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0.1 Purpose

The purpose of this document is to record my own detailed notes for the
introductory course MAG1. MAG1 consists of eight 1.5 hour lectures,
presented by Dan Murfet and Ken Chan on Metauni. The course serves as
an introduction to algebraic geometry. The main reference used is [CLO15].
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Chapter 1

Introduction

1.1 Polynomials

This section is based on [CLO15, Chapter 1 §1]. Throughout this
document, we will use k to denote a field — one of Q, R or C. We will
mostly work with C.

Definition 1.1.1. Let x1, x2, . . . , xn be variables. A monomial in the
variables x1, x2, . . . , xn is a product of the form

xα1
1 x

α2
2 . . . xαn

n

where αi ∈ Z≥0 for i ∈ {1, 2, . . . , n}.

If α = (α1, α2, . . . , αn) ∈ (Z≥0)n then the monomial xα is defined by

xα = xα1
1 x

α2
2 . . . xαn

n .

The total degree of the monomial xα is the sum |α| = α1 + · · ·+ αn.

Monomials are the basic building blocks of polynomials, which motivates
the definition of the ring of polynomials.

Definition 1.1.2. Let k be a field and x1, x2, . . . , xn be variables. The ring
of polynomials in x1, x2, . . . , xn with coefficients in k is defined by the set

k[x1, x2, . . . , xn] = {
∑

α∈(Z≥0)n

aαx
α | aα ∈ k}

where the sum above is a finite sum over (Z≥0)n. The two operations which
make the set k[x1, x2, . . . , xn] a commutative ring is the operations of
addition and multiplication of polynomials.

3



From the above definition, we infer that polynomials are finite linear
combinations of monomials in x1, x2, . . . , xn. Indeed, monomials are the
building blocks of polynomials that most people are familiar with. It is
worth mentioning that C[x1, . . . , xn] in particular has another basis — the
basis of Macdonald polynomials, which are again indexed by (Z≥0)n. The
theory of Macdonald polynomials is in a sense, parallel to the theory of
monomials and the representation theory of Sn and GLn(C). However, this
digression takes us too far afield for these notes. See [Ram22] for the
definition of Macdonald polynomials.

Another remark we will make here is that k[x1, x2, . . . , xn] is actually a
Noetherian ring. This means that any ascending chain of ideals in
k[x1, . . . , xn] must terminate/stabilise or equivalently, every ideal in
k[x1, . . . , xn] is finitely generated. This is a consequence of the Hilbert basis
theorem, which we will prove later in these notes.

Next, we will define some more terminology associated with polynomials.

Definition 1.1.3. Let f =
∑

α aαx
α be a polynomial in k[x1, . . . , xn]. We

call aα the coefficient of the monomial xα.

If aα 6= 0 then we call aαx
α a term of f .

The total degree of f 6= 0, denoted by deg(f), is the quantity

deg(f) = max{|α| | α ∈ (Z≥0)n, aα 6= 0}.

In other words, the total degree of f 6= 0 is the largest degree of any
monomial which appears in the monomial expansion of f .

One of the fundamental settings for algebraic geometry is the notion of an
affine space.

Definition 1.1.4. Let k be a field and n ∈ Z>0. The n-dimensional affine
space over k is the set

kn = {(a1, . . . , an) | a1, . . . , an ∈ k}.

The sets k1 = k and k2 are usually referred to as the affine line and the
affine plane respectively.

If f =
∑

α aαx
α ∈ k[x1, . . . , xn] and β1, . . . , βn ∈ k then the following map

defines a ring homomorphism:
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evβ1,...,βn : k[x1, . . . , xn] → k
f =

∑
α aαx

α 7→
∑

α aαβ
α

where βα = βα1
1 . . . βαn

n . Thus, every polynomial f ∈ k[x1, . . . , xn] can be
viewed a function from kn to k by defining the map

ϕf : kn → k
β = (β1, . . . , βn) 7→

∑
α aαβ

α.

This is a consequence of the universal property satisfied by k[x1, . . . , xn],
which we state below as a theorem.

Theorem 1.1.1. Let k be a field and A be a commutative k-algebra. Let
β1, . . . , βn ∈ A. Then, there exists a unique algebra morphism

evβ1,...,βn : k[x1, . . . , xn]→ A

such that

evβ1,...,βn(
∑
α

aαx
α) =

∑
α

aαβ
α

where βα = βα1
1 . . . βαn

n .

Proof. Assume that k is a field and A is a commutative k-algebra. Assume
that β1, . . . , βn ∈ A. It is straightforward to verify that evβ1,...,βn is an
algebra morphism.

To see that evβ1,...,βn is unique, assume that we have another algebra
morphism Φ : k[x1, . . . , xn]→ A such that if f =

∑
α aαx

α ∈ k[x1, . . . , xn]
then

Φ(f) = Φ(
∑
α

aαx
α) =

∑
α

aαβ
α

and consequently, Φ = evβ1,...,βn . So, the morphism evβ1,...,βn is unique.

As stated concisely in [CLO15, Page 3], the ability to view a polynomial
f : k[x1, . . . , xn]→ k as a polynomial function ϕf : kn → k is the reason
why we can link algebra and geometry together in the study of algebraic
geometry.

First, we would like to know when a polynomial is the zero polynomial. It
turns out that the answer is obvious when k is an infinite field.
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Theorem 1.1.2. Let k be an infinite field and f ∈ k[x1, . . . , xn]. Then,
f = 0 as polynomials in k[x1, . . . , xn] if and only if the polynomial function
f : kn → k is the zero function (take note of the abuse of notation here!).

Proof. Assume that k is an infinite field and f ∈ k[x1, . . . , xn]. First,
assume that f is the zero polynomial. Then, f(α1, . . . , αn) = 0 for
(α1, . . . , αn) ∈ kn and consequently, the function f is the zero function.

We will prove the converse statement by induction on n. For the base case,
assume that n = 1 and that f(a) = 0 for a ∈ k. Then, f has infinitely many
roots because k is an infinite field. By the fundamental theorem of algebra,
f must be the zero polynomial. This proves the base case.

Now assume that if g(a1, . . . , al) = 0 for (a1, . . . , al) ∈ kl then g is the zero
polynomial. Assume that f ∈ k[x1, . . . , xl+1] and that f(a1, . . . , al+1) = 0 as
a function from kl+1 to k. The key idea is that we can rewrite the
polynomial f as a finite sum of powers of xl+1 so that

f =
N∑
i=0

gi(x1, . . . , xl)x
i
l+1

for some N ∈ Z>0 and gi ∈ k[x1, . . . , xl].

Now let (β1, . . . , βl) ∈ kl. We obtain the polynomial
f(β1, . . . , βl, xl+1) ∈ k[xl+1]. From the base case and the assumption on f ,
f(β1, . . . , βl, xl+1) vanishes as a function from k to k and thus,
f(β1, . . . , βl, xl+1) must be the zero polynomial in k[xn].

Hence, the coefficients gi ∈ k[x1, . . . , xl] must satisfy gi(β1, β2, . . . , βn) = 0
for i ∈ {1, 2, . . . , N}. By the inductive hypothesis, gi must be the zero
polynomial in k[x1, . . . , xl]. So, f must be the zero polynomial in
k[x1, . . . , xl+1], which completes the proof.

Note that in the above proof, we were able to apply the fundamental
theorem of algebra because k was an infinite field. The following example
demonstrates that Theorem 1.1.2 does not hold when k is a finite field.

Example 1.1.5. Let p ∈ Z>0 be a prime number and Fp = Z/pZ be a
finite field with p elements. Consider the polynomial f(x) = xp − x ∈ Fp[x].
This polynomial is not the zero polynomial. However, f(0) = 0 and if
a ∈ Fp − {0} then ap ≡ a mod p by Fermat’s little theorem and
consequently, f(a) = 0. So, f is the zero function on Fp, but is not the zero
polynomial in Fp[x].
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A consequence of Theorem 1.1.2 is that in an infinite field k, two
polynomials f and g are equal in k[x1, . . . , xn] if and only if they define the
same function from kn to k.

