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0.1 Motivation

Let A,B ∈Mn×n(C). It is well-known that det(A+B) 6= det(A) + det(B).
That is, the determinant map is not linear. More generally for all
k ∈ {2, . . . , n}, Λk(A+B) 6= Λk(A) + Λk(B). However, linearity is satisfied
in the case where k = 1 because Λ1(A) = A.

One of the fundamental techniques to studying such maps is to study its
directional derivative. The directional derivative itself is a linear map and
gives rise to the fundamental construct of a Lie algebra. For instance, the
determinant map det : Mn×n(R)→ R admits a directional derivative at the
matrix A ∈Mn×n(R) in the direction of B ∈Mn×n(R):

DdetA(B) = lim
t→0

det(A+ tB)− det(A)

t
.

This linear map is surjective whenever A ∈ SLn(R). Thus, the regular
value theorem tells us that the tangent space of SLn(R) at the identity
matrix In ∈Mn×n(R), denoted by TInSLn(R), is the kernel of DdetIn ,
which is the real Lie algebra sln(R).

In this short paper, we aim to apply such a technique to analyse wedge
product matrices, which are defined in [Cha22, Chapter 1]. We will focus
on a specific case, where concrete computations are not too taxing.

0.2 The analysis

We will work with 3× 3 matrices with complex entries (M3×3(C)). If
A ∈M3×3(C), then we recall that the matrix Λ2(A) consists of all the 2× 2
minors of A. We can express this map explicitly as follows:

Λ2 : M3×3(C) → M3×3(C)a b c
d e f
g h i

 7→

ae− bd af − cd bf − ec
ah− bg ai− cg bi− ch
dh− eg di− fg ei− fh

 .

It is notable that in the three dimensional case, the map Λ2 satisfies
Λ2(Λ2(A)) = det(A)A for all A ∈M3×3(C). We can think of Λ2 as a map
from C9 to C9, where C9 has the Euclidean topology. Since each component
function of Λ2 are polynomials of the original inputs, Λ2 must be a smooth
function, since polynomials are smooth. Hence, it makes sense to talk
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about derivatives of Λ2.

More specifically, the map we are interested in is the directional derivative
of Λ2 in the direction of the identity I3.

D2 : M3×3(C)→M3×3(C)

A 7→ lim
t→0

Λ2(A+ tI3)− Λ2(A)

t
.

There are two different methods of understanding the map D2, which we
will outline below:

1. Let

A =

a b c
d e f
g h i

 ∈M3×3(C).

Then, we can compute D2(A) directly to obtain

D2

a b c
d e f
g h i

 =

a+ e f −c
h a+ i b
−g d e+ i

 . (1)

From this direct computation, we observe that D2 is indeed a linear
map.

2. Since C is an algebraically closed field, A can be expressed in its
Jordan normal form. That is, A = PJP−1, where P ∈ GL3(C) and

J =

λ1(A) x y
λ2(A) z

λ3(A)

 .

Here, λ1(A), λ2(A) and λ3(A) are the eigenvalues of A. Using this
decomposition, we compute D2(A) as follows:
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D2(A) = lim
t→0

Λ2(A+ tIn)− Λ2(A)

t

= lim
t→0

Λ2(PJP−1 + tIn)− Λ2(PJP−1)

t

= lim
t→0

Λ2(P )Λ2(J + tIn)(Λ2(P ))−1 − Λ2(P )Λ2(J)(Λ2(P ))−1

t

= Λ2(P )
(

lim
t→0

Λ2(J + tIn)− Λ2(J)

t

)
(Λ2(P ))−1

= Λ2(P )

λ1(A) + λ2(A) z −y
λ1(A) + λ3(A) x

λ2(A) + λ3(A)

 (Λ2(P ))−1.

Let us study some more properties of D2.

Proposition 0.2.1. Let A ∈M3×3(C). Then,

(a) D2(D2(A)) = A+ Tr(A)I3.

(b) D2 is a bijective map.

Proof. Assume that

A =

a b c
d e f
g h i

 ∈M3×3(C).

For part (a), we can compute directly using (1) to obtain

D2(D2(A)) =

2a+ e+ i b c
d a+ 2e+ i f
g h a+ e+ 2i

 = A+ (a+ e+ i)I3.

We will also use equation (1) to prove part (b) of the proposition.

To show: (a) D2 is injective.

(b) D2 is surjective.

(a) Assume that A ∈ kerD2. Then, by (1),
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D2(A) =

a+ e f −c
h a+ i b
−g d e+ i

 = 0.

By comparing the entries of both matrices, we find that all of
a, b, c, d, e, f, g, h and i are all equal to zero. So, kerD2 = {0} and thus, D2

is injective.

(b) We will show that there exists B ∈M3×3(C) such that D2(B) = A.
Define

B =

1
2
(a+ e− i) f −c

h 1
2
(a− e+ i) b

−g d 1
2
(−a+ e+ i)

 .

A quick calculation shows that the matrix B satisfies D2(B) = A. Hence,
D2 is surjective.

By combining parts (a) and (b) of the proof, we find that D2 is a bijective
map.

The first hint of Lie algebras in this paper emerges as a result of 0.2.1. In
particular, if A ∈ sl3(C) then D2(D2(A)) = A. This identity suggests that
we investigate matrices which are “fixed points” of D2. In other words,
when does a matrix B ∈M3×3(C) satisfy D2(B) = B?

Again, we let

A =

a b c
d e f
g h i

 ∈M3×3(C).

If D2(A) = A, then by (1),a b c
d e f
g h i

 =

a+ e f −c
h a+ i b
−g d e+ i

 .

This means that b = f , d = h, c = g = 0, a = −i and e = 0. Therefore, the
set of matrices preserved by D2 is given by

d2 =
{a b 0

d 0 b
0 d −a

 | a, b, d ∈ C
}
.
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What structure does this set have? It certainly has the structure of a
C-vector space. However, it is not closed under matrix multiplication
because if we let

A1 =

a1 b1 0
d1 0 b1
0 d1 −a1

 and A2 =

a2 b2 0
d2 0 b2
0 d2 −a2

 ,

then

A1A2 =

a1a2 + b1d2 a1b2 b1b2
d1a2 d1b2 + b1d2 −b1a2
d1d2 −a1d2 d1b2 + a1a2

 6∈ d2.

However,

[A1, A2] = A1A2 − A2A1 =

b1d2 − b2d1 a1b2 − a2b1 0
d1a2 + a1d2 0 −b1a2 + b2a1

0 −a1d2 + a2d1 d1b2 − d2b1


which is an element of d2. We stress the importance of this computation
with the following theorem

Theorem 0.2.2. Let

d2 =
{a b 0

d 0 b
0 d −a

 | a, b, d ∈ C
}
.

Then, d2 is a complex Lie algebra, with Lie bracket [A,B] = AB −BA for
all A,B ∈ d2. Furthermore, it is a Lie subalgebra of sl3(C).

Let us examine some properties of d2. First, we observe that it has basis
given by

L1 =

1
0
−1

 , L2 =

 1
1

 and L3 =

1
1

 .

The associated commutator relations are

[L1, L2] = L2, [L1, L3] = −L3 and [L2, L3] = L1.

We know that a matrix Lie group and its associated Lie algebra is
connected by the exponential map. For example, if A ∈ gl3(C), then for all
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t ∈ C, exp(tA) ∈ GL3(C). By applying the exponential map to the basis
elements of d2, we obtain for all t ∈ C,

exp(tL1) =

et 1
e−t

 , exp(tL2) =

1 t t2

2

1 t
1

 and exp(tL3) =

 1
t 1
t2

2
t 1

 .

The most important property of these matrices is that they do not change
when the map Λ2 is applied to it. Since L1, L2, L3 ∈ sl3(C), the above
matrix exponentials are expected to be elements of SL3(C), which is true.
The following theorem generalises this property to the entirety of d2.

Theorem 0.2.3. Let A ∈ d2. Then, for all t ∈ C, Λ2(exp(tA)) = exp(tA).

Proof. Assume that

A =

a b 0
d 0 b
0 d −a

 ∈ d2.

We note that A is diagonalisable with eigenvalues given by 0,±
√
a2 + 2bd.

So, we can write

A = P

√a2 + 2bd
0

−
√
a2 + 2bd

P−1

where P ∈ GL3(C). Since, D2(A) = A, we can use our second
characterisation of D2 to show that

Λ2(P )

√a2 + 2bd
0

−
√
a2 + 2bd

 (Λ2(P ))−1 = P

√a2 + 2bd
0

−
√
a2 + 2bd

P−1.

So, for all t ∈ C, we have two different expressions for the matrix
exponential exp(tA), which are

exp(tA) = Λ2(P )

exp(t
√
a2 + 2bd)

1

exp(−t
√
a2 + 2bd)

 (Λ2(P ))−1

(2)
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and

exp(tA) = P

exp(t
√
a2 + 2bd)

1

exp(−t
√
a2 + 2bd)

P−1. (3)

Let us set

D =

exp(t
√
a2 + 2bd)

1

exp(−t
√
a2 + 2bd)

 .

Observe that Λ2(D) = D. Using (3), we can compute Λ2(exp(tA)) as

Λ2(exp(tA)) = Λ2(PDP−1) (3)

= Λ2(P )Λ2(D)(Λ2(P ))−1

= Λ2(P )D(Λ2(P ))−1

= exp(tA). (2)

This completes the proof.

Thus, theorem 0.2.3 tells us that the matrix Lie group associated with the
Lie algebra d2 is

Fix(Λ2) = {A ∈ SL3(C) | Λ2(A) = A}.

The example below allows us to give plenty of examples of matrices in
Fix(Λ2).

Example 0.2.1. We will begin with a matrix in the Lie algebra d2:

A =

1 2 0
2 0 2
0 2 −1

 ∈ d2.

The matrix A has the diagonalisation A = PDP−1, where

P =
1

3

−2 2 1
−2 −1 −2
−1 −2 2

 and D =

3
0
−3

 .

Theorem 0.2.3 tells us that if t ∈ C then
exp(tA) = P exp(D)P−1 ∈ Fix(Λ2). Written out explicitly,
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exp(tA) = P

e3t 1
e−3t

P−1.

Let us substitute some explicit values for t to obtain examples of matrices
in Fix(Λ2):

1. t = 1
3

ln 2:

P

2
1

1
2

P−1 =
1

18

25 10 2
10 22 8
2 8 16

 .

2. t = 1
3

ln 7:

P

7
1

1
7

P−1 =
1

7

25 20 8
20 23 12
8 12 9

 .

3. t = iπ
6

.

P

i 1
−i

P−1 =
1

9

 4 + 3i −2 + 6i −4
−2 + 6i 1 2 + 6i
−4 2 + 6i 4− 3i

 .

The reader is invited to check that the above matrices are indeed invariant
under the map Λ2.

The generators L1, L2 and L3 of d2 bear an uncanny resemblance to the
generators of the Lie algebra sl2(C) (credit goes to Arun for this
observation). Let

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
and f =

(
0 0
1 0

)
.

be the generators of sl2(C).

Theorem 0.2.4 (d2 Isomorphism). We have a Lie algebra isomorphism
given by

φ : d2 → sl2(C)

L1 7→
1

2
e+

1

2
f
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L2 7→
1

2
h− 1

2
e+

1

2
f

L3 7→
1

4
h+

1

4
e− 1

4
f

Proof. Assume that φ is defined as above. First, we observe that the set
{1
2
(e+ f), 1

2
(h− e+ f), 1

4
(h+ e− f)} is a basis for sl2(C) because

1. h = (1
2
(h− e+ f)) + 2(1

4
(h+ e− f))

2. e = (1
2
(e+ f))− 1

2
(1
2
(h− e+ f)) + (1

4
(h+ e− f))

3. f = (1
2
(e+ f)) + 1

2
(1
2
(h− e+ f))− (1

4
(h+ e− f))

and ∣∣∣∣∣∣
0 1

2
1
2

1
2
−1

2
1
2

1
4

1
4
−1

4

∣∣∣∣∣∣ =
1

4
6= 0.

Since φ is a map between the basis elements of d2 and sl2(C), we can extend
it by linearity to all of d2 and sl2(C). So, φ is a bijective linear morphism. It
remains to show that φ preserves the Lie bracket. To see this, we compute

[φ(L1), φ(L2)] = [
1

2
e+

1

2
f,

1

2
h− 1

2
e+

1

2
f ]

=
1

4
[e, h] +

1

2
[e, f ] +

1

4
[f, h]

= −1

2
e+

1

2
h+

1

2
f

= φ(L2)

= φ([L1, L2]).

[φ(L1), φ(L3)] = [
1

2
e+

1

2
f,

1

4
h+

1

4
e− 1

4
f ]

=
1

8
[e, h]− 1

4
[e, f ] +

1

8
[f, h]

= −1

4
e− 1

4
h+

1

4
f

= −φ(L3)

= φ([L1, L3]).

9



[φ(L2), φ(L3)] = [
1

2
h− 1

2
e+

1

2
f,

1

4
h+

1

4
e− 1

4
f ]

= −1

4
[e, h] +

1

4
[f, h]

=
1

2
e+

1

2
f

= φ(L1)

= φ([L2, L3]).

Hence, φ is a Lie algebra isomorphism.

10



Bibliography

[Cha22] Y. Chan. Wedge product matrices and applications, University of
Melbourne, October 7th 2022.

11


	Motivation
	The analysis

