Examples of six-term exact sequences in K-theory

Brian Chan

September 19, 2024

Contents

1	A quick summary of the six-term exact sequence	1
2	Examples of six-term exact sequences	5

1 A quick summary of the six-term exact sequence

Most of the material in this document originates from the excellent reference [RLL00]. The purpose of K-theory is to distinguish C*-algebras from each other. K-theory has seen success in the classification of AF-algebras, an important result due to Elliott ([RLL00, Section 7]), and the Kirchberg-Phillips classification of Kirchberg algebras satisfying the UCT in [Phi00].

Given a C*-algebra A, it is often useful to compute the groups $K_0(A)$ and $K_1(A)$. If A lies in a short exact sequence of C*-algebras then one can use the *six-term exact sequence* (see [RLL00, Theorem 12.1.2]) to compute $K_0(A)$ and $K_1(A)$. To be specific, let

 $0 \longrightarrow I \xrightarrow{\varphi} A \xrightarrow{\psi} B \longrightarrow 0$

be a short exact sequence of C*-algebras. This induces the six-term exact sequence

The group homomorphisms δ_1 and δ_0 are called the index map and exponential map respectively. We now briefly recall their definitions from [RLL00]. In what follows, we will freely use notation from [RLL00].

The index map is constructed from [RLL00, Lemma 9.11, Lemma 9.12].

Lemma 1.1. Let

 $0 \longrightarrow I \xrightarrow{\varphi} A \xrightarrow{\psi} B \longrightarrow 0$

be a short exact sequence of C^* -algebras. Let $u \in \mathcal{U}_n(\tilde{B})$. Then

1. There exist $v \in \mathcal{U}_{2n}(\tilde{A})$ and $p \in \mathcal{P}_{2n}(\tilde{I})$ such that

$$\tilde{\psi}(v) = \begin{pmatrix} u & 0\\ 0 & u^* \end{pmatrix}, \qquad \tilde{\varphi}(p) = v \begin{pmatrix} 1_n & 0\\ 0 & 0 \end{pmatrix} v^*, \qquad s(p) = \begin{pmatrix} 1_n & 0\\ 0 & 0 \end{pmatrix}.$$

2. If $w \in \mathcal{U}_{2n}(\tilde{A})$ and $q \in \mathcal{P}_{2n}(\tilde{I})$ satisfy

$$\tilde{\psi}(w) = \begin{pmatrix} u & 0\\ 0 & u^* \end{pmatrix}$$
 and $\tilde{\varphi}(q) = w \begin{pmatrix} 1_n & 0\\ 0 & 0 \end{pmatrix} w^*$.

then $s(q) = diag[1_n, 0_n]$ and $p \sim_u q$ in $\mathcal{P}_{2n}(\tilde{I})$.

In Lemma 1.1, $s: M_n(\tilde{I}) \to M_n(\tilde{I})$ is the *scalar mapping*, defined in [RLL00, Section 4.2.1]. From Lemma 1.1, define the map

$$\nu: \mathcal{U}_{\infty}(\dot{B}) \to K_0(I)$$
$$u \mapsto [p]_0 - [s(p)]_0$$

where $p \in \mathcal{P}_{2n}(\tilde{I})$ is the element constructed in Lemma 1.1 from u. By the standard picture for K_0 ([RLL00, Proposition 4.2.2]),

$$K_0(I) = \{ [q]_0 - [s(q)]_0 \mid q \in \mathcal{P}_{\infty}(I) \}.$$

So ν is a well-defined map into $K_0(I)$. By [RLL00, Lemma 9.1.2], this map satisfies the properties needed for us to apply the universal property of K_1 in [RLL00, Proposition 8.1.5]. Hence, we obtain the unique group morphism

$$\begin{aligned} \delta_1 : & K_1(B) &\to & K_0(I) \\ & & [u]_1 &\mapsto & \nu(u). \end{aligned}$$

The exponential map δ_0 is defined by using the index map. In particular, it is the composite

$$K_0(B) \xrightarrow{\beta} K_2(B) \xrightarrow{\delta_2} K_1(I)$$

where $\beta : K_0(B) \to K_2(B)$ is the Bott map which is well-known to be an isomorphism (Bott periodicity, see [RLL00, Section 11.2]) and δ_2 is a higher index map; the unique group morphism making the following diagram commute:

$$K_{2}(B) \xrightarrow{\delta_{2}} K_{1}(I)$$

$$\downarrow \cong \qquad \qquad \qquad \downarrow \cong$$

$$K_{1}(SB) \xrightarrow{\delta_{1,S}} K_{0}(SI)$$

The map $\delta_{1,S}$ is the index map associated to the short exact sequence of suspensions

$$0 \longrightarrow SI \longrightarrow SA \longrightarrow SB \longrightarrow 0.$$

The most important thing about the exponential map is that there is a specific way to compute it, as highlighted by [RLL00, Proposition 12.2.2].