Theorem 1.1.3. Let k be an infinite field and let f, g ∈ k[x1, . . . , xn].
Then, f = g in k[x1, . . . , xn] if and only if f and g are the same function
from kn to k.

Proof. Assume that k is an infinite field and f, g ∈ k[x1, . . . , xn]. Then,
f = g in k[x1, . . . , xn] if and only if f − g is the zero polynomial. By
Theorem 1.1.2, this holds if and only if f − g is the zero function from kn to
k. Consequently, f = g in k[x1, . . . , xn] if and only if f = g as functions
from kn to k.

Although we have already used it, the fundamental theorem of algebra
warrants a mention.

Theorem 1.1.4 (Fundamental theorem of algebra). Let f ∈ C[x] be a
non-constant polynomial. Then, f must have a root in C.

The Hilbert Nullstellensatz is a powerful generalisation of the fundamental
theorem of algebra, which we will prove later.

1.2 Affine varieties and the Zariski topology

We will jump into the definition of an affine variety, which is a central
object of study in algebraic topology.

Definition 1.2.1. Let k be a field and S ⊆ k[x1, . . . , xn]. The affine
variety defined by the set S is the set

V (S) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 for f ∈ S}.

As an example of an affine variety, consider the polynomial ring R[x, y].
The affine variety V (x2 + y2 − 1) ⊆ R2 is depicted graphically as the unit
circle in R2.

The first glimpse of the topological structure defined by the affine varieties
is seen by the fact that affine varieties are closed under intersections and
unions.

Theorem 1.2.1. Let k be a field and V,W ⊆ kn be affine varieties. Then,
V ∪W and V ∩W are also affine varieties.
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Proof. Assume that k is a field and V,W ⊆ kn. Then, there exists subsets
S, T ⊆ k[x1, . . . , xn] such that V = V (S) and W = V (T ).

To show: (a) V ∩W = V (S ∪ T ).

(b) V ∪W = V ({fg | f ∈ S, g ∈ T}).

(a) Assume that (a1, . . . , an) ∈ V ∩W ⊆ kn. If f ∈ S and g ∈ T then
f(a1, . . . , an) = g(a1, . . . , an) = 0 and consequently, (a1, . . . , an) ∈ V (S ∪ T ).

Now assume that (a1, . . . , an) ∈ V (S ∪ T ). If f ∈ S ∪ T then
f(a1, . . . , an) = 0. So, f ∈ V (S) = V and f ∈ V (T ) = W . Subsequently,
f ∈ V ∩W and V ∩W = V (S ∪ T ).

(b) Assume that (b1, . . . , bn) ∈ V ∪W . Then, either f(b1, . . . , bn) = 0 or
g(b1, . . . , bn) = 0 for some f ∈ S or g ∈ T . If f(b1, . . . , bn) = 0 then fg′ = 0
for any g′ ∈ T . Similarly, if g(b1, . . . , bn) = 0 then f ′g = 0 for any f ′ ∈ S. In
either case, we find that (b1, . . . , bn) ∈ V ({fg | f ∈ S, g ∈ T}).

Now assume that (b1, . . . , bn) ∈ V ({fg | f ∈ S, g ∈ T}). There are two cases
to consider here.

Case 1: f(b1, . . . , bn) = 0 for some f ∈ S.

If f(b1, . . . , bn) = 0 for some f ∈ S then (b1, . . . , bn) ∈ V (S) by definition of
an affine variety.

Case 2: If f ∈ S then f(b1, . . . , bn) 6= 0.

Suppose that f(b1, . . . , bn) 6= 0 for any f ∈ S. Since
(b1, . . . , bn) ∈ V ({fg | f ∈ S, g ∈ T}),

f(b1, . . . , bn)g(b1, . . . , bn) = 0

for any g ∈ T and since k is an integral domain, g(b1, . . . , bn) = 0 for any
g ∈ T and (b1, . . . , bn) ∈ W = V (T ).

By combining these two cases, we find that (b1, . . . , bn) ∈ V ∪W and
consequently, V ∪W = V ({fg | f ∈ S, g ∈ T}).

The affine varieties of kn are the closed sets of the Zariski topology on kn.
We will formally define the Zariski topology below and prove that it is a
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topology on kn.

Definition 1.2.2. Let k be a field. The Zariski topology on kn, denoted
by τZar, is defined by setting the closed subsets of kn to be affine varieties
of the form V (S), where S is a subset of k[x1, . . . , xn].

Theorem 1.2.2. Let n ∈ Z>0 and k be a field. Let τZar denote the Zariski
topology on kn. Then, the pair (kn, τZar) is a topological space.

Proof. Assume that the τZar is the topology on kn defined as above.

To show: (a) ∅ ∈ τZar and kn ∈ τZar.

(b)
⋂
i∈I V (Si) ∈ τZar.

(c)
⋃n
i=1 V (Si) ∈ τZar.

(a) In order to see that ∅ ∈ τZar, let S = {1} where 1 is the constant
polynomial. Then, from the definition of V (S), V (S) = ∅. So, ∅ ∈ τZar.
Now, let S = {0} where 0 is the zero polynomial. Consequently,

V (S) = {(λ1, . . . , λn) ∈ kn | 0(λ1, . . . , λn) = 0} = kn.

So, kn ∈ τZar.

(b) Assume that Si ⊆ k[x1, . . . , xn] for i ∈ I.

To show: (ba)
⋂
i∈I V (Si) = V (

⋃
i∈I Si).

(ba) Suppose that (λ1, . . . , λn) ∈
⋂
i∈I V (Si). If f ∈ Si then

f(λ1, . . . , λn) = 0. This is true if and only if f(λ1, . . . , λn) = 0 whenever
f ∈

⋃
i∈I Si. So, (λ1, . . . , λn) ∈ V (

⋃
i∈I Si) and

⋂
i∈I V (Si) = V (

⋃
i∈I Si).

(b) From this, it follows that
⋂
i∈I V (Si) ∈ τZar.

(c) Assume that Si ⊆ k[x1, . . . , xn] for i ∈ {1, . . . , n}. Define the set S by

S = {
n∏
i=1

pi | pi ∈ Si}.

To show: (ca)
⋃n
i=1 V (Si) = V (S).
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(ca) To show: (caa)
⋃n
i=1 V (Si) ⊆ V (S).

(cab) V (S) ⊆
⋃n
i=1 V (Si).

(caa) Assume that (λ1, . . . , λn) ∈
⋃n
i=1 V (Si). Then, there exists a

j ∈ {1, . . . , n} such that (λ1, . . . , λn) ∈ V (Sj). If f ∈ Sj then
f(λ1, . . . , λn) = 0. Now assume that g ∈ S. Then, g = q1 . . . qn where
qi ∈ Si. In particular, since qj ∈ Sj, qj(λ1, . . . , λn) = 0. Therefore,
g(λ1, . . . , λn) = 0 as well. Hence, (λ1, . . . , λn) ∈ V (S). So,⋃n
i=1 V (Si) ⊆ V (S).

(cab) Assume that (λ1, . . . , λn) ∈ V (S). Suppose for the sake of
contradiction that (λ1, . . . , λn) /∈

⋃n
i=1 V (Si). If i ∈ {1, 2, . . . , n} and f ∈ Si

then f(λ1, . . . , λn) 6= 0. Now suppose that g ∈ S. Once again, write
g = p1 . . . pn where pi ∈ Si. Consequently, g(λ1, . . . , λn) 6= 0 because
pi(λ1, . . . , λn) 6= 0 for all pi ∈ Si. This contradicts the assumption that
(λ1, . . . , λn) ∈ V (S). Therefore, (λ1, . . . , λn) ∈

⋃n
i=1 V (Si) and as a result,

V (S) ⊆
⋃n
i=1 V (Si).

