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1 A quick summary of the six-term exact se-

quence

Most of the material in this document originates from the excellent
reference [RLL00]. The purpose of K-theory is to distinguish C*-algebras
from each other. K-theory has seen success in the classification of
AF-algebras, an important result due to Elliott ([RLL00, Section 7]), and
the Kirchberg-Phillips classification of Kirchberg algebras satisfying the
UCT in [Phi00].

Given a C*-algebra A, it is often useful to compute the groups K0(A) and
K1(A). If A lies in a short exact sequence of C*-algebras then one can use
the six-term exact sequence (see [RLL00, Theorem 12.1.2]) to compute
K0(A) and K1(A). To be specific, let

0 I A B 0
ϕ ψ

be a short exact sequence of C*-algebras. This induces the six-term exact
sequence

1



K1(I) K1(A) K1(B)

K0(B) K0(A) K0(I)

K1(ϕ) K1(ψ)

δ1δ0

K0(ψ) K0(ϕ)

The group homomorphisms δ1 and δ0 are called the index map and
exponential map respectively. We now briefly recall their definitions from
[RLL00]. In what follows, we will freely use notation from [RLL00].

The index map is constructed from [RLL00, Lemma 9.11, Lemma 9.12].

Lemma 1.1. Let

0 I A B 0
ϕ ψ

be a short exact sequence of C*-algebras. Let u ∈ Un(B̃). Then

1. There exist v ∈ U2n(Ã) and p ∈ P2n(Ĩ) such that

ψ̃(v) =

(
u 0
0 u∗

)
, ϕ̃(p) = v

(
1n 0
0 0

)
v∗, s(p) =

(
1n 0
0 0

)
.

2. If w ∈ U2n(Ã) and q ∈ P2n(Ĩ) satisfy

ψ̃(w) =

(
u 0
0 u∗

)
and ϕ̃(q) = w

(
1n 0
0 0

)
w∗.

then s(q) = diag[1n, 0n] and p ∼u q in P2n(Ĩ).

In Lemma 1.1, s : Mn(Ĩ)→Mn(Ĩ) is the scalar mapping, defined in
[RLL00, Section 4.2.1]. From Lemma 1.1, define the map

ν : U∞(B̃) → K0(I)
u 7→ [p]0 − [s(p)]0

where p ∈ P2n(Ĩ) is the element constructed in Lemma 1.1 from u. By the
standard picture for K0 ([RLL00, Proposition 4.2.2]),

K0(I) = {[q]0 − [s(q)]0 | q ∈ P∞(Ĩ)}.
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So ν is a well-defined map into K0(I). By [RLL00, Lemma 9.1.2], this map
satisfies the properties needed for us to apply the universal property of K1

in [RLL00, Proposition 8.1.5]. Hence, we obtain the unique group morphism

δ1 : K1(B) → K0(I)
[u]1 7→ ν(u).

The exponential map δ0 is defined by using the index map. In particular, it
is the composite

K0(B) K2(B) K1(I)
β δ2

where β : K0(B)→ K2(B) is the Bott map which is well-known to be an
isomorphism (Bott periodicity, see [RLL00, Section 11.2]) and δ2 is a higher
index map; the unique group morphism making the following diagram
commute:

K2(B) K1(I)

K1(SB) K0(SI)

δ2

∼= ∼=

δ1,S

The map δ1,S is the index map associated to the short exact sequence of
suspensions

0 SI SA SB 0.

The most important thing about the exponential map is that there is a
specific way to compute it, as highlighted by [RLL00, Proposition 12.2.2].

Theorem 1.2. Let

0 I A B 0
ϕ ψ

be a short exact sequence of C*-algebras and δ0 : K0(B)→ K1(I) be the
associated exponential map. Let g ∈ K0(B) and p ∈ Pn(B̃) be such that
g = [p]0 − [s(p)]0 (standard picture of K0). Let a ∈Mn(Ã) be self-adjoint
and satisfy ψ̃(a) = p. Then there exists a unique unitary u ∈ Un(Ĩ) such
that

ϕ̃(u) = exp(2πia) and δ0(g) = −[u]1.