Theorem 1.2. Let

 $0 \longrightarrow I \xrightarrow{\varphi} A \xrightarrow{\psi} B \longrightarrow 0$

be a short exact sequence of C^* -algebras and $\delta_0 : K_0(B) \to K_1(I)$ be the associated exponential map. Let $g \in K_0(B)$ and $p \in \mathcal{P}_n(\tilde{B})$ be such that $g = [p]_0 - [s(p)]_0$ (standard picture of K_0). Let $a \in M_n(\tilde{A})$ be self-adjoint and satisfy $\tilde{\psi}(a) = p$. Then there exists a unique unitary $u \in \mathcal{U}_n(\tilde{I})$ such that

$$\tilde{\varphi}(u) = \exp(2\pi i a)$$
 and $\delta_0(g) = -[u]_1$

Theorem 1.2 simplifies further when one considers a unital extension.

Theorem 1.3. Let

 $0 \longrightarrow I \xrightarrow{\varphi} A \xrightarrow{\psi} B \longrightarrow 0$

be a short exact sequence of C^* -algebras where A is unital (this forces B to be unital and ψ to be unital preserving). Let $\delta_0 : K_0(B) \to K_1(I)$ be the associated exponential map. Let $g \in K_0(B)$ and $p \in \mathcal{P}_n(\tilde{B})$ be such that $g = [p]_0$ (standard picture of K_0). Let $a \in M_n(\tilde{A})$ be self-adjoint and satisfy $\psi(a) = p$. Define the *-homomorphism

$$\overline{\varphi}: \quad \begin{array}{ccc} \tilde{I} & \to & A \\ & x + \alpha 1_{\tilde{I}} & \mapsto & \varphi(x) + \alpha 1_A \end{array}$$

Then there exists a unique unitary $u \in \mathcal{U}_n(\tilde{I})$ such that

 $\overline{\varphi}(u) = \exp(2\pi i a)$ and $\delta_0(g) = -[u]_1.$

Theorem 1.3 can be broken down into the following steps:

- 1. Let $n \in \mathbb{Z}_{>0}$ and $p \in \mathcal{P}_n(B)$ so that $[p]_0 \in K_0(B)$.
- 2. There exists a self-adjoint element $a \in M_n(\tilde{A})$ such that $\psi(a) = p$. Note that ψ is extended to $M_n(\tilde{A})$ in the obvious manner.
- 3. Take the exponential to obtain $u = \exp(2\pi i a) \in \mathcal{U}_n(A)$.
- 4. Observe that by the continuous functional calculus,

$$\psi(u) = \exp(2\pi i\psi(a)) = \exp(2\pi ip) = 1_B$$

The last equality follows from the fact that p is a projection (and $\sigma(p) = \{0, 1\}$).

- 5. The calculation in the previous step demonstrates that $1_A u \in \ker \psi = \operatorname{im} \varphi$. So there exists $v \in M_n(I)$ such that $\varphi(v) = 1_A u$.
- 6. The element $1_{\tilde{I}} v \in M_n(\tilde{I})$ satisfies

$$\overline{\varphi}(1_{\tilde{I}} - v) = 1_A - (1_A - u) = u.$$

Notice that $1_{\tilde{I}} - v$ is unitary because $\overline{\varphi}$ is injective and

$$\overline{\varphi}((1_{\tilde{I}}-v)^*(1_{\tilde{I}}-v)) = u^*u = \overline{\varphi}(1_{\tilde{I}}).$$

7. By Theorem 1.3, $\delta_0([p]_0) = -[1_{\tilde{I}} - v]_1$.

2 Examples of six-term exact sequences

Most of the listed examples originate from [RLL00, Exercise 12.4]. In our computations, we will make use of the tables in [RLL00, Pages 234-235], which depict the K_0 and K_1 groups of well-known C*-algebras.

Example 2.1. Let A be a non-unital C*-algebra. Then we have a short exact sequence

$$0 \longrightarrow A \stackrel{\iota}{\longrightarrow} \tilde{A} \stackrel{\pi}{\longrightarrow} \mathbb{C} \longrightarrow 0.$$

To be clear, \tilde{A} is the unitisation of A. This induces the six-term exact sequence

Recall that $K_0(\mathbb{C}) \cong \mathbb{Z}$ (rank!) and $K_1(\mathbb{C}) = 0$. So our six-term exact sequence becomes

We see that the index map δ_1 is the zero map. Now recall by definition that $K_1(A) = K_1(\tilde{A})$. This means that $K_1(\iota)$ is a group isomorphism. By exactness,

im
$$\delta_0 = \ker K_1(\iota) = \{0\}.$$

Hence, the exponential map δ_0 must also be the zero map. By using exactness again, $K_0(\pi)$ is surjective, $K_0(\iota)$ is injective and

$$K_0(A) \cong \operatorname{im} K_0(\iota) = \ker K_0(\pi).$$

This is consistent with how $K_0(A)$ is defined when A is non-unital. The definitions of $K_0(A)$ and $K_1(A)$ when A is non-unital are designed specifically to make the associated six-term sequence exact.

Example 2.2. Let H be an infinite-dimensional separable Hilbert space. We have the short exact sequence

$$0 \longrightarrow K \stackrel{\iota}{\longrightarrow} B(H) \stackrel{\pi}{\longrightarrow} Q(H) \longrightarrow 0.$$

where Q(H) is the Calkin algebra. This induces the six-term exact sequence

Now recall that $K_0(K) \cong \mathbb{Z}$, $K_1(K) = 0$, $K_0(B(H)) = 0$ and $K_1(B(H)) = 0$. So the six-term exact sequence drastically reduces to

$$\begin{array}{cccc} 0 & \xrightarrow{K_1(\iota)} & 0 & \xrightarrow{K_1(\pi)} & K_1(Q(H)) \\ & & & & & \downarrow \\ \delta_0 \uparrow & & & \downarrow \\ & & & & \downarrow \\ K_0(Q(H)) & \xleftarrow{K_0(\pi)} & 0 & \xleftarrow{K_0(\iota)} & \mathbb{Z} \end{array}$$

In particular, we see by exactness that the index map δ_1 is an isomorphism. So $K_1(Q(H)) \cong \mathbb{Z}$. Similarly, the exponential map δ_0 is also an isomorphism. So $K_0(Q(H)) = 0$.

Example 2.3. Let A be a C*-algebra. Recall the suspension and cone of A are defined by

$$SA = C_0((0, 1)) \otimes A$$
 and $CA = C_0((0, 1]) \otimes A$.

respectively. To be more explicit,

$$SA = \{ f \in C([0,1], A) \mid f(0) = f(1) = 0 \}$$

and

$$CA = \{ f \in C([0,1], A) \mid f(0) = 0 \}.$$

We have a short exact sequence

$$0 \longrightarrow SA \stackrel{\iota}{\longrightarrow} CA \stackrel{f}{\longrightarrow} A \longrightarrow 0.$$

where if $\phi \in CA$ then $f(\phi) = \phi(1)$. This yields the six-term exact sequence

Recall that the cone CA is homotopic to zero. Therefore $K_0(CA) = K_1(CA) = 0$. Our six-term exact sequence becomes

and by exactness, both the index and exponential maps are isomorphisms.

Example 2.4. We have the short exact sequence

$$0 \longrightarrow C_0((0,1)) \stackrel{\iota}{\longrightarrow} C([0,1]) \stackrel{f}{\longrightarrow} \mathbb{C} \oplus \mathbb{C} \longrightarrow 0.$$

where if $\phi \in C([0,1])$ then $f(\phi) = (\phi(0), \phi(1))$. This induces the six-term exact sequence

Now $K_1(\mathbb{C} \oplus \mathbb{C}) = 0$ and $K_0(\mathbb{C} \oplus \mathbb{C}) = \mathbb{Z}^2$ (use the fact that K_0 preserves direct sums). Observe that $C_0((0, 1)) = S\mathbb{C}$. So

$$K_0(C_0((0,1))) \cong K_1(\mathbb{C}) = 0$$
 and $K_1(C_0((0,1))) \cong K_0(\mathbb{C}) = \mathbb{Z}.$

Our six-term exact sequence now becomes

$$\begin{array}{ccc} \mathbb{Z} & \xrightarrow{K_1(\iota)} & K_1(C([0,1])) & \xrightarrow{K_1(f)} & 0 \\ & & & & & \downarrow \\ \delta_0 \uparrow & & & & \downarrow \\ \mathbb{Z}^2 & \xleftarrow{K_0(f)} & K_0(C([0,1])) & \xleftarrow{K_0(\iota)} & 0 \end{array}$$

The index map δ_1 is simply the zero map. Now the exponential map δ_0 is a group homomorphism from \mathbb{Z}^2 to \mathbb{Z} . Let us compute it using Theorem 1.3.

The C*-algebra $\mathbb{C} \oplus \mathbb{C}$ is generated by the set $\{(1,0), (0,1)\}$. Let us compute $\delta_0([(1,0)]_0)$ and $\delta_0([(0,1)]_0)$.

Consider the self-adjoint element $1 - id_{[0,1]} \in C([0,1])$. It satisfies

$$f(1 - id_{[0,1]}) = (1 - 0, 1 - 1) = (1, 0) \in \mathbb{C} \oplus \mathbb{C}.$$

By taking the exponential, define

$$u = \exp(2\pi i (1 - id_{[0,1]})) = \exp(-2\pi i \cdot id_{[0,1]}) \in \mathcal{U}(C[0,1]).$$

Then $1 - u \in \ker f = \operatorname{im} \iota$. To be explicit, 1 - u is the function

$$\begin{array}{rccc} 1-u: & [0,1] & \to & \mathbb{C} \\ & t & \mapsto & 1-\exp(-2\pi i t). \end{array}$$

So $\iota(1-u) = 1-u$. Subsequently the element 1-(1-u) = u is a unitary element in the unitisation of $C_0((0,1))$ satisfying

$$\overline{\iota}(u) = 1 - \iota(1 - u) = 1 - (1 - u) = u \in C([0, 1]).$$

By Theorem 1.3,

$$\delta_0([(1,0)]_0) = -[u]_1 = -[\exp(-2\pi i \cdot id_{[0,1]})]_1$$

Similarly,

$$\delta_0([(0,1)]_0) = -[\exp(2\pi i \cdot id_{[0,1]})]_1$$

Now the image of δ_0 lands in $K_1(C_0((0,1))) = K_1(S\mathbb{C})$. We have the Bott isomorphism $\beta : K_0(\mathbb{C}) \to K_1(S\mathbb{C})$ (see [RLL00, Theorem 11.1.2]). If $p \in \mathcal{P}_{\infty}(\mathbb{C})$ is a projection then $\beta([p]_0) = [f_p]_0$ where $f_p \in \mathcal{U}((S\mathbb{C})^{\sim})$ is the projection loop defined for $t \in [0, 1]$ by

$$f_p(t) = \exp(2\pi i t)p + (1-p) = \sum_{j=0}^{\infty} \frac{(2\pi i t)^j p}{j!} + (1-p)$$
$$= 1 + \sum_{j=1}^{\infty} \frac{(2\pi i t)^j p}{j!} = \sum_{j=0}^{\infty} \frac{(2\pi i t p)^j}{j!}$$
$$= \exp(2\pi i t p).$$

In particular, the group $K_0(\mathbb{C})$ is generated by $[1]_0$ and

$$\beta([1]_0) = [f_1]_1 = [t \mapsto \exp(2\pi i t(1))]_1 = [\exp(2\pi i \cdot i d_{[0,1]})]_1.$$

This calculation shows that $[\exp(2\pi i \cdot id_{[0,1]})]_1$ generates $K_1(S\mathbb{C})$. We also have

$$\beta([-1]_0) = [f_{-1}]_1 = [t \mapsto \exp(2\pi i t(-1))]_1 = [\exp(-2\pi i \cdot i d_{[0,1]})]_1$$

and consequently, δ_0 is the group homomorphism

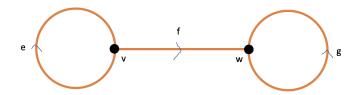
In particular, δ_0 is surjective. By exactness, $K_1(\iota)$ is the zero map and ker $K_1(f) = \text{im } K_1(\iota) = \{0\}$. We deduce that the zero map $K_1(f)$ is actually a group isomorphism. So $K_1(C([0, 1])) = 0$.

Now $K_0(f)$ is injective and its image is

$$\ker \delta_0 = \{ (n, n) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}.$$

Therefore $K_0(C([0,1])) \cong \mathbb{Z}$.

Example 2.5. Let \mathcal{G} be the directed graph



and $C^*(\mathcal{G})$ be the associated graph C*-algebra (see [Rae05] for an introduction). To be specific, $C^*(\mathcal{G})$ is generated by the union of the set of partial isometries $\{S_e, S_f, S_g\}$ and the set of mutually orthogonal projections $\{P_v, P_w\}$. Moreover, these elements satisfy the Cuntz-Krieger relations (see [Rae05, Page 6])

$$P_v = S_e^* S_e = S_f^* S_f = S_e S_e^*, \qquad P_w = S_g^* S_g = S_f S_f^* + S_g S_g^*.$$

We have the short exact sequence

$$0 \longrightarrow C(S^1) \otimes K \stackrel{\iota}{\longrightarrow} C^*(\mathcal{G}) \stackrel{\pi}{\longrightarrow} C(S^1) \longrightarrow 0.$$

where $C(S^1)$ is isomorphic to the graph C*-algebra associated to the single loop at w (see [Rae05, Theorem 4.9]). This induces the six-term short exact sequence

$$\begin{array}{ccc} K_1(C(S^1) \otimes K) \xrightarrow{K_1(\iota)} & K_1(C^*(\mathcal{G})) \xrightarrow{K_1(\pi)} & K_1(C(S^1)) \\ & & & & \downarrow^{\delta_1} \\ & & & & \downarrow^{\delta_1} \\ & & & K_0(C(S^1)) \xleftarrow{K_0(\pi)} & K_0(C^*(\mathcal{G})) \xleftarrow{K_0(\iota)} & K_0(C(S^1) \otimes K) \end{array}$$

We know that $K_0(C(S^1)) \cong \mathbb{Z} \cong K_1(C(S^1)), K_0(C(S^1)) \cong K_0(C(S^1) \otimes K)$ and $K_1(C(S^1)) \cong K_1(C(S^1) \otimes K)$. Hence our six-term exact sequence becomes

First, observe that in $K_0(C^*(\mathcal{G}))$,

$$[P_w]_0 = [S_g S_g^* + S_f S_f^*]_0 = [S_g^* S_g]_0 + [S_f^* S_f]_0 = [P_w]_0 + [P_v]_0.$$

So $[P_v]_0 = 0$ in $K_0(C^*(\mathcal{G}))$ and $K_0(\iota)$ is the zero map. By exactness, im $\delta_1 = \ker K_0(\iota) = \mathbb{Z}$. So the index map δ_1 is a surjective group morphism from \mathbb{Z} to \mathbb{Z} . There are only two such group morphisms — the identity map $id_{\mathbb{Z}}$ and $-id_{\mathbb{Z}}$. In either case, we deduce that the index map δ_1 is a group isomorphism.

Now by exactness, im $K_1(\pi) = \ker \delta_1 = \{0\}$. So, $K_1(\pi)$ is the zero map. Using exactness again, we find that $K_1(C^*(\mathcal{G})) = \ker K_1(\pi) = \operatorname{im} K_1(\iota)$. Therefore $K_1(\iota)$ is surjective.

Since $K_0(\iota)$ is the zero map then by exactness $K_0(\pi)$ is injective. Consequently, we obtain the exact sequence of groups

$$0 \longrightarrow K_0(C^*(\mathcal{G})) \xrightarrow{K_0(\pi)} \mathbb{Z} \xrightarrow{\delta_0} \mathbb{Z} \xrightarrow{K_1(\iota)} K_1(C^*(\mathcal{G})) \longrightarrow 0.$$
(1)

We will now compute the exponential map δ_0 , a group morphism from $K_0(C(S^1))$ to $K_1(C(S^1) \otimes K)$. By identifying the quotient $C(S^1)$ with the graph C*-algebra associated to the single loop at vertex w, we find that as

a group, $K_0(C(S^1))$ is generated by $[\pi(P_w)]_0$. Hence, it suffices to compute $\delta_0([\pi(P_w)]_0)$.

Obviously, $P_w \in C^*(\mathcal{G})$ maps to $\pi(P_w)$ via π . Notice however that P_w is not just a self-adjoint element; it is also a projection. So the exponential

$$\exp(2\pi i P_w) = 1_{C^*(\mathcal{G})} = P_v + P_w.$$

Now set $I = C(S^1) \otimes K$ so that the unitisation is denoted by \tilde{I} . The unit $1_{\tilde{I}}$ is a unitary element satisfying $\bar{\iota}(1_{\tilde{I}}) = 1_{C^*(\mathcal{G})}$. By Theorem 1.3,

$$\delta_0([\pi(P_w)]_0) = -[1_{\tilde{I}}]_0.$$

Since $[\pi(P_w)]_0$ generates $K_0(C(S^1))$ then the exponential map δ_0 must be the zero map.

Now consider the exact sequence in equation (1) again. By exactness, we find that im $K_0(\pi) = \ker \delta_0 = \mathbb{Z}$ and $\ker K_1(\iota) = \operatorname{im} \delta_0 = \{0\}$. Therefore $K_0(\pi)$ and $K_1(\iota)$ are both group isomorphisms. So

$$K_0(C^*(\mathcal{G})) \cong \mathbb{Z}$$
 and $K_1(C^*(\mathcal{G})) \cong \mathbb{Z}$.

Example 2.6. This example is taken from [RLL00, Section 13.1]. If $n \in \mathbb{Z}_{>1}$ then define the dimension drop algebra by

$$D_n = \{ f \in C([0,1], M_n(\mathbb{C})) \mid f(0) = 0, \ f(1) \in \mathbb{C}1_n \}.$$

We have a short exact sequence

$$0 \longrightarrow SM_n(\mathbb{C}) \stackrel{\iota}{\longrightarrow} D_n \stackrel{f}{\longrightarrow} \mathbb{C} \longrightarrow 0.$$

where if $\phi \in D_n$ then $f(\phi) = \phi(1)$. We now have the six-term exact sequence

We already know that $K_1(\mathbb{C}) = 0$ and $K_0(\mathbb{C}) \cong \mathbb{Z}$. Moreover $K_0(SM_n(\mathbb{C})) \cong K_1(M_n(\mathbb{C})) = 0$ and $K_1(SM_n(\mathbb{C})) \cong K_0(M_n(\mathbb{C})) \cong \mathbb{Z}$. Our six-term exact sequence becomes

Immediately, we see that the index map δ_1 is the zero map. Now let us compute the exponential map δ_0 . First we begin by making some identifications. The unitiation \tilde{D}_n can be identified with the set

$$\{f \in C([0,1], M_n(\mathbb{C})) \mid f(0), f(1) \in \mathbb{C}1_n\}$$

The unitisation $(SM_n(\mathbb{C}))^{\sim}$ is identified with the set

$$\{f \in C([0,1], M_n(\mathbb{C})) \mid f(0) = f(1) \in \mathbb{C}1_n\}.$$

Fix a one-dimensional projection $p \in M_n(\mathbb{C})$. Since p has rank one then $[p]_0$ generates the group $K_0(M_n(\mathbb{C}))$. Define the projection loops $u_n, v_n \in \mathcal{U}((SM_n(\mathbb{C}))^{\sim})$ by

$$u_n(t) = f_{1_n}(t) = \exp(2\pi i t 1_n)$$
 and $v_n(t) = f_p(t) = \exp(2\pi i t p).$

Now the definition of the Bott isomorphism $\beta : K_0(M_n(\mathbb{C})) \to K_1(SM_n(\mathbb{C}))$ tells us that

$$\beta([p]_0) = [v_n]_1$$
 and $\beta([1_n]_0) = [u_n]_1$.

Consequently, $n[v_n]_1 = [u_n]_1$ in both $K_1(SM_n(\mathbb{C}))$ and $K_1(D_n)$. Hence $[v_n]_1$ is the generator of $K_1(SM_n(\mathbb{C}))$ and $K_1(D_n)$.

Now let h be the function

$$\begin{array}{rccc} h: & [0,1] & \to & M_n(\mathbb{C}) \\ & t & \mapsto & t \mathbf{1}_n. \end{array}$$

Then h is a self-adjoint element in D_n and f(h) = h(1) = 1 (we have sneakily identified $\mathbb{C}1_n$ with \mathbb{C} here). Taking the exponential, we find that if $t \in [0, 1]$ then

$$\exp(2\pi i h(t)) = \exp(2\pi i t \mathbf{1}_n) = u_n(t).$$

By applying Theorem 1.3 again, we have

$$\delta_0([1]_0) = -[u_n]_1 = -n[v_n]_1.$$

We deduce that $\delta_0 : \mathbb{Z} \to \mathbb{Z}$ is simply multiplication by n. Now return to our six-term exact sequence, which we rewrite as the exact sequence

$$0 \longrightarrow K_0(D_n) \xrightarrow{K_0(f)} \mathbb{Z} \xrightarrow{\delta_0} \mathbb{Z} \xrightarrow{K_1(\iota)} K_1(D_n) \longrightarrow 0.$$

By exactness, $\{0\} = \ker \delta_0 = \operatorname{im} K_0(f)$. Since $K_0(f)$ is also injective then $K_0(D_n) = 0$. We also have $n\mathbb{Z} = \operatorname{im} \delta_0 = \ker K_1(\iota)$. Since $K_1(\iota)$ is surjective then by the first isomorphism theorem,

$$K_1(D_n) \cong \mathbb{Z}/n\mathbb{Z}.$$

Example 2.7. Let \mathcal{T} denote the Toeplitz algebra. The Toeplitz algebra fits into the short exact sequence

$$0 \longrightarrow K \xrightarrow{\iota} \mathcal{T} \xrightarrow{\pi} C(S^1) \longrightarrow 0.$$

which in turn induces the six-term exact sequence

$$\begin{array}{cccc}
K_1(K) & \xrightarrow{K_1(\iota)} & K_1(\mathcal{T}) & \xrightarrow{K_1(\pi)} & K_1(C(S^1)) \\
& & & & \downarrow^{\delta_1} \\
& & & & \downarrow^{\delta_1} \\
K_0(C(S^1)) & \xleftarrow{K_0(\pi)} & K_0(\mathcal{T}) & \xleftarrow{K_0(\iota)} & K_0(K)
\end{array}$$

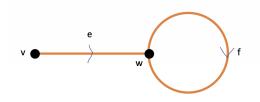
We know that $K_1(K) = 0$, $K_0(K) \cong \mathbb{Z}$ and $K_0(C(S^1)) \cong \mathbb{Z} \cong K_1(C(S^1))$. Thus the six-term exact sequence reduces to

$$\begin{array}{cccc} 0 & \xrightarrow{K_{1}(\iota)} & K_{1}(\mathcal{T}) & \xrightarrow{K_{1}(\pi)} & \mathbb{Z} \\ & & & & & \downarrow^{\delta_{1}} \\ & & \mathbb{Z} & \underset{K_{0}(\pi)}{\longleftarrow} & K_{0}(\mathcal{T}) & \underset{K_{0}(\iota)}{\longleftarrow} & \mathbb{Z} \end{array}$$

The exponential map δ_0 is just the zero map. By exactness, $K_0(\pi)$ is a surjective group morphism. We also observe that $K_1(\iota)$ is the zero map and as a result, $K_1(\pi)$ is an injective group morphism. So our six-term exact sequence reduces to the exact sequence

$$0 \longrightarrow K_1(\mathcal{T}) \xrightarrow{K_1(\pi)} \mathbb{Z} \xrightarrow{\delta_1} \mathbb{Z} \xrightarrow{K_0(\iota)} K_0(\mathcal{T}) \xrightarrow{K_0(\pi)} \mathbb{Z} \longrightarrow 0.$$

We claim that $K_0(\iota)$ is the zero map. To see why, we first interpret \mathcal{T} as the graph C*-algebra of the following graph.



The Cuntz-Krieger relations tell us that $P_v = S_e^* S_e$, $P_w = S_f^* S_f$ and $P_w = S_e S_e^* + S_f S_f^*$. Observe that in $K_0(\mathcal{T})$,

$$[P_v]_0 + [P_w]_0 = [S_e^* S_e]_0 + [S_f^* S_f]_0 = [S_e S_e^*]_0 + [S_f S_f^*]_0 = [P_w]_0$$

Therefore $[P_v]_0 = 0$ in the group $K_0(\mathcal{T})$. The graph C*-algebra associated to the single vertex v is simply \mathbb{C} . Moreover, it is a full corner in the ideal K (see [Rae05, Theorem 4.9]). Hence the group $K_0(K)$ is generated by the equivalence class of the rank one projection $[P_v]_0$. We also have $K_0(\iota)([P_v]_0) = 0$. Therefore $K_0(\iota)$ is the zero map.

By exactness, im $\delta_1 = \ker K_0(\iota) = \mathbb{Z}$. So δ_1 is a surjective group morphism from \mathbb{Z} to \mathbb{Z} . Reasoning in the same way as Example 2.5, there are only two such surjective group morphisms $(id_{\mathbb{Z}} \text{ and } -id_{\mathbb{Z}})$. Both are isomorphisms. Therefore the index map δ_1 is a group isomorphism.

By exactness, im $K_1(\pi) = \ker \delta_1 = \{0\}$. Since $K_1(\pi)$ is injective then by the first isomorphism theorem, $K_1(\mathcal{T}) = 0$. Using exactness again, im $K_0(\iota) = \ker K_1(\pi) = \{0\}$. We deduce that $K_1(\pi)$ is a group isomorphism and consequently, $K_0(\mathcal{T}) \cong \mathbb{Z}$.

Example 2.8. Let \mathbb{D} denote the closed unit disk in \mathbb{C} :

$$\mathbb{D} = \{ z \in \mathbb{C} \mid |z| \le 1 \}.$$

Let \mathbb{T} denote the boundary of \mathbb{D} (this is just the circle S^1). Identify the open unit disk $\mathbb{D}\setminus\mathbb{T}$ with \mathbb{R}^2 . Then we have the short exact sequence

$$0 \longrightarrow C_0(\mathbb{R}^2) \xrightarrow{\varphi} C(\mathbb{D}) \xrightarrow{\psi} C(\mathbb{T}) \longrightarrow 0.$$

where ψ is the restriction map. This induces the six-term exact sequence

$$\begin{array}{cccc} K_1(C_0(\mathbb{R}^2)) & \xrightarrow{K_1(\varphi)} & K_1(C(\mathbb{D})) & \xrightarrow{K_1(\psi)} & K_1(C(\mathbb{T})) \\ & & & & & \downarrow^{\delta_1} \\ & & & & & \downarrow^{\delta_1} \\ & & & & K_0(C(\mathbb{T})) & \xleftarrow{K_0(\psi)} & K_0(C(\mathbb{D})) & \xleftarrow{K_0(\varphi)} & K_0(C_0(\mathbb{R}^2)) \end{array}$$

We know that $K_1(C_0(\mathbb{R}^2)) = 0$, $K_0(C_0(\mathbb{R}^2)) \cong \mathbb{Z}$ and both $K_0(C(\mathbb{T}))$ and $K_1(C(\mathbb{T}))$ are isomorphic to \mathbb{Z} . Our six-term exact sequence reduces to

$$\begin{array}{ccc} 0 & \xrightarrow{K_1(\varphi)} & K_1(C(\mathbb{D})) & \xrightarrow{K_1(\psi)} & \mathbb{Z} \\ & & & & & \downarrow^{\delta_1} \\ \mathbb{Z} & \overleftarrow{K_0(\psi)} & K_0(C(\mathbb{D})) & \overleftarrow{K_0(\varphi)} & \mathbb{Z} \end{array}$$

The exponential map δ_0 is the zero map. The group morphism $K_1(\varphi)$ is also a zero map. By exactness, $K_1(\psi)$ is an injective group morphism and $K_0(\psi)$ is a surjective group morphism.

We claim that $K_0(\psi)$ is actually an isomorphism. To see why this is the case, we will first show that $K_0(C(\mathbb{D})) \cong \mathbb{Z}$. This is due to [RLL00, Example 3.3.5], which we state and prove below as the following theorem.

Theorem 2.1. Let X be a compact connected Hausdorff space and Tr be the standard trace on $M_n(\mathbb{C})$. There exists a surjective group homomorphism

$$\dim: K_0(C(X)) \to \mathbb{Z}$$

$$[p]_0 \mapsto Tr(p(x))$$
(2)

where $p \in \mathcal{P}_{\infty}(C(X))$ and $x \in X$ is arbitrary.

Proof. Assume that X is a compact connected Hausdorff space.

To show: (a) If $p \in \mathcal{P}_{\infty}(C(X))$ then Tr(p(x)) is independent of $x \in X$.

(a) Assume that $p \in \mathcal{P}_{\infty}(C(X))$ so that p is a projection in $M_n(C(X))$. The function $x \mapsto Tr(p(x))$ is an element of $C(X, \mathbb{Z})$ and is thus, a locally constant function. Note that $Tr(p(x)) \in \mathbb{Z}$ because p is a projection. Since X is connected then $x \mapsto Tr(p(x))$ is constant. Thus, the quantity Tr(p(x))is independent of $x \in X$.

Now, if $x \in X$ then we have a trace on C(X) defined by the evaluation map

$$\begin{array}{rccc} ev_x : & C(X) & \to & \mathbb{C} \\ & f & \mapsto & f(x). \end{array}$$

One can check that the conditions of [RLL00, Proposition 3.1.8] (universal property of K_0) are satisfied by ev_x . Applying the universal property, we

obtain a unique group homomorphism $K_0(ev_x) : K_0(C(X)) \to \mathbb{C}$ such that if $p \in \mathcal{P}_{\infty}(C(X))$ then

$$K_0(ev_x)([p]_0) = ev_x(p).$$

We remark that if $n \in \mathbb{Z}_{>1}$ and $p \in \mathcal{P}_n(C(X))$ then $ev_x(p) = Tr(p(x)) \in \mathbb{Z}$. This is by convention on how traces are extended to matrix algebras (see [RLL00, Section 3.3.1]). To see that $K_0(ev_x)$ is surjective, note that $K_0(ev_x)([1_{C(X)}]_0) = 1$.

Hence, $K_0(ev_x)$ is the desired surjective group morphism. By part (a), $K_0(ev_x)$ does not depend on the choice of $x \in X$.

Corollary 2.2. Let X be a contractible connected compact Hausdorff space. The surjective group homomorphism dim in equation (2) is a group isomorphism.

Proof. Assume that X is a contractible connected compact Hausdorff space. By contractibility, there exist $x_0 \in X$ and a continuous function $\alpha : [0, 1] \times X \to X$ such that if $x \in X$ then

$$\alpha(1, x) = x$$
 and $\alpha(0, x) = x_0$.

If $t \in [0, 1]$ then define the *-homomorphism

$$\begin{array}{rccc} \varphi_t : & C(X) & \to & C(X) \\ & f & \mapsto & \left(x \mapsto f(\alpha(t,x)) \right) \end{array}$$

If $f \in C(X)$ then the map $t \mapsto \varphi_t(f)$ is continuous. Also, if $f \in C(X)$ and $x \in X$ then $\varphi_0(f)(x) = f(x_0)$ and $\varphi_1 = id_{C(X)}$. This shows that φ_0 is homotopic to the identity map $id_{C(X)}$. We denote this by $\varphi_0 \sim_h id_{C(X)}$.

Now let $ev_{x_0}: C(X) \to \mathbb{C}$ be the evaluation map at x_0 . Define

$$\begin{array}{rccc} \gamma : & \mathbb{C} & \to & C(X) \\ & \lambda & \mapsto & \lambda 1. \end{array}$$

Then $ev_{x_0} \circ \gamma = id_{\mathbb{C}}$ and $\gamma \circ ev_{x_0} = \varphi_0 \sim_h id_{C(X)}$. We obtain a homotopy $\gamma \circ ev_{x_0} : C(X) \to C(X)$. Recalling the definition of dim from equation (2),

$$\dim = K_0(Tr) \circ K_0(ev_{x_0})$$

where Tr is the standard trace on $M_n(\mathbb{C})$. By the homotopy invariance of K_0 ([RLL00, Proposition 3.2.6]), $K_0(ev_{x_0})$ is a group isomorphism. We also know from [RLL00, Example 3.3.2] that $K_0(Tr)$ is a group isomorphism

from $K_0(M_n(\mathbb{C}))$ to \mathbb{Z} . So dim must be a group isomorphism as required.

Applying Corollary 2.2, we find that $K_0(C(\mathbb{D})) \cong \mathbb{Z}$ and $K_0(\psi)$ is a surjective group morphism from \mathbb{Z} to \mathbb{Z} . Repeating the same argument used in Example 2.5 and Example 2.7, we find that $K_0(\psi)$ is a group isomorphism. By exactness, im $K_0(\varphi) = \ker K_0(\psi) = \{0\}$ and hence, $K_0(\varphi)$ is the zero map.

By exactness again, im $\delta_1 = \ker K_0(\varphi) = \mathbb{Z}$. Therefore the index map δ_1 is a surjective group morphism from \mathbb{Z} to \mathbb{Z} and hence, is also an isomorphism. Using exactness again, im $K_1(\psi) = \ker \delta_1 = \{0\}$ and since $K_1(\psi)$ is injective then $K_1(C(\mathbb{D})) = 0$ by the first isomorphism theorem.

References

- [Phi00] N. C. Phillips. A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5, 2000, Pages 49-114, MR1745197.
- [Rae05] I. Raeburn. Graph algebras, American Mathematical Society, Providence RI, 2005, ISBN: 0-8218-3660-9, MR2135030.
- [RLL00] M. Rørdam, F. Larson, N. Laustsen. An introduction to K-theory for C*-algebras, London Math. Soc. Stud. Texts, Cambridge University Press, Cambridge, 2000, ISBN: 0-521-78334-8, MR1783408.