(c) This means that V (S) =
⋃n
i=1 V (Si). Subsequently, we deduce that⋃n

i=1 V (Si) ∈ τZar. Hence, (kn, τZar) is a topological space.

There is one key difference separating the Zariski topology τZar on kn from
the more standard Euclidean topology on kn.

Theorem 1.2.3. Let n ∈ Z>0 and k be an infinite field. Then, the Zariski
topology τZar on kn is not Hausdorff.

Proof. Assume that n ∈ Z>0. Assume that k is an infinite field. Let
S ⊆ k[x1, . . . , xn]. The open sets in the Zariski topology τZar are of the form

kn\V (S) = {(a1, . . . , an) ∈ kn | There exists f ∈ S such that f(a1, . . . , an) 6= 0}.

Notably, the set V (S) is finite so that the complement kn\V (S) is a cofinite
set.

We claim that if S, T ⊆ k[x1, . . . , xn] and V (S)c = kn\V (S) then
V (S)c ∩ V (T )c 6= ∅. Assume that S and T are subsets of k[x1, . . . , xn].
Since V (S) and V (T ) are finite sets, V (S) ∪ V (T ) must also be a finite set.
Consequently, V (S) ∪ V (T ) 6= kn and by taking complements,
V (S)c ∩ V (T )c 6= ∅. Therefore, the Zariski topology on kn is not
Hausdorff.
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It is useful to observe that τZar has a basis of open sets given by

V (f) = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) 6= 0}

where f ∈ k[x1, . . . , xn].

In line with the emphasis of [CLO15] on examples, we will end the
introduction to affine varieties by giving an involved example of an affine
variety.

Example 1.2.3. Consider the graph in R2 defined by the equation
r = sin 2θ. This is the four leaved rose.

Figure 1.1: The four leaved rose. Figure is from [CLO15, Page 12]

Recall that polar coordinates in R2 are defined by the equations x = r cos θ
and y = r sin θ. We claim that the four leaved rose is the affine variety
V ((x2 + y2)3 − 4x2y2) ⊆ R2.

First, assume that the point (x, y) ∈ R2 lies on the four leaved rose. The
idea is to rewrite the equation r = sin 2θ as r = 2 sin θ cos θ. Squaring both
sides, we find that r2 = 4 sin2 θ cos2 θ. Now multiply both sides by r4 to find
that

(x2 + y2)3 = r6 = 4r4 sin2 θ cos2 θ = 4x2y2.
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So, (x2 + y2)3 − 4x2y2 = 0 and consequently, (x, y) ∈ V ((x2 + y2)3 − 4x2y2).

Now assume that (p, q) ∈ V ((x2 + y2)3 − 4x2y2) so that
(p2 + q2)3 − 4p2q2 = 0 and (p2 + q2)3 = 4p2q2. Squaring both sides, we
obtain in polar coordinates

r6 = 4r4 sin2 θ cos2 θ

where r2 = p2 + q2, p = r cos θ and q = r sin θ. Hence, we have the equation
r2 = sin2 2θ and

r = |sin 2θ|.

Now, we have two cases to consider.

Case 1: r = sin 2θ.

In this case, we are done since this is the equation of the four leaved rose.
We conclude that (p, q) is a point on the four leaved rose.

Case 2: r = − sin 2θ.

If we have the equation r = − sin 2θ then r = − sin 2θ = sin(−2θ). Hence,
(p, q) is a point on the four leaved rose.

By combining both cases, we conclude that the four leaved rose is the affine
variety V ((x2 + y2)3 − 4x2y2) in R2 as required.

1.3 Parametrisation and stereographic

projection

Suppose that f1, . . . , fs ∈ k[x1, . . . , xn] are polynomials. Consider the affine
variety

V (f1, . . . , fs) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 for i ∈ {1, 2, . . . , s}}.

How do we describe the points of V (f1, . . . , fs)? This amounts to writing
down the solutions of the system of polynomial equations f1 = · · · = fs = 0.
If there are finitely many solutions then we can simply list them all.
However, when there are infinitely many solutions, the main technique we
use is parametrisation.
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Example 1.3.1. Here is a basic example from linear algebra. We will work
in the field R and describe the points in the affine variety
V (x+ y + z − 1, x+ 2y − z − 3).

This amounts to solving the equations x+ y + z = 1 and x+ 2y − z = 3
simultaneously. By row reduction, we obtain the equivalent relations
x+ 3z = −1 and y− 2z = 2. Now let z = t, where t ∈ R is some parameter.
Then, the points in the affine variety V (x+ y + z − 1, x+ 2y − z − 3) are
given by

x = −1− 3t, y = 2 + 2t, and z = t

for t ∈ R.

In line with [CLO15, §3], we will define two special types of
parametrisations below.

Definition 1.3.2. Let k be a field. The field of rational functions in
x1, . . . , xn, denoted by k(x1 . . . , xn), is the field of fractions of k[x1, . . . , xn].
That is,

k(x1 . . . , xn) = {f
g
| f, g ∈ k[x1, . . . , xn], g 6= 0}.

Definition 1.3.3. Let f1, . . . , fs ∈ k[x1, . . . , xn] and
V = V (f1, . . . , fs) ⊆ kn be an affine variety. A rational parametric
representation of V is a set of rational functions r1, . . . , rn ∈ k(x1, . . . , xn)
such that the points (y1, . . . , yn) ∈ kn given by the equations

yi = ri(a1, . . . , an)

for i ∈ {1, 2, . . . , n} and (a1, . . . , an) ∈ kn all lie in V .

A polynomial parametric representation of V is a rational parametric
representation such that r1, . . . , rn ∈ k[x1, . . . , xn] are polynomials.

The original defining equations f1 = · · · = fs = 0 of V is called an implicit
representation of V .

As mentioned in [CLO15, §3], we often work with both parametrisations
and implicit representations, using the one which is more useful for a given
task. For instance, if we wanted to determine if a point is in an affine
variety, it is generally much easier to use the implicit representation rather
than a parametrisation. On the other hand, parametrisations are easier to
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deal with when plotting an affine variety.

Since it is useful to have both a parametrisation and an implicit
representation of an affine variety, there are two main questions one can ask
about them

1. (Parametrisation) Does every affine variety have a rational parametric
representation?

2. (Implicitisation) Given a parametrisation of an affine variety, can we
find an implicit representation?

The answer to the first question is no in general. In fact, it is difficult to
even tell when an affine variety has a rational parametric representation.
On the other hand, the answer to the second question is yes. We will see
this later when we study elimination theory.

Example 1.3.4. We will work in the field R. Define V = V (x2 + y2 − 1).
Then, the equation x2 + y2 = 1 gives an implicit representation of the affine
variety V .

The purpose of this example is to derive the well-known stereographic
projection of the circle S1, which is a rational parametric representation of
V .

The idea is to draw a line from the point (0, 1) to (t, 0), where t ∈ R. If the
line is not horizontal then the line intersects the circle S1 at a unique point,
which we will denote by (x, y) ∈ S1. Note that (x, y) 6= (0, 1).
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Figure 1.2: Stereographic projection as applied to the unit circle S1

Our goal is to write x and y in terms of t. The line connecting the points
(0, 1) and (t, 0) is for t 6= 0

y = −1

t
x+ 1.

Solving for x, we obtain x = t(1− y). We can substitute this into the
implicit equation x2 + y2 = 1 in order to obtain the following quadratic
equation:

(1 + t2)y2 − 2t2y + (t2 − 1) = 0

Now we can solve for y via the quadratic formula

y =
2t2 ±

√
4t4 − 4(t4 − 1)

2(1 + t2)
=
t2 ± 1

1 + t2
.

Notice that one of the roots is y = 0. This gives the point (x, y) = (0, 1)
again, which is not the point (x, y) we are looking for. So, we set y = −1+t2

1+t2

and upon substitution into x = t(1− y), we find that

(x, y) = (
2t

1 + t2
,
−1 + t2

1 + t2
) (1.1)

for t 6= 0. Luckily, setting t = 0 in the above parametric representation
yields the point (x, y) = (0,−1). This corresponds to the intersection of the
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circle with a vertical line passing through (0, 1) and the origin.

Equation (1.1) yields a parametrisation of the affine variety V , with the
exception of the north pole (0, 1). Clearly, we can repeat the above
argument, but instead of drawing a line from (0, 1), we can start from the
south pole (0,−1) instead. This time, we obtain the parametrisation

(x, y) = (
2t

1 + t2
,
1− t2

1 + t2
) (1.2)

for t ∈ R.

The reason why stereographic projection is important is because it
generalises to the n-sphere Sn ⊆ Rn+1. The n-sphere Sn is a smooth
manifold of dimension n. It has two charts, which are given by
stereographic projection from the north and south poles. Let N,S ∈ Sn
denote the north and south poles of Sn. Then, the charts of Sn are given
explicitly by

ϕN : Sn\{N} → Rn

(x1, . . . , xn+1) 7→ 1
1−xn+1

(x1, . . . , xn)

which has inverse

ϕ−1N : Rn → Sn\{N}
(x1, . . . , xn) 7→ ( 2x1

1+x21+···+x2n
, . . . , 2xn

1+x21+···+x2n
,
−1+x21+···+x2n
1+x21+···+x2n

)

and

ϕS : Sn\{S} → Rn

(x1, . . . , xn+1) 7→ 1
1+xn+1

(x1, . . . , xn)

which has inverse

ϕ−1S : Rn → Sn\{S}
(x1, . . . , xn) 7→ ( 2x1

1+x21+···+x2n
, . . . , 2xn

1+x21+···+x2n
,
1−x21−···−x2n
1+x21+···+x2n

)

It is straightforward, but tedious to check that ϕN and ϕS are
diffeomorphisms.

The diffeomorphisms ϕN and ϕS tell us that if we remove a point from Sn,
the resulting space is homeomorphic to Rn. The point we remove from Sn

can be arbitrary because the n-sphere possesses rotational symmetry.
Conversely, if we have Rn and add a point at infinity then the space is
homeomorphic to Sn. As a result, we call Sn the one point
compactification of Rn.
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1.4 Ideals of an affine variety

We begin with a familiar definition.

Definition 1.4.1. Let R be a commutative ring. An ideal I is a subset of
R such that

1. 0 ∈ I

2. If f, g ∈ I then f + g ∈ I

3. If f ∈ I and h ∈ R then hf ∈ I.

The ideal generated by r1, . . . , rn ∈ R is defined by

(r1, . . . , rn) = {
n∑
i=1

siri | si ∈ R}.

We will sometimes use 〈r1, . . . , rn〉 to denote the ideal generated by
r1, . . . , rn. The set {r1, . . . , rn} is called a generating set for the ideal
(r1, . . . , rn).

From every affine variety V ⊆ kn, one can construct an ideal in the
following manner.

Definition 1.4.2. Let k be a field, n ∈ Z>0 and V = V (S) be the affine
variety associated with a subset S ⊆ k[x1, . . . , xn]. The ideal of V , denoted
by I(V ), is defined by

I(V ) = {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for (a1, . . . , an) ∈ V }.

Notably, I(V ) is an ideal of k[x1, . . . , xn].

It follows straight from the definition of an ideal that I(V ) is an ideal of
k[x1, . . . , xn].

Example 1.4.3. We will work in the field R and with the polynomial ring
R[x, y]. Let V = {(0, 0)} be the variety consisting of the origin in R2. We
claim that I(V ) = (x, y).

Suppose that h(x, y) ∈ (x, y). Then, there exists f, g ∈ R[x, y] such that
h(x, y) = f(x, y)x+ g(x, y)y. Since h(0, 0) = 0, h ∈ I(V ) and (x, y) ⊆ I(V ).
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Conversely, assume that p(x, y) ∈ I(V ). Write p(x, y) =
∑

i,j aijx
iyj. Since

p(0, 0) = 0, the constant term a00 = 0. So,

p(x, y) =
∑

i,j∈Z≥0,(i,j)6=(0,0)

aijx
iyj ∈ (x, y).

Therefore, I(V ) = (x, y) as required. Note that this example generalises
easily to the fields C,Q and polynomials in n variables x1, x2, . . . , xn.

The rest of this section is dedicated to proving important properties about
ideals of affine varieties.

Theorem 1.4.1. Let f1, . . . , fs ∈ k[x1, . . . , xn]. Then,
(f1, . . . , fs) ⊆ I(V (f1, . . . , fs)).

Proof. Assume that f1, . . . , fs ∈ k[x1, . . . , xn]. Assume that h ∈ (f1, . . . , fs).
If i ∈ {1, 2, . . . , s} then there exists hi ∈ k[x1, . . . , xn] such that

h =
s∑
i=1

hifi.

The ideal I(V (f1, . . . , fs)) is given by

I(V (f1, . . . , fs)) = {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for (a1, . . . , an) ∈ V (f1, . . . , fs)}.

If (a1, . . . , an) ∈ V (f1, . . . , fs) then fi(a1, . . . , an) = 0 for I ∈ {1, 2, . . . , s}
and consequently, h(a1, . . . , an) = 0. Therefore, h ∈ I(V (f1, . . . , fs)) and
(f1, . . . , fs) ⊆ I(V (f1, . . . , fs)).

In general, I(V (f1, . . . , fs)) 6= (f1, . . . , fs) as ideals of k[x1, . . . , xn]. This is
demonstrated by the next example.

Example 1.4.4. Consider the ideal (x2, y2) ⊆ k[x, y]. From the above
theorem, we have (x2, y2) ⊆ I(V (x2, y2)). However, the affine variety
V (x2, y2) = {(0, 0)} and I(V (x2, y2)) = (x, y). Thus,

I(V (x2, y2)) = (x, y) 6= (x2, y2).

The next property tells us what happens to the corresponding ideals when
we have two affine varieties V,W such that V ⊆ W .

Theorem 1.4.2. Let k be a field, n ∈ Z>0 and V,W ⊆ kn be affine
varieties. Then, V ⊆ W if and only if I(W ) ⊆ I(V ).
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Proof. Assume that k is a field, n ∈ Z>0 and V,W ⊆ kn be affine varieties.

Assume that V ⊆ W . Assume that f ∈ I(W ) ⊆ k[x1, . . . , xn] so that f
vanishes on W . Since V ⊆ W , f must vanish on V and consequently,
f ∈ I(V ). So, I(W ) ⊆ I(V ).

Conversely, assume that I(W ) ⊆ I(V ) and (a1, . . . , an) ∈ V ⊆ kn. If
f ∈ I(V ) then f(a1, . . . , an) = 0. In particular, since I(W ) ⊆ I(V ),
g(a1, . . . , an) = 0 for any g ∈ I(W ). So, (a1, . . . , an) ∈ W and V ⊆ W as
required.

A consequence of Theorem 1.4.2 is that V = W as affine varieties in kn if
and only if I(V ) = I(W ) as ideals in k[x1, . . . , xn]. Here are the three main
questions about ideals that the course is concerned with:

1. (Ideal description) Is every ideal I ⊆ k[x1, . . . , xn] finitely generated
(has a finite generating set)? That is, is k[x1, . . . , xn] a Noetherian
ring? The answer is yes, as a consequence of the Hilbert basis
theorem we will prove later.

2. (Ideal membership) If f1, . . . , fs ∈ k[x1, . . . , xn] then is there a
systematic algorithm to decide whether a given polynomial
f ∈ k[x1, . . . , xn] lies in the ideal (f1, . . . , fs)? We will answer this
question in the affirmative for polynomials in a single variable in the
next few sections.

3. (Nullstellensatz) What is the exact relation between (f1, . . . , fs) and
I(V (f1, . . . , fs))?

By definition of an ideal, a polynomial f ∈ k[x1, . . . , xn] is an element of the
ideal (f1, . . . , fs) if it can be written as a k[x1, . . . , xn]-linear combination of
the polynomials f1, . . . , fs. The point here is that in very particular
circumstances, we can use linear algebra to solve the ideal membership
problem and tell whether two ideals are equal to each other.

Theorem 1.4.3. Let k be a field, n ∈ Z>0 and
(f1, . . . , fs), (g1, . . . , gs) ⊆ k[x1, . . . , xn] be two ideals. Then,
(f1, . . . , fs) = (g1, . . . , gs) if and only if there exists an invertible matrix
A ∈ GLs(k[x1, . . . , xn]) such that

A


f1
f2
...
fs

 =


g1
g2
...
gs

 .
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Proof. Assume that k is a field, n ∈ Z>0 and (f1, . . . , fs), (g1, . . . , gs) be two
ideals of k[x1, . . . , xn].

To show: (a) If there exists A ∈ GLs(k[x1, . . . , xn]) such that
A[f1, . . . , fs]

T = [g1, . . . , gs]
T then (f1, . . . , fs) = (g1, . . . , gs).

(b) If (f1, . . . , fs) = (g1, . . . , gs) then there exists A ∈ GLs(k[x1, . . . , xn])
such that A[f1, . . . , fs]

T = [g1, . . . , gs]
T .

(a) Assume that there exists A = (aij) ∈ GLs(k[x1, . . . , xn]) such that
A[f1, . . . , fs]

T = [g1, . . . , gs]
T . If i ∈ {1, 2, . . . , s} then

s∑
k=1

aikfk = gi

and gi ∈ (f1, . . . , fs). So, (g1, . . . , gs) ⊆ (f1, . . . , fs).

Now let B = (bij) = A−1. If i ∈ {1, 2, . . . , s} then

s∑
k=1

bikgk = fi

and fi ∈ (g1, . . . , gs). Therefore, (f1, . . . , fs) ⊆ (g1, . . . , gs) and
(f1, . . . , fs) = (g1, . . . , gs).

(b) Assume that (f1, . . . , fs) = (g1, . . . , gs). For each i ∈ {1, 2, . . . , s}, there
exists polynomials pi1, . . . , pis ∈ k[x1, . . . , xn] such that

s∑
`=1

pi`f` = gi.

Consequently, if P = (pij) ∈Ms×s(k[x1, . . . , xn]) then

P

f1...
fs

 =

g1...
gs

 .

Similarly, there exists D = (dij) ∈Ms×s(k[x1, . . . , xn]) such that

D

g1...
gs

 =

f1...
fs

 .
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From these two equations, it is easy to check that PD = DP = Is, where Is
is the s× s identity matrix with elements in k[x1, . . . , xn]. So, P is
invertible as required.

We finish with an example of Theorem 1.4.3 in action.

Example 1.4.5. This example is taken from [CLO15, §4 Exercise 3c]. We
want to prove the equality

(2x2 + 3y2 − 11, x2 − y2 − 3) = (x2 − 4, y2 − 1)

of ideals in Q[x, y].

After some inspection, we find that

2x2 + 3y2 − 11 = 2(x2 − 4) + 3(y2 − 1)

and

x2 − y2 − 3 = (x2 − 4)− (y2 − 1).

Consequently, we obtain the matrix equation(
2 3
1 −1

)(
x2 − 4
y2 − 3

)
=

(
2x2 + 3y2 − 11
x2 − y2 − 3

)
.

Now observe that the determinant∣∣∣∣2 3
1 −1

∣∣∣∣ = −5

and −5 is an invertible element of Q[x, y]. By Theorem 1.4.3, we find that

(2x2 + 3y2 − 11, x2 − y2 − 3) = (x2 − 4, y2 − 1).

1.5 Polynomials in one variable

This section is dedicated to answering the ideal membership problem for
the polynomial ring k[x] of one variable. The idea here is that if k is a field
then k[x] is a Euclidean domain. By contrast, the polynomial ring of n
variables k[x1, . . . , xn] is not even a PID. What does it mean for k[x] to be
a Euclidean domain? It means that we can divide polynomials of one
variable in the same way we divide positive integers. Also, we can perform
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the Euclidean algorithm.

Let k be a field and g ∈ k[x] with g 6= 0. If f ∈ k[x] then there exists
unique q, r ∈ k[x] such that either r = 0 or deg(r) < deg(q) and

f = qg + r.

The purpose of the polynomial division algorithm is to find q and r from f
and g. We require a quick definition for the purpose of describing the
algorithm.

Definition 1.5.1. Let

f(x) = c0x
m + c1x

m−1 + · · ·+ cm ∈ k[x]

where c0 6= 0 and m ∈ Z>0. We define c0x
m to be the leading term of f .

The leading term is written as LT (f) = c0x
m.

We will now describe the polynomial division algorithm for k[x] below:

1. Suppose that we are given two polynomials f, g ∈ k[x] such that
g 6= 0.

2. First, define q0 = 0 and r0 = f . If either r0 = 0 or LT (g) does not
divide LT (r0), set q = q0 and r = r0 and terminate the algorithm.
Otherwise, proceed to Step 3.

3. Define

q1 = q0 +
LT (r0)

LT (g)
and r1 = r0 −

LT (r0)

LT (g)
g.

4. If If either r1 = 0 or LT (g) does not divide LT (r1), set q = q1 and
r = r1 and terminate the algorithm. Otherwise, go to Step 5.

5. For i ∈ Z≥0, define

qi+1 = qi +
LT (ri)

LT (g)
and ri+1 = ri −

LT (ri)

LT (g)
g.

6. If either ri+1 = 0 or LT (g) does not divide LT (ri+1), set q = qi+1 and
r = ri+1. Terminate the algorithm. Otherwise, repeat Step 5.
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The main sticking point we will have to address is: why does the above
algorithm work? We will break our reasoning up into different parts:

1. Do the polynomials q, r ∈ k[x] satisfy f = qg + r?

The answer is yes and we will prove this by induction on i ∈ Z≥0. For the
base case, assume that i = 0. Then, q0 = 0, r0 = f and f = q0g + r0.

For the inductive hypothesis, assume that f = qmg + rm for some m ∈ Z>0.
Then,

qm+1g + rm+1 = (qm +
LT (rm)

LT (g)
)g + (rm −

LT (rm)

LT (g)
g)

= qmg + rm = f.

This completes the induction. Hence, at every step of the algorithm,
f = qig + ri for i ∈ Z≥0. So, f = qg + r because q = qj and r = rj for some
j ∈ Z≥0.

2. Does r ∈ k[x] satisfy either r = 0 or deg(r) < deg(g)?

The algorithm always terminates when either rj = 0 or LT (g) does not
divide LT (rj) for some j ∈ Z≥0. So, either r = 0 or LT (g) does not divide
LT (r). Notice that LT (g) does not divide LT (r) if and only if
deg(r) < deg(g).

3. Does the algorithm always terminate?

The key observation here is that if i ∈ Z>0 then either ri = 0 or
deg(ri) < deg(ri−1). To see why this is the case, fix m ∈ Z>0. Let
rm−1 = c0x

p + · · ·+ cp and g = d0x
q + · · ·+ dq so that p ≥ `. The leading

terms are LT (rm−1) = c0x
p and LT (g) = d0x

q. Computing rm directly, we
obtain

rm = rm−1 −
LT (rm−1)

LT (g)
g = (c0x

p + . . . )− (
c0
d0
xp−q · d0xq + . . . )

Therefore, deg(rm) < deg(rm−1) or rm = 0. Since the degree of a
polynomial is a non-negative integer, the degree can only drop at most
finitely many times. So, the algorithm must terminate.
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4. Are the polynomials q, r ∈ k[x] unique?

Assume that f = qg + r = q′g + r′, where deg(r) < deg(g) and
deg(r′) < deg(g). We want to show that q = q′ and r = r′. Suppose for the
sake of contradiction that r 6= r′. We know that deg(r′ − r) < deg(g). Now
observe that

(q − q′)g = r′ − r

so that q − q′ 6= 0 and consequently,

deg(r′ − r) = deg((q − q′)g) = deg(q − q′) + deg(g) ≥ deg(g).

This contradicts the previous finding that deg(r′ − r) < deg(g). So, r′ = r
and since (q − q′)g = r′ − r, q = q′. This demonstrates that q and r are
unique.

We have finally demonstrates that the polynomial division algorithm works
in the polynomial ring k[x]. We summarise this finding as the following
theorem.

Theorem 1.5.1. Let k be a field. Then, k[x] is a Euclidean domain.

By Theorem 1.5.1, k[x] is also a PID, UFD and a Noetherian ring. In
particular, the observation that k[x] is a PID is crucial for answering the
ideal membership problem for k[x]. Recall that this means that every ideal
of k[x] is generated by exactly one polynomial in k[x]. Below, we give a
direct proof of the fact that if k is a field then k[x] is a PID.

Theorem 1.5.2. Let k be a field. Then, k[x] is a PID.

Proof. Assume that k is a field. Assume that I is an ideal in k[x]. If I = 0
then I is generated by 0 and is hence, principal. So, suppose that I 6= 0. Let
g(x) ∈ I be a polynomial of minimal degree amongst all non-zero elements
in I. Since k is a field, we can assume that g(x) is a monic polynomial.

To show: (a) I = (g(x)).

(a) To show: (aa) I ⊂ (g(x)).

(ab) (g(x)) ⊂ I.
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(aa) Assume that f(x) ∈ I. From the polynomial division algorithm with
f(x) and g(x), we can deduce the existence of unique q(x), r(x) ∈ k[x] such
that

f(x) = q(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)) or r(x) = 0. Suppose for the sake of
contradiction that r(x) 6= 0. Then, deg(r(x)) < deg(g(x)). Observe that
r = f(x)− q(x)g(x) ∈ I. However, this contradicts the fact that g(x) is the
polynomial of minimal degree amongst all non-zero elements in I.
Therefore, r(x) = 0 and consequently, f(x) = q(x)g(x). Hence, I ⊂ (g(x)).

(ab) Since g(x) ∈ I, (g(x)) ⊂ I.

Thus, I = (g(x)). So, k[x] is a PID.

Example 1.5.2. We will apply the polynomial division algorithm to the
polynomials f(x) = x3 + 2x2 + x+ 1 and g(x) = 2x+ 1 in Q[x]. We list the
relevant steps of the polynomial division algorithm below:

1. q0 = 0, r0 = f

2. q1 = 1
2
x2, r1 = 3

2
x2 + x+ 1

3. q2 = 1
2
x2 + 3

4
x, r2 = 1

4
x+ 1

4. q3 = 1
2
x2 + 3

4
x+ 1

8
, r3 = 7

8

Since deg(r3) < deg(g), the algorithm terminates with q = q3 and r = r3.
One can check directly that

x3 + 2x2 + x+ 1 = (
1

2
x2 +

3

4
x+

1

8
)(2x+ 1) +

7

8
.

Note that each step in the algorithm corresponds to a step in the classic
polynomial division below:
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Let us return to the observation that k[x] is a PID. This means that there
is a well-defined notion of a greatest common divisor.

Definition 1.5.3. Let k be a field and f1, . . . , fs ∈ k[x]. The greatest
common divisor of f1, . . . , fs, denoted by gcd(f1, . . . , fs), is a polynomial
in k[x] such that

1. If i ∈ {1, 2, . . . , s} then gcd(f1, . . . , fs)|fi

2. If h ∈ k[x] divides fi for every i ∈ {1, 2, . . . , s} then h| gcd(f1, . . . , fs).

We will now show that the greatest common divisor of two polynomials
exists and is unique up to multiplication by a non-zero constant in k.

Theorem 1.5.3. Let k be a field and f, g ∈ k[x]. Then, gcd(f, g) exists and
is unique up to multiplication by a non-zero constant in k. Moreover,
gcd(f, g) is a generator of the ideal (f, g).

Proof. Assume that k is a field and f, g ∈ k[x]. Since k[x] is a PID, there
exists a polynomial h ∈ k[x] such that (h) = (f, g).
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To show: (a) h = gcd(f, g).

(a) Since f, g ∈ (h), there exists polynomials p1, p2 ∈ k[x] such that f = p1h
and g = p2h. Therefore, h divides both f and g.

Now assume that there exists a polynomial q ∈ k[x] such that q|f and q|g.
Then, there exists a, b ∈ k[x] such that f = aq and g = bq. Since h ∈ (f, g),
there exists c, d ∈ k[x] such that h = cf + dg = caq + dbq = (ca+ db)q. So,
q|h.

So, h satisfies the properties of the greatest common divisor of f and g.
Hence, h = gcd(f, g), which means that the greatest common divisor of f
and g exists and is the generator of the ideal (f, g).

It remains to show that gcd(f, g) exists and is unique up to multiplication
by a non-zero constant in k. Suppose that h and h′ are both the greatest
common divisors of f and g. Then, h|h′ and h′|h. Hence, h and h′ are
associates and consequently, h = h′j for some non-zero constant j ∈ k. So,
gcd(f, g) is unique up to multiplication by a non-zero constant in k.

We emphasise that the proof of Theorem 1.5.3 extends readily to an
arbitrary PID. We can also generalise Theorem 1.5.3 with an almost
identical proof.

Theorem 1.5.4. Let k be a field and f1, . . . , fs ∈ k[x]. Then,
gcd(f1, f2, . . . , fs) exists and is unique up to multiplication by a non-zero
constant in k. Moreover, gcd(f1, f2, . . . , fs) is a generator of the ideal
(f1, f2, . . . , fs).

There is a simple method of finding the greatest common divisor of more
than two polynomials.

Theorem 1.5.5. Let k be a field and f1, . . . , fs ∈ k[x], where s ∈ Z>2.
Then,

gcd(f1, . . . , fs) = gcd(f1, gcd(f2, . . . , fs)).

Proof. Assume that s ∈ Z>2 and f1, . . . , fs ∈ k[x]. Let
h = gcd(f2, f3, . . . , fs).

To show: (a) (f1, h) = (f1, f2, . . . , fs).
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(a) First assume that g ∈ (f1, h) so that there exists p1, p2 ∈ k[x] such that
g = p1f1 + p2h. Since (h) = (f2, . . . , fs), we can write h as a linear
combination of the polynomials f2, . . . , fs. So, g is a linear combination of
polynomials f1, . . . , fs and consequently, g ∈ (f1, f2, . . . , fs).

Now assume that j ∈ (f1, f2, . . . , fs). Then, j is a linear combination of the
polynomials f1, . . . , fs. Note that h divides fi for i ∈ {2, 3, . . . , s}. So, j is a
linear combination of f1 and h. Hence, j ∈ (f1, h). So,
(f1, h) = (f1, f2, . . . , fs).

The equality of ideals (f1, h) = (f1, f2, . . . , fs) reveals that
gcd(f1, h) = gcd(f1, f2, . . . , fs) as required.

The Euclidean algorithm is a systematic method for finding the greatest
common divisor of two polynomials f, g ∈ k[x], where g 6= 0.

1. Suppose that we are given two polynomials f, g ∈ k[x] where g 6= 0.

2. Use the polynomial division algorithm to write f = q1g + r1 for
unique q1, r1 ∈ k[x]. If r1 = 0 then gcd(f, g) = g and the algorithm
terminates. Otherwise, proceed to Step 3.

3. Use the polynomial division algorithm to write g = q2r1 + r2 for
unique q2, r2 ∈ k[x]. If r2 = 0 then gcd(f, g) = r1 and the algorithm
terminates. Otherwise proceed to Step 4.

4. For i ∈ Z>0, use the polynomial division algorithm to write
ri = qi+2ri+1 + ri+2 (beginning with i = 1).

5. If ri+2 = 0 then gcd(f, g) = ri+1 and the algorithm terminates.
Otherwise, increase i by 1 and repeat step 4.

Let us explain why the Euclidean algorithm gives us the greatest common
divisor. In step 2, we used polynomial division to write f = q1g + r1. If
r1 6= 0 then in step 3, we used polynomial division to write g = q2r1 + r2.
The point here is that in transitioning from step 2 to step 3,

gcd(f, g) = gcd(f − q1g, g) = gcd(r1, g).

This is true because as ideals, (f, g) = (f − q1g, g). In step 4 with i = 1, we
write r1 = q3r2 + r3. When we transition from step 3 to step 4, we find that

gcd(r1, g) = gcd(r1, g − q2r1) = gcd(r1, r2).
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Therefore,

gcd(f, g) = gcd(g, r1) = gcd(r1, r2) = · · · = gcd(ri, ri+1) = . . .

and by the polynomial division algorithm,

deg(g) > deg(r1) > deg(r2) > deg(r3) > . . .

Since the degree is a positive integer, the above chain of inequalities tells us
that there exists j ∈ Z≥0 such that rj = 0 (we set r0 = g). Then, the
algorithm terminates and

rj−1 = gcd(rj−1, 0) = gcd(rj−1, rj) = gcd(f, g).

Therefore, the Euclidean algorithm must terminate and yields the greatest
common divisor for f and g.

To reiterate, if we want to compute the gcd of more than two polynomials,
we can use Theorem 1.5.5 multiple times, in tandem with the Euclidean
algorithm.

Finally, we will describe an algorithm for answering the ideal membership
problem for k[x]. Let f1, . . . , fs, g ∈ k[x]. Can we determine if
g ∈ (f1, . . . , fs)?

1. Let f1, . . . , fs, g ∈ k[x].

2. Use Theorem 1.5.5 and the Euclidean algorithm to compute
gcd(f1, . . . , fs). By Theorem 1.5.4, (gcd(f1, . . . , fs)) = (f1, . . . , fs) as
ideals of k[x].

3. Now use the polynomial division algorithm to write
g = q gcd(f1, . . . , fs) + r for unique q, r ∈ k[x]. If r = 0 then
gcd(f1, . . . , fs) divides g and g ∈ (f1, . . . , fs). If r 6= 0 then
g 6∈ (f1, . . . , fs).

We will now apply the ideal membership algorithm to a concrete example.

Example 1.5.4. We will work in the polynomial ring Q[x]. We want to
determine whether x2 − 4 is an element of the ideal

I = (x3 + x2 − 4x− 4, x3 − x2 − 4x+ 4, x3 − 2x2 − x+ 2).

The first step is to compute the gcd of the polynomials which generate I.
We find that
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gcd(x3 + x2 − 4x− 4, x3 − x2 − 4x+ 4, x3 − 2x2 − x+ 2)

= gcd(gcd(x3 + x2 − 4x− 4, x3 − x2 − 4x+ 4), x3 − 2x2 − x+ 2)

= gcd(2x2 − 8, x3 − 2x2 − x+ 2)

= 3x− 6.

So, I = (3x− 6) = (x− 2). The equality (3x− 6) = (x− 2) follows from the
fact that the gcd is unique up to multiplication by a non-zero constant in k.
Hence, x2 − 4 = (x+ 2)(x− 2) ∈ I.

In the next chapter, we will tackle the ideal membership problem for the
polynomial ring k[x1, . . . , xn].
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Chapter 2

Gröbner bases

2.1 Orderings on the monomials in

k[x1, . . . , xn]

Before we dive into the ideal membership problem for k[x1, . . . , xn], we
want to highlight a particular feature of polynomial division in k[x]. The
observation that interests us the most is the fact that polynomial division
in k[x] relies on an ordering of the terms in the polynomial. In particular,
the polynomials we begin with are generally written as a sum of terms with
decreasing degree. We begin with the leading term and end with the
constant term.

For division in k[x], we are dealing with the degree ordering on the
monomials

· · · > xm+1 > xm > · · · > x2 > x > 1.

In fact, the success of the polynomial division algorithm in k[x] hinges on
working with the leading terms of both polynomials, rather than using
arbitrary terms from both polynomials.

Another example where an ordering of the variables plays a subtle, but
important role is the row reduction algorithm, used to convert a matrix into
its row echelon form. Generally, the algorithm begins with the leftmost
column with non-zero entries.

These examples, as outlined in [CLO15], tell us that if we want to extend
polynomial division to k[x1, . . . , xn] for the purposes of handling the ideal
membership problem then one must place a particular order on the terms
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comprising a polynomial in k[x1, . . . , xn]. In this section, we will discuss
some of these orderings.

First, we want an idea of the desirable properties an ordering on monomials
in k[x1, . . . , xn] should satisfy.

Definition 2.1.1. Let k be a field. A monomial ordering > on
k[x1, . . . , xn] is a relation > on (Z≥0)n or equivalently, a relation on the set
of monomials {xα | α ∈ (Z≥0)n} such that

1. > is a total/linear ordering on (Z≥0)n (and not a partial ordering; we
want to be able to compare every pair of n-tuples)

2. If α > β and γ ∈ (Z≥0)n then α + γ > β + γ, where addition on
(Z≥0)n is defined componentwise.

3. > is a well-ordering on (Z≥0)n. This means that if a subset
A ⊆ (Z≥0)n is non-empty then there exists α ∈ A such that if
β ∈ A− {α} then β > α.

The well-ordering property of a monomial ordering will play a crucial role
in showing that various algorithms terminate. To see why this is the case,
we will provide an equivalent formulation of the well-ordering property.

Theorem 2.1.1. Let n ∈ Z>0. An order > on (Z≥0)n is a well-ordering if
and only if every strictly decreasing sequence in (Z≥0)n

α(1) > α(2) > α(3) > . . .

terminates.

Proof. Assume that n ∈ Z>0 and > is an order on (Z≥0)n.

To show: (a) If > is not a well-ordering then there exists an infinite strictly
decreasing sequence in (Z≥0)n.

(b) If there exists an infinite strictly decreasing sequence in (Z≥0)n then >
is not a well-ordering.

(a) Assume that > is not a well-ordering. Then, there exists a non-empty
subset B ⊆ (Z≥0)n such that B does not contain a minimal element with
respect to the ordering >. Now pick an element β(1) ∈ B. It is not minimal
with respect to >. Next, pick an element β(2) ∈ B such that β(1) > β(2).
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The element β(2) is not minimal with respect to >.

Continuing in this fashion, we obtain an strictly decreasing infinite sequence

β(1) > β(2) > . . .

in B and hence, in (Z≥0)n.

(b) Suppose that there exists an infinite strictly decreasing sequence in
(Z≥0)n with respect to >. From the definition of well-ordering, we deduce
that > is not a well-ordering.

If we have an algorithm which uses a well-ordering and we construct a
strictly decreasing sequence β(1) > β(2) > . . . at each step of the algorithm
then Theorem 2.1.1 tells us that the algorithm must terminate.

Example 2.1.2. The usual order on Z≥0

· · · > m+ 1 > m > · · · > 2 > 1 > 0

is a monomial ordering. Equivalently, the degree ordering on monomials of
k[x]

· · · > xm+1 > xm > · · · > x2 > x1 > x0 = 1

is a monomial ordering.

We will now provide a first example of a monomial ordering on (Z≥0)n,
where n ∈ Z>0.

Definition 2.1.3. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be elements of
(Z≥0)n. We say that α >lex β if the leftmost non-zero entry of the difference
α− β ∈ Zn is positive.

We write xα >lex x
β in k[x1, . . . , xn] if α >lex β. The order >lex is called the

lexicographical order.

Lexicographical order is sometimes called a dictionary order because it is
the same order used to organise a dictionary. For instance, the word
“bread” appears before “brioche” in the dictionary.

Notice that in lexicographical ordering,

(1, 0, . . . , 0) >lex (0, 1, . . . , 0) >lex · · · >lex (0, 0, . . . , 1)
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so that x1 >lex x2 >lex · · · >lex x
n. Now we will show that the

lexicographical ordering on (Z≥0)n is a monomial ordering.

Theorem 2.1.2. The lexicographical ordering >lex is a monomial ordering.

Proof. The fact that (Z≥0)n is a total ordering follows from the fact that
the usual order > on Z≥0 is a total ordering and from the definition of the
lexicographical ordering (which uses the order >).

Assume that α >lex β so that there exists i ∈ Z>0 such that i is minimal
and αi − βi > 0. Assume that γ ∈ (Z≥0)n. Since αi + γi > βi + γi,
α + γ >lex β + γ.

Finally, suppose for the sake of contradiction that >lex is not a
well-ordering. By Theorem 2.1.1, there exists an infinite strictly decreasing
series

α(1) >lex α(2) >lex α(3) >lex . . .

Consider the first entry of each α(i) in the above sequence. Due to the
definition of >lex, the first entries of each α(i) form a non-increasing
sequence in Z≥0. So, there exists ` ∈ Z≥0 such that if i, j ≥ ` then the first
entry of α(i) is equal to the first entry of α(j).

Now consider the infinite strictly descending sequence
α(`) >lex α(`+ 1) >lex . . . The lexicographical order is determined by the
second entry of each member of the sequence. The second entries of
α(`), α(`+ 1), . . . form a non-increasing sequence. By repeating the same
reasoning, we deduce that the second entries of the sequence eventually
stabilises.

Continuing in the same way, we deduce eventually that there exists
m ∈ Z>0 such that if i, j ≥ m then α(i) = α(j). This contradicts the fact
that α(m) >lex α(m+ 1). Therefore, >lex is a well-ordering and hence, a
monomial ordering.

Example 2.1.4. Here is a practical use of lexicographical order. Let R be
a commutative ring and A ∈Mn×n(R). Let k ∈ {1, 2, . . . , n− 1}. Then,
Λk(A) is the

(
n
k

)
×
(
n
k

)
matrix whose elements are the determinants of k × k

minors of A.

The point is that the rows and columns of Λk(A) are indexed by the
(
n
k

)
subsets of {1, 2, . . . , n} with cardinality k. The order in which the rows and
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columns are indexed does not matter, as long as the rows and columns are
indexed in the same manner.

The lexicographical order on the
(
n
k

)
subsets of {1, 2, . . . , n} with

cardinality k provides us with a systematic way of indexing the rows and
columns of Λk(A). Let R = Z, n = 4, k = 2 and

A =


1 2 5 −2
0 4 2 6
5 −3 9 7
−8 −2 −1 2


With lexicographical ordering, we have

{1, 2} <lex {1, 3} <lex {1, 4} <lex {2, 3} <lex {2, 4} <lex {3, 4}

and the matrix Λ2(A) is

Λ2(A) =

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}


4 2 6 −16 20 34 {1, 2}
−13 −16 17 33 8 53 {1, 3}
14 39 −14 8 0 8 {1, 4}
−20 −10 −30 42 46 −40 {2, 3}
32 16 48 0 20 10 {2, 4}
−34 67 66 21 8 25 {3, 4}

with rows and columns indexed in lexicographical order. For instance,
(Λ2(A)){1,2},{1,3} is the determinant of the 2× 2 minor of A formed from the
first and second rows of A and the first and third columns of A. So,

(Λ2(A)){1,2},{1,3} =

∣∣∣∣1 5
0 2

∣∣∣∣ = 2.

This example is from [Cha22, Example 2.3.2].

So far, we observe that the lexicographic order is defined so that
x1 >lex x2 >lex · · · >lex xn. The point is that given any ordering of the
variables x1, . . . , xn, there is a corresponding lexicographic order. There are
n! such lexicographic orders.

One of the features of lexicographic order is that a variable dominates any
monomial containing smaller variables. For instance (1, 0, 0) >lex (0, 10, 2),
which means that as monomials, x >lex y

10z2. As evidenced by polynomial
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division in k[x], we sometimes want to order based on total degree. This is
where our next ordering comes into play.

Definition 2.1.5. Let α, β ∈ (Z≥0)n. We say that α >grlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi or |α| = |β| and α >lex β.

The order >grlex is called the graded lexicographic order.

As examples, we have (1, 0, 0) <grlex (0, 10, 2) and (3, 2, 1) >grlex (2, 3, 1).
The graded lexicographic order orders by total degree first and then
“breaks ties” with the lexicographic order. As with lexicographic order,
there are n! different graded lexicographic orders stemming from the order
imposed on the variables x1, . . . , xn.

The graded lexicographic order is a monomial ordering. The key reason is
because the usual order > on Z≥0 and >lex on (Z≥0)n are all monomial
orderings.

The final monomial ordering we will state is similar to the lexicographic
order, but it breaks ties in a different way.

Definition 2.1.6. Let α, β ∈ (Z≥0)n. We say that α >grevlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi

or

|α| = |β| and the rightmost non-zero entry of α− β ∈ Zn is negative.

The order >grevlex is called the graded reverse lexicographic order.

The grevlex ordering is indeed a monomial ordering (see [CLO15, Chapter
2 §2, Exercise 12]). Here are a few examples for the purpose of
understanding grevlex ordering.

Example 2.1.7. As our first example, (4, 7, 1) >grevlex (4, 2, 3) because the
total degree of (4, 7, 1) is 12, while the total degree of (4, 2, 3) is 9.

As a second example, we claim that (1, 5, 2) >grevlex (4, 1, 3). The 3-tuples
(1, 5, 2) and (4, 1, 3) have the same total degree. However,
(1, 5, 2)− (4, 1, 3) = (−3, 4,−1). By the grevlex ordering, we have
(1, 5, 2) >grevlex (4, 1, 3) as required.
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Just like the lex and grlex orderings, we have

x1 >grevlex x2 >grevlex · · · >grevlex xn.

Also, there are n! such grevlex orderings, corresponding to the orderings of
x1, . . . , xn.

Finally, we will show how monomial ordering can be applied to
polynomials. If f =

∑
α aαx

α ∈ k[x1, . . . , xn] and we have a monomial
ordering on k[x1, . . . , xn] then (ignoring constant coefficients) we can
rearrange the sum so that the terms appear in decreasing order, with
respect to the monomial order.

Example 2.1.8. Let f = 4xy2z + 4z2 − 5x3 + 7x2x2 ∈ k[x, y, z]. Then, f
with respect to the lexicographical order is

f = −5x3 + 7x2z2 + 4xy2z + 4z2.

The polynomial f with respect to grlex order is

f = 7x2z2 + 4xy2z − 5x3 + 4z2.

Finally, the polynomial f with respect to grevlex order is

f = 4xy2z + 7x2z2 − 5x3 + 4z2

Now we will establish specific terminology for monomial ordering.

Definition 2.1.9. Let f =
∑

α aαx
α be a non-zero polynomial in

k[x1, . . . , xn] and let > be a monomial order.

The multidegree of f is defined by

multideg(f) = max{α ∈ (Z≥0)n | aα 6= 0}.

The leading coefficient of f is

LC(f) = amultideg(f) ∈ k.

The leading monomial of f is

LM(f) = xmultideg(f).

The leading term of f is LT (f) = LC(f) · LM(f).

We will now state a useful property of the multidegree.

37



Theorem 2.1.3. Let f, g ∈ k[x1, . . . