1|2 =

∏n−1
i=1 (λj − µi)∏n

i=1,i 6=j(λj − λi)
(1.14)

which is the eigenvector-eigenvalue identity applied to the minor matrix
A1c,1c .

Are we able to extend equation (1.14) to the other (n− 1)× (n− 1) minor
matrices of A? The answer is only partially. Assume that u ∈ Z[1,n]. Let

µ
(u)
1 , µ

(u)
2 , . . . , µ

(u)
n−1 be the eigenvalues of the minor Auc,uc . Let wu ∈ GLn(C)

be the permutation matrix such that the product wuA is obtained from A
by swapping the first and uth rows of A and the product Awu is obtained
from A by swapping the first and uth columns of A.

Since w2
u = In, we compute directly that

wuAwu = (wuPwu)(wudiag[λ1, . . . , λn]wu)(wuP
−1wu).

By applying equation (1.14) to wuAwu, we obtain

|vj,u|2 =

∏n−1
i=1 (λj − µ(u)

i )∏n
i=1,i 6=j(λj − λi)

. (1.15)

By repeating the argument outlined in the first section for wuAwu, we also
find that

|vjc,uc |2 =

∏n−1
i=1 (λj − µ(u)

i )∏n
i=1,i 6=j(λj − λi)

(1.16)

We are unable to extend this argument to a minor matrix Auc,vc with u and
v distinct because Auc,vc is not Hermitian in general.

1.3 Generalising the eigenvector-eigenvalue

identity

In this section, we prove generalisations of equations (1.15) and (1.16). We
will first state the generalisation of equation (1.15).

7



Theorem 1.3.1. Let n, k ∈ Z>0 such that k ≤ n. Let A ∈Mn×n(C) satisfy
AA∗ = A∗A and λ1, . . . , λn be the eigenvalues of A. Let v1, v2, . . . , vn be the
corresponding eigenvectors. If L = {l1, l2, . . . , lk} ∈ T(nk)

then define

vL = vl1 ∧ vl2 ∧ · · · ∧ vlk .

For M ∈ T(nk)
, let vL,M ∈ C be the M component of vL. If τ ∈ C and

M,N ∈ T(nk)
then∑

L∈T
(nk)

(∏
`∈L

(τ − λ`)
)
vL,M vL,N =

(
Λk(τIn − A)

)
M,N

.

In particular, if j ∈ {1, 2, . . . , n}, M = N = {m1,m2, . . . ,mk} and AM,M is
the k × k matrix formed from rows m1,m2, . . . ,mk and columns
m1,m2, . . . ,mk of A then

∑
L∈T

(nk)

(∏
`∈L

(λj − λ`)
)
|vL,M |2 =

(
Λk(λjIn − A)

)
M,M

=
k∏
i=1

(λj − µMi )

where µM1 , µ
M
2 , . . . , µ

M
k are the eigenvalues of AM,M .

Proof. By the spectral theorem, A = UDU−1, where U ∈ GLn(C) satisfies
U∗ = U−1 and D = diag[λ1, . . . , λn]. For τ ∈ C, let

Dτ = diag[τ − λ1, τ − λ2, . . . , τ − λn].

If τ ∈ C then τIn − A = UDτU
−1 and

Λk(τIn − A) = Λk(U)Λk(Dτ )Λ
k(U)−1.

We note that the columns of Λk(U) are the wedge products vL for L ∈ T(nk)
.

We compute directly that if M,N ∈ T(nk)
then
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(
Λk(τIn − A)

)
M,N

=
(
Λk(U)Λk(Dτ )Λ

k(U)−1
)
M,N

=
∑

L,P∈T
(nk)

(Λk(U))M,P (Λk(Dτ ))P,L(Λk(U−1))L,N

=
∑

L∈T
(nk)

(Λk(U))M,L(Λk(Dτ ))L,L(Λk(U−1))L,N

=
∑

L∈T
(nk)

(Λk(U))M,L(Λk(Dτ ))L,L(Λk(U)∗)L,N

=
∑

L∈T
(nk)

(Λk(U))M,L(Λk(Dτ ))L,L(Λk(U))N,L

=
∑

L∈T
(nk)

vL,M

(∏
`∈L

(τ − λ`)
)
vL,N .

If M = N and τ = λj for some j ∈ {1, 2, . . . , n} then,

∑
L∈T

(nk)

(∏
`∈L

(λj − λ`)
)
|vL,M |2 =

∑
L∈T

(nk)

(∏
`∈L

(λj − λ`)
)
vL,M vL,M

=
(
Λk(λjIn − A)

)
M,M

=
k∏
i=1

(λj − µMi ).

Note that in Theorem 1.3.1, we did not assume that the eigenvalues of A
are distinct. Equation (1.16) has a similar generalisation.

Theorem 1.3.2. Let n, k ∈ Z>0 such that k ≤ n. Let A ∈Mn×n(C) satisfy
AA∗ = A∗A and λ1, . . . , λn be the eigenvalues of A. Let v1, v2, . . . , vn be the
corresponding eigenvectors. If L = {l1, l2, . . . , lk} ∈ T(nk)

then define

vL = vl1 ∧ vl2 ∧ · · · ∧ vlk .

For M ∈ T(nk)
, let vL,M ∈ C be the M component of vL. If τ ∈ C and

M,N ∈ T(nk)
then
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∑
L∈T

(nk)

( ∏
`∈Lc

(τ − λ`)
)
vL,M vL,N =

(
Υn−k(τIn − A)

)
M,N

.

In particular, if j ∈ {1, 2, . . . , n}, M = N = {m1,m2, . . . ,mk} and AMc,Mc

is the (n− k)× (n− k) matrix formed by deleting rows m1,m2, . . . ,mk and
columns m1,m2, . . . ,mk from A then

∑
L∈T

(nk)

( ∏
`∈Lc

(λj − λ`)
)
|vL,M |2 =

(
Υn−k(λjIn − A)

)
M,M

=
n−k∏
i=1

(λj − µM
c

i )

where µM
c

1 , µM
c

2 , . . . , µM
c

n−k are the eigenvalues of AMc,Mc. The complements
Lc and M c are taken with respect to the set {1, 2, . . . , n}.

Proof. By the spectral theorem, A = UDU−1, where U ∈ GLn(C) satisfies
U∗ = U−1 and D = diag[λ1, . . . , λn]. For τ ∈ C, let

Dτ = diag[τ − λ1, τ − λ2, . . . , τ − λn].

If τ ∈ C then τIn − A = UDτU
−1 and

Υn−k(τIn − A) = Υn−k(U)−1Υn−k(Dτ )Υ
n−k(U).

Since U ∈ GLn(C),

Λk(U)Υn−k(U) = Υn−k(U)Λk(U) = det(U)I(nk)
.

So,

Υn−k(U) = det(U)Λk(U)−1 and Υn−k(U)−1 = det(U)−1Λk(U).

Moreover, (
Υn−k(Dτ )

)
M,M

=
(
Λn−k(Dτ )

)
Mc,Mc

Consequently, we compute for M,N ∈ T(nk)
that
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(
Υn−k(τIn − A)

)
M,N

=
(
Υn−k(U)−1Υn−k(Dτ )Υ

n−k(U)
)
M,N

=
∑

L,P∈T
(nk)

(Υn−k(U)−1)M,P (Υn−k(Dτ ))P,L(Υn−k(U))L,N

=
∑

L∈T
(nk)

(Υn−k(U)−1)M,L(Υn−k(Dτ ))L,L(Υn−k(U))L,N

=
∑

L∈T
(nk)

(Λk(U))M,L(Λn−k(Dτ ))Lc,Lc(Λ
k(U)−1)L,N

=
∑

L∈T
(nk)

(Λk(U))M,L(Λn−k(Dτ ))Lc,Lc(Λ
k(U)∗)L,N

=
∑

L∈T
(nk)

(Λk(U))M,L(Λn−k(Dτ ))Lc,Lc(Λk(U))N,L

=
∑

L∈T
(nk)

vL,M

( ∏
`∈Lc

(τ − λ`)
)
vL,N .

Finally, we note that if M = N and τ = λj for some j ∈ {1, 2, . . . , n} then,

∑
L∈T

(nk)

( ∏
`∈Lc

(λj − λ`)
)
|vL,M |2 =

∑
L∈T

(nk)

( ∏
`∈Lc

(λj − λ`)
)
vL,M vL,M

=
(
Υn−k(λjIn − A)

)
M,M

=
(
Λn−k(λjIn − A)

)
Mc,Mc

=
n−k∏
i=1

(λj − µM
c

i ).

We observe that in the statements of Theorem 1.3.1 and Theorem 1.3.2, we
did not assume that A was Hermitian or that A had distinct eigenvalues.
This will be reflected in the example which follows.

Example 1.3.1. Let

A =

 1 + 2
3
i − 1

3
√
2
− 1

3
√
2
i − 1

3
√
2

+ 1
3
√
2
i

1
3
√
2
− 1

3
√
2
i 1 + 1

6
i 1

6
1

3
√
2

+ 1
3
√
2
i −1

6
1 + 1

6
i

 .
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Then, A = UDU∗, where D = diag[1 + i, 1, 1] and

U =


1√
3

+ 1√
3
i 1√

6
− 1√

6
i 0

− 1√
6
i 1√

3
1√
6

+ 1√
3
i

1√
6

1√
3
i 1√

3
− 1√

6
i


is unitary. Let λ1 = 1 + i and λ2 = λ3 = 1. In Theorem 1.3.2, set n = 3 and
k = 1. Let M = {3} so that M c = {1, 2}. We compute directly that

3∑
i=1

(∏
6̀=i

(λ1 − λ`)
)
|vi,3|2 = −1

6
.

The eigenvalues of AMc,Mc are µM
c

1 = 1 and µM
c

2 = 1 + 5
6
i. Notice that

(λ1 − µM
c

1 )(λ1 − µM
c

2 ) = −1

6
.

So,

3∑
i=1

(∏
6̀=i

(λ1 − λ`)
)
|vi,3|2 = (λ1 − µM

c

1 )(λ1 − µM
c

2 )

which agrees with Theorem 1.3.2. Moreover, we can also compute that

3∑
i=1

(∏
6̀=i

(0− λ`)
)
|vi,3|2 = 1 +

5

6
i = (0− µMc

1 )(0− µMc

2 )

which again agrees with Theorem 1.3.2.

Next, we will provide a second interpretation of Theorem 1.3.1 and
Theorem 1.3.2. We know from Theorem 1.3.1 that∑

L∈T
(nk)

(∏
`∈L

(τ − λ`)
)
vL,M vL,N =

(
Λk(τIn − A)

)
M,N

.

Setting M = N in T(nk)
, we have∑

L∈T
(nk)

(∏
`∈L

(τ − λ`)
)
|vL,M |2 =

(
Λk(τIn − A)

)
M,M

By definition of Λk,(
Λk(τIn − A)

)
M,M

= det((τIn − A)M,M) = det(τIk − AM,M).
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But, det(τIk − AM,M) is the characteristic polynomial of the k × k matrix
AM,M . Consequently, we have the corollary

Corollary 1.3.3. Let n, k ∈ Z>0 such that k ≤ n. Let A ∈Mn×n(C) satisfy
AA∗ = A∗A and λ1, . . . , λn be the eigenvalues of A. If M ∈ T(nk)

then

pM(τ) =
∑

L∈T
(nk)

|vL,M |2
(∏
`∈L

(τ − λ`)
)

is the characteristic polynomial of the k × k matrix AM,M . Moreover,

qM(τ) =
∑

L∈T
(nk)

|vL,M |2
( ∏
`∈Lc

(τ − λ`)
)

is the characteristic polynomial of the (n− k)× (n− k) matrix AMc,Mc.

1.4 Eigenvectors of minor matrices — an

algorithm

Let A ∈Mn×n(C) be a matrix satisfying AA∗ = A∗A with eigenvalues
λ1, λ2, . . . , λn. By the spectral theorem, there exists a unitary matrix
U ∈ GLn(C) such that

A = Udiag[λ1, . . . , λn]U∗.

Let M ∈ T(nk)
, where k ∈ {1, 2, . . . , n− 1}. We have the following theorem,

which applies to A if the eigenvalues λ1, . . . , λn are distinct.

Theorem 1.4.1. Let A ∈Mn×n(C) and λ1, . . . , λn be distinct eigenvalues
of A with corresponding eigenvectors v1, . . . , vn. Suppose that there exists a
unitary matrix U such that A = Udiag[λ1, . . . , λn]U∗. If
L = {i1, . . . , ik} ∈ T(nk)

with k ∈ {1, . . . , n− 1}, define vL = vi1 ∧ · · · ∧ vik . If

M,P ∈ T(nk)
and vL,M is the M element of vL then

vL,MvL,P =
1(∏

l∈L, a∈Lc(λa − λl)
)(Λk(

∏
a∈Lc

(λaIn − A))
)
M,P

. (1.17)

We will provide an algorithm for computing the eigenvectors of the k × k
matrix AM,M in the special case where the eigenvalues of AM,M are
distinct. Our algorithm is based heavily on Corollary 1.3.3 and Theorem
1.4.1.
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1. We will denote the i, j element of A by aij. By Corollary 1.3.3, the
characteristic polynomial of AM,M is

pM(τ) =
∑

L∈T
(nk)

|vL,M |2
(∏
`∈L

(τ − λ`)
)
.

One can compute the coefficients |vL,M |2 by diagonalising A and then
computing them directly or by using equation (1.17) if the eigenvalues
of A are distinct.

2. After computing the characteristic polynomial pM(τ), find its k roots,
which are the eigenvalues µM1 , . . . , µ

M
k of AM,M . Recall that

µM1 , . . . , µ
M
k are distinct by assumption.

3. The assumption that the eigenvalues of AM,M are distinct means that
we can apply Theorem 1.4.1 to obtain for l, p, q ∈ {1, 2, . . . , k}

vl,pvl,q =
1(∏

a6=l(µ
M
a − µMl )

) (∏
a6=l

(µMa Ik − A)
)
p,q
.

We obtain k2 equations, which we can solve to obtain the elements
vl,p and hence, the eigenvectors [vl,1, vl,2, . . . , vl,k]

T of AM,M for
l ∈ {1, 2, . . . , k}.

Let us give concrete examples of the algorithm in action.

Example 1.4.1. Let

A =

 1 + 2
3
i − 1

3
√
2
− 1

3
√
2
i − 1

3
√
2

+ 1
3
√
2
i

1
3
√
2
− 1

3
√
2
i 1 + 1

6
i 1

6
1

3
√
2

+ 1
3
√
2
i −1

6
1 + 1

6
i

 .

Recall that the eigenvalues of A are λ1 = 1 + i and λ2 = λ3 = 1. We will
use the algorithm to compute the eigenvectors of the 2× 2 matrix

A{1,2},{1,2} =

(
1 + 2

3
i − 1

3
√
2
− 1

3
√
2
i

1
3
√
2
− 1

3
√
2
i 1 + 1

6
i

)
.

Step 1: By Corollary 1.3.3, we need to compute the coefficients

|v{1,2},{1,2}|2, |v{1,2},{1,3}|2 and |v{1,2},{2,3}|2.
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Since A does not have distinct eigenvalues, we proceed by direct
computation. We find that |v{1,2},{1,2}|2 = 1/2, |v{1,2},{1,3}|2 = 1/3 and
|v{1,2},{2,3}|2 = 1/6. So, by Corollary 1.3.3,

p{1,2}(τ) =
1

2
(τ − 1− i)(τ − 1) +

1

3
(τ − 1− i)(τ − 1) +

1

6
(τ − 1)2

= τ 2 − (2 +
5

6
i)τ + (1 +

5

6
i)

= (τ − 1)(τ − 1− 5

6
i).

Step 2: The eigenvalues of A{1,2},{1,2} are therefore, µ1 = 1 and µ2 = 1 + 5
6
i.

This is obtained by finding the roots of the characteristic polynomial
p{1,2}(τ) = (τ − 1)(τ − 1− 5

6
i).

Step 3: Let w1, w2 be the eigenvectors corresponding to µ1 and µ2. Since
A{1,2},{1,2} has distinct eigenvalues, we can apply Theorem 1.4.1 to find that

1. |w1,1|2 = 1
µ2−µ1 (µ2I2 − A{1,2},{1,2})1,1 = 1/5.

2. |w1,2|2 = 1
µ2−µ1 (µ2I2 − A{1,2},{1,2})2,2 = 4/5.

3. w1,1w1,2 = 1
µ2−µ1 (µ2I2 − A{1,2},{1,2})1,2 =

√
2
5
−
√
2
5
i.

4. w1,1w1,2 = 1
µ2−µ1 (µ2I2 − A{1,2},{1,2})2,1 =

√
2
5

+
√
2
5
i.

5. |w2,1|2 = 1
µ1−µ2 (µ1I2 − A{1,2},{1,2})1,1 = 4/5.

6. |w2,2|2 = 1
µ1−µ2 (µ1I2 − A{1,2},{1,2})2,2 = 1/5.

7. w2,1w2,2 = 1
µ1−µ2 (µ1I2 − A{1,2},{1,2})1,2 = −

√
2
5

+
√
2
5
i.

8. w2,1w2,2 = 1
µ1−µ2 (µ1I2 − A{1,2},{1,2})2,1 = −

√
2
5
−
√
2
5
i.

From the computations, we can write

1. w1,1 = |w1,1|eiθ1 = 1√
5
eiθ1

2. w1,2 = |w1,2|eiθ2 = 2√
5
eiθ2

3. w2,1 = |w2,1|eiα1 = 2√
5
eiα1

4. w2,2 = |w2,2|eiα2 = 1√
5
eiα2

15



where θ1, θ2, α1, α2 ∈ (−π, π]. Upon substitution into the equations for
w1,1w1,2 and w2,1w2,2, we deduce that

ei(θ1−θ2) =
1√
2
− 1√

2
i = e−i

π
4

and

ei(α1−α2) = − 1√
2

+
1√
2
i = ei

3π
4 .

So, θ1 − θ2 = −π/4 and α1 − α2 = 3π/4. We can set θ1 = α1 = 0 so that
θ2 = π/4 and α2 = −3π/4. Hence,

w1,1 =
1√
5
, w1,2 =

2√
5
eπi/4, w2,1 =

2√
5

and w2,2 =
1√
5
e−3πi/4.

One can check that the matrix

W =

(
w1,1 w2,1

w1,2 w2,2

)
=

(
1√
5

2√
5

2√
5
eπi/4 1√

5
e−3πi/4

)
satisfies W−1A{1,2},{1,2}W = diag[1, 1 + 5

6
i] as required.

Note that we have freedom in choosing the angles θ1 and α1 because
θ2 = θ1 + π/4 and α2 = α1 − 3π/4. For instance, if we choose θ1 = π/4 and
α1 = π/2 then

W =

(
1√
5
eπi/4 2√

5
eiπ/2

2√
5
eπi/2 1√

5
e−πi/4

)
which still satisfies the equation W−1A{1,2},{1,2}W = diag[1, 1 + 5

6
i].
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