Theorem 1.2 simplifies further when one considers a unital extension.
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Theorem 1.3. Let

0 I A B 0
ϕ ψ

be a short exact sequence of C*-algebras where A is unital (this forces B to
be unital and ψ to be unital preserving). Let δ0 : K0(B)→ K1(I) be the
associated exponential map. Let g ∈ K0(B) and p ∈ Pn(B̃) be such that
g = [p]0 (standard picture of K0). Let a ∈Mn(Ã) be self-adjoint and satisfy
ψ(a) = p. Define the *-homomorphism

ϕ : Ĩ → A
x+ α1Ĩ 7→ ϕ(x) + α1A.

Then there exists a unique unitary u ∈ Un(Ĩ) such that

ϕ(u) = exp(2πia) and δ0(g) = −[u]1.

Theorem 1.3 can be broken down into the following steps:

1. Let n ∈ Z>0 and p ∈ Pn(B̃) so that [p]0 ∈ K0(B).

2. There exists a self-adjoint element a ∈Mn(Ã) such that ψ(a) = p.
Note that ψ is extended to Mn(Ã) in the obvious manner.

3. Take the exponential to obtain u = exp(2πia) ∈ Un(A).

4. Observe that by the continuous functional calculus,

ψ(u) = exp(2πiψ(a)) = exp(2πip) = 1B.

The last equality follows from the fact that p is a projection (and
σ(p) = {0, 1}).

5. The calculation in the previous step demonstrates that
1A − u ∈ kerψ = im ϕ. So there exists v ∈Mn(I) such that
ϕ(v) = 1A − u.

6. The element 1Ĩ − v ∈Mn(Ĩ) satisfies

ϕ(1Ĩ − v) = 1A − (1A − u) = u.

Notice that 1Ĩ − v is unitary because ϕ is injective and

ϕ((1Ĩ − v)∗(1Ĩ − v)) = u∗u = ϕ(1Ĩ).

7. By Theorem 1.3, δ0([p]0) = −[1Ĩ − v]1.
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2 Examples of six-term exact sequences

Most of the listed examples originate from [RLL00, Exercise 12.4]. In our
computations, we will make use of the tables in [RLL00, Pages 234-235],
which depict the K0 and K1 groups of well-known C*-algebras.

Example 2.1. Let A be a non-unital C*-algebra. Then we have a short
exact sequence

0 A Ã C 0.ι π

To be clear, Ã is the unitisation of A. This induces the six-term exact
sequence

K1(A) K1(Ã) K1(C)

K0(C) K0(Ã) K0(A)

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

Recall that K0(C) ∼= Z (rank!) and K1(C) = 0. So our six-term exact
sequence becomes

K1(A) K1(Ã) 0

Z K0(Ã) K0(A)

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

We see that the index map δ1 is the zero map. Now recall by definition that
K1(A) = K1(Ã). This means that K1(ι) is a group isomorphism. By
exactness,

im δ0 = kerK1(ι) = {0}.

Hence, the exponential map δ0 must also be the zero map. By using
exactness again, K0(π) is surjective, K0(ι) is injective and

K0(A) ∼= im K0(ι) = kerK0(π).

This is consistent with how K0(A) is defined when A is non-unital. The
definitions of K0(A) and K1(A) when A is non-unital are designed
specifically to make the associated six-term sequence exact.
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Example 2.2. Let H be an infinite-dimensional separable Hilbert space.
We have the short exact sequence

0 K B(H) Q(H) 0.ι π

where Q(H) is the Calkin algebra. This induces the six-term exact sequence

K1(K) K1(B(H)) K1(Q(H))

K0(Q(H)) K0(B(H)) K0(K)

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

Now recall that K0(K) ∼= Z, K1(K) = 0, K0(B(H)) = 0 and
K1(B(H)) = 0. So the six-term exact sequence drastically reduces to

0 0 K1(Q(H))

K0(Q(H)) 0 Z

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

In particular, we see by exactness that the index map δ1 is an isomorphism.
So K1(Q(H)) ∼= Z. Similarly, the exponential map δ0 is also an
isomorphism. So K0(Q(H)) = 0.

Example 2.3. Let A be a C*-algebra. Recall the suspension and cone of A
are defined by

SA = C0((0, 1))⊗ A and CA = C0((0, 1])⊗ A.

respectively. To be more explicit,

SA = {f ∈ C([0, 1], A) | f(0) = f(1) = 0}

and

CA = {f ∈ C([0, 1], A) | f(0) = 0}.

We have a short exact sequence

0 SA CA A 0.ι f

where if φ ∈ CA then f(φ) = φ(1). This yields the six-term exact sequence
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K1(SA) K1(CA) K1(A)

K0(A) K0(CA) K0(SA)

K1(ι) K1(f)

δ1δ0

K0(f) K0(ι)

Recall that the cone CA is homotopic to zero. Therefore
K0(CA) = K1(CA) = 0. Our six-term exact sequence becomes

K1(SA) 0 K1(A)

K0(A) 0 K0(SA)

K1(ι) K1(f)

δ1δ0

K0(f) K0(ι)

and by exactness, both the index and exponential maps are isomorphisms.

Example 2.4. We have the short exact sequence

0 C0((0, 1)) C([0, 1]) C⊕ C 0.ι f

where if φ ∈ C([0, 1]) then f(φ) = (φ(0), φ(1)). This induces the six-term
exact sequence

K1(C0((0, 1))) K1(C([0, 1])) K1(C⊕ C)

K0(C⊕ C) K0(C([0, 1])) K0(C0((0, 1)))

K1(ι) K1(f)

δ1δ0

K0(f) K0(ι)

Now K1(C⊕ C) = 0 and K0(C⊕ C) = Z2 (use the fact that K0 preserves
direct sums). Observe that C0((0, 1)) = SC. So

K0(C0((0, 1))) ∼= K1(C) = 0 and K1(C0((0, 1))) ∼= K0(C) = Z.

Our six-term exact sequence now becomes

Z K1(C([0, 1])) 0

Z2 K0(C([0, 1])) 0

K1(ι) K1(f)

δ1δ0

K0(f) K0(ι)

The index map δ1 is simply the zero map. Now the exponential map δ0 is a
group homomorphism from Z2 to Z. Let us compute it using Theorem 1.3.
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The C*-algebra C⊕ C is generated by the set {(1, 0), (0, 1)}. Let us
compute δ0([(1, 0)]0) and δ0([(0, 1)]0).

Consider the self-adjoint element 1− id[0,1] ∈ C([0, 1]). It satisfies

f(1− id[0,1]) = (1− 0, 1− 1) = (1, 0) ∈ C⊕ C.

By taking the exponential, define

u = exp(2πi(1− id[0,1])) = exp(−2πi · id[0,1]) ∈ U(C[0, 1]).

Then 1− u ∈ ker f = im ι. To be explicit, 1− u is the function

1− u : [0, 1] → C
t 7→ 1− exp(−2πit).

So ι(1− u) = 1− u. Subsequently the element 1− (1− u) = u is a unitary
element in the unitisation of C0((0, 1)) satisfying

ι(u) = 1− ι(1− u) = 1− (1− u) = u ∈ C([0, 1]).

By Theorem 1.3,

δ0([(1, 0)]0) = −[u]1 = −[exp(−2πi · id[0,1])]1.

Similarly,

δ0([(0, 1)]0) = −[exp(2πi · id[0,1])]1.

Now the image of δ0 lands in K1(C0((0, 1))) = K1(SC). We have the Bott
isomorphism β : K0(C)→ K1(SC) (see [RLL00, Theorem 11.1.2]). If
p ∈ P∞(C) is a projection then β([p]0) = [fp]0 where fp ∈ U((SC)∼) is the
projection loop defined for t ∈ [0, 1] by

fp(t) = exp(2πit)p+ (1− p) =
∞∑
j=0

(2πit)jp

j!
+ (1− p)

= 1 +
∞∑
j=1

(2πit)jp

j!
=
∞∑
j=0

(2πitp)j

j!

= exp(2πitp).

In particular, the group K0(C) is generated by [1]0 and

β([1]0) = [f1]1 = [t 7→ exp(2πit(1))]1 = [exp(2πi · id[0,1])]1.
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This calculation shows that [exp(2πi · id[0,1])]1 generates K1(SC). We also
have

β([−1]0) = [f−1]1 = [t 7→ exp(2πit(−1))]1 = [exp(−2πi · id[0,1])]1.

and consequently, δ0 is the group homomorphism

δ0 : Z2 → Z
(1, 0) 7→ 1
(0, 1) 7→ −1

In particular, δ0 is surjective. By exactness, K1(ι) is the zero map and
kerK1(f) = im K1(ι) = {0}. We deduce that the zero map K1(f) is
actually a group isomorphism. So K1(C([0, 1])) = 0.

Now K0(f) is injective and its image is

ker δ0 = {(n, n) | n ∈ Z} ∼= Z.

Therefore K0(C([0, 1])) ∼= Z.

Example 2.5. Let G be the directed graph

and C∗(G) be the associated graph C*-algebra (see [Rae05] for an
introduction). To be specific, C∗(G) is generated by the union of the set of
partial isometries {Se, Sf , Sg} and the set of mutually orthogonal
projections {Pv, Pw}. Moreover, these elements satisfy the Cuntz-Krieger
relations (see [Rae05, Page 6])

Pv = S∗eSe = S∗fSf = SeS
∗
e , Pw = S∗gSg = SfS

∗
f + SgS

∗
g .

We have the short exact sequence

0 C(S1)⊗K C∗(G) C(S1) 0.ι π
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where C(S1) is isomorphic to the graph C*-algebra associated to the single
loop at w (see [Rae05, Theorem 4.9]). This induces the six-term short exact
sequence

K1(C(S1)⊗K) K1(C
∗(G)) K1(C(S1))

K0(C(S1)) K0(C
∗(G)) K0(C(S1)⊗K)

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

We know that K0(C(S1)) ∼= Z ∼= K1(C(S1)), K0(C(S1)) ∼= K0(C(S1)⊗K)
and K1(C(S1)) ∼= K1(C(S1)⊗K). Hence our six-term exact sequence
becomes

Z K1(C
∗(G)) Z

Z K0(C
∗(G)) Z

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

First, observe that in K0(C
∗(G)),

[Pw]0 = [SgS
∗
g + SfS

∗
f ]0 = [S∗gSg]0 + [S∗fSf ]0 = [Pw]0 + [Pv]0.

So [Pv]0 = 0 in K0(C
∗(G)) and K0(ι) is the zero map. By exactness,

im δ1 = kerK0(ι) = Z. So the index map δ1 is a surjective group morphism
from Z to Z. There are only two such group morphisms — the identity map
idZ and −idZ. In either case, we deduce that the index map δ1 is a group
isomorphism.

Now by exactness, im K1(π) = ker δ1 = {0}. So, K1(π) is the zero map.
Using exactness again, we find that K1(C

∗(G)) = kerK1(π) = im K1(ι).
Therefore K1(ι) is surjective.

Since K0(ι) is the zero map then by exactness K0(π) is injective.
Consequently, we obtain the exact sequence of groups

0 K0(C
∗(G)) Z Z K1(C

∗(G)) 0.
K0(π) δ0 K1(ι)

(1)

We will now compute the exponential map δ0, a group morphism from
K0(C(S1)) to K1(C(S1)⊗K). By identifying the quotient C(S1) with the
graph C*-algebra associated to the single loop at vertex w, we find that as
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a group, K0(C(S1)) is generated by [π(Pw)]0. Hence, it suffices to compute
δ0([π(Pw)]0).

Obviously, Pw ∈ C∗(G) maps to π(Pw) via π. Notice however that Pw is not
just a self-adjoint element; it is also a projection. So the exponential

exp(2πiPw) = 1C∗(G) = Pv + Pw.

Now set I = C(S1)⊗K so that the unitisation is denoted by Ĩ. The unit 1Ĩ
is a unitary element satisfying ι(1Ĩ) = 1C∗(G). By Theorem 1.3,

δ0([π(Pw)]0) = −[1Ĩ ]0.

Since [π(Pw)]0 generates K0(C(S1)) then the exponential map δ0 must be
the zero map.

Now consider the exact sequence in equation (1) again. By exactness, we
find that im K0(π) = ker δ0 = Z and kerK1(ι) = im δ0 = {0}. Therefore
K0(π) and K1(ι) are both group isomorphisms. So

K0(C
∗(G)) ∼= Z and K1(C

∗(G)) ∼= Z.

Example 2.6. This example is taken from [RLL00, Section 13.1]. If
n ∈ Z>1 then define the dimension drop algebra by

Dn = {f ∈ C([0, 1],Mn(C)) | f(0) = 0, f(1) ∈ C1n}.

We have a short exact sequence

0 SMn(C) Dn C 0.ι f

where if φ ∈ Dn then f(φ) = φ(1). We now have the six-term exact
sequence

K1(SMn(C)) K1(Dn) K1(C)

K0(C) K0(Dn) K0(SMn(C))

K1(ι) K1(f)

δ1δ0

K0(f) K0(ι)

We already know that K1(C) = 0 and K0(C) ∼= Z. Moreover
K0(SMn(C)) ∼= K1(Mn(C)) = 0 and K1(SMn(C)) ∼= K0(Mn(C)) ∼= Z. Our
six-term exact sequence becomes
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Z K1(Dn) 0

Z K0(Dn) 0

K1(ι) K1(f)

δ1δ0

K0(f) K0(ι)

Immediately, we see that the index map δ1 is the zero map. Now let us
compute the exponential map δ0. First we begin by making some
identifications. The unitisation D̃n can be identified with the set

{f ∈ C([0, 1],Mn(C)) | f(0), f(1) ∈ C1n}
The unitisation (SMn(C))∼ is identified with the set

{f ∈ C([0, 1],Mn(C)) | f(0) = f(1) ∈ C1n}.
Fix a one-dimensional projection p ∈Mn(C). Since p has rank one then [p]0
generates the group K0(Mn(C)). Define the projection loops
un, vn ∈ U((SMn(C))∼) by

un(t) = f1n(t) = exp(2πit1n) and vn(t) = fp(t) = exp(2πitp).

Now the definition of the Bott isomorphism β : K0(Mn(C))→ K1(SMn(C))
tells us that

β([p]0) = [vn]1 and β([1n]0) = [un]1.

Consequently, n[vn]1 = [un]1 in both K1(SMn(C)) and K1(Dn). Hence [vn]1
is the generator of K1(SMn(C)) and K1(Dn).

Now let h be the function

h : [0, 1] → Mn(C)
t 7→ t1n.

Then h is a self-adjoint element in Dn and f(h) = h(1) = 1 (we have
sneakily identified C1n with C here). Taking the exponential, we find that
if t ∈ [0, 1] then

exp(2πih(t)) = exp(2πit1n) = un(t).

By applying Theorem 1.3 again, we have

δ0([1]0) = −[un]1 = −n[vn]1.
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We deduce that δ0 : Z→ Z is simply multiplication by n. Now return to
our six-term exact sequence, which we rewrite as the exact sequence

0 K0(Dn) Z Z K1(Dn) 0.
K0(f) δ0 K1(ι)

By exactness, {0} = ker δ0 = im K0(f). Since K0(f) is also injective then
K0(Dn) = 0. We also have nZ = im δ0 = kerK1(ι). Since K1(ι) is surjective
then by the first isomorphism theorem,

K1(Dn) ∼= Z/nZ.

Example 2.7. Let T denote the Toeplitz algebra. The Toeplitz algebra
fits into the short exact sequence

0 K T C(S1) 0.ι π

which in turn induces the six-term exact sequence

K1(K) K1(T ) K1(C(S1))

K0(C(S1)) K0(T ) K0(K)

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

We know that K1(K) = 0, K0(K) ∼= Z and K0(C(S1)) ∼= Z ∼= K1(C(S1)).
Thus the six-term exact sequence reduces to

0 K1(T ) Z

Z K0(T ) Z

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

The exponential map δ0 is just the zero map. By exactness, K0(π) is a
surjective group morphism. We also observe that K1(ι) is the zero map and
as a result, K1(π) is an injective group morphism. So our six-term exact
sequence reduces to the exact sequence

0 K1(T ) Z Z K0(T ) Z 0.
K1(π) δ1 K0(ι) K0(π)

We claim that K0(ι) is the zero map. To see why, we first interpret T as
the graph C*-algebra of the following graph.
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The Cuntz-Krieger relations tell us that Pv = S∗eSe, Pw = S∗fSf and
Pw = SeS

∗
e + SfS

∗
f . Observe that in K0(T ),

[Pv]0 + [Pw]0 = [S∗eSe]0 + [S∗fSf ]0 = [SeS
∗
e ]0 + [SfS

∗
f ]0 = [Pw]0.

Therefore [Pv]0 = 0 in the group K0(T ). The graph C*-algebra associated
to the single vertex v is simply C. Moreover, it is a full corner in the ideal
K (see [Rae05, Theorem 4.9]). Hence the group K0(K) is generated by the
equivalence class of the rank one projection [Pv]0. We also have
K0(ι)([Pv]0) = 0. Therefore K0(ι) is the zero map.

By exactness, im δ1 = kerK0(ι) = Z. So δ1 is a surjective group morphism
from Z to Z. Reasoning in the same way as Example 2.5, there are only two
such surjective group morphisms (idZ and −idZ). Both are isomorphisms.
Therefore the index map δ1 is a group isomorphism.

By exactness, im K1(π) = ker δ1 = {0}. Since K1(π) is injective then by the
first isomorphism theorem, K1(T ) = 0. Using exactness again,
im K0(ι) = kerK1(π) = {0}. We deduce that K1(π) is a group isomorphism
and consequently, K0(T ) ∼= Z.

Example 2.8. Let D denote the closed unit disk in C:

D = {z ∈ C | |z| ≤ 1}.
Let T denote the boundary of D (this is just the circle S1). Identify the
open unit disk D\T with R2. Then we have the short exact sequence

0 C0(R2) C(D) C(T) 0.
ϕ ψ

where ψ is the restriction map. This induces the six-term exact sequence

K1(C0(R2)) K1(C(D)) K1(C(T))

K0(C(T)) K0(C(D)) K0(C0(R2))

K1(ϕ) K1(ψ)

δ1δ0

K0(ψ) K0(ϕ)
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We know that K1(C0(R2)) = 0, K0(C0(R2)) ∼= Z and both K0(C(T)) and
K1(C(T)) are isomorphic to Z. Our six-term exact sequence reduces to

0 K1(C(D)) Z

Z K0(C(D)) Z

K1(ϕ) K1(ψ)

δ1δ0

K0(ψ) K0(ϕ)

The exponential map δ0 is the zero map. The group morphism K1(ϕ) is
also a zero map. By exactness, K1(ψ) is an injective group morphism and
K0(ψ) is a surjective group morphism.

We claim that K0(ψ) is actually an isomorphism. To see why this is the
case, we will first show that K0(C(D)) ∼= Z. This is due to [RLL00,
Example 3.3.5], which we state and prove below as the following theorem.

Theorem 2.1. Let X be a compact connected Hausdorff space and Tr be
the standard trace on Mn(C). There exists a surjective group
homomorphism

dim : K0(C(X)) → Z
[p]0 7→ Tr(p(x))

(2)

where p ∈ P∞(C(X)) and x ∈ X is arbitrary.

Proof. Assume that X is a compact connected Hausdorff space.

To show: (a) If p ∈ P∞(C(X)) then Tr(p(x)) is independent of x ∈ X.

(a) Assume that p ∈ P∞(C(X)) so that p is a projection in Mn(C(X)).
The function x 7→ Tr(p(x)) is an element of C(X,Z) and is thus, a locally
constant function. Note that Tr(p(x)) ∈ Z because p is a projection. Since
X is connected then x 7→ Tr(p(x)) is constant. Thus, the quantity Tr(p(x))
is independent of x ∈ X.

Now, if x ∈ X then we have a trace on C(X) defined by the evaluation map

evx : C(X) → C
f 7→ f(x).

One can check that the conditions of [RLL00, Proposition 3.1.8] (universal
property of K0) are satisfied by evx. Applying the universal property, we
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obtain a unique group homomorphism K0(evx) : K0(C(X))→ C such that
if p ∈ P∞(C(X)) then

K0(evx)([p]0) = evx(p).

We remark that if n ∈ Z>1 and p ∈ Pn(C(X)) then evx(p) = Tr(p(x)) ∈ Z.
This is by convention on how traces are extended to matrix algebras (see
[RLL00, Section 3.3.1]). To see that K0(evx) is surjective, note that
K0(evx)([1C(X)]0) = 1.

Hence, K0(evx) is the desired surjective group morphism. By part (a),
K0(evx) does not depend on the choice of x ∈ X.

Corollary 2.2. Let X be a contractible connected compact Hausdorff space.
The surjective group homomorphism dim in equation (2) is a group
isomorphism.

Proof. Assume that X is a contractible connected compact Hausdorff
space. By contractibility, there exist x0 ∈ X and a continuous function
α : [0, 1]×X → X such that if x ∈ X then

α(1, x) = x and α(0, x) = x0.

If t ∈ [0, 1] then define the *-homomorphism

ϕt : C(X) → C(X)
f 7→

(
x 7→ f(α(t, x))

)
If f ∈ C(X) then the map t 7→ ϕt(f) is continuous. Also, if f ∈ C(X) and
x ∈ X then ϕ0(f)(x) = f(x0) and ϕ1 = idC(X). This shows that ϕ0 is
homotopic to the identity map idC(X). We denote this by ϕ0 ∼h idC(X).

Now let evx0 : C(X)→ C be the evaluation map at x0. Define

γ : C → C(X)
λ 7→ λ1.

Then evx0 ◦ γ = idC and γ ◦ evx0 = ϕ0 ∼h idC(X). We obtain a homotopy
γ ◦ evx0 : C(X)→ C(X). Recalling the definition of dim from equation (2),

dim = K0(Tr) ◦K0(evx0)

where Tr is the standard trace on Mn(C). By the homotopy invariance of
K0 ([RLL00, Proposition 3.2.6]),K0(evx0) is a group isomorphism. We also
know from [RLL00, Example 3.3.2] that K0(Tr) is a group isomorphism
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from K0(Mn(C)) to Z. So dim must be a group isomorphism as
required.

Applying Corollary 2.2, we find that K0(C(D)) ∼= Z and K0(ψ) is a
surjective group morphism from Z to Z. Repeating the same argument
used in Example 2.5 and Example 2.7, we find that K0(ψ) is a group
isomorphism. By exactness, im K0(ϕ) = kerK0(ψ) = {0} and hence, K0(ϕ)
is the zero map.

By exactness again, im δ1 = kerK0(ϕ) = Z. Therefore the index map δ1 is
a surjective group morphism from Z to Z and hence, is also an
isomorphism. Using exactness again, im K1(ψ) = ker δ1 = {0} and since
K1(ψ) is injective then K1(C(D)) = 0 by the first isomorphism theorem.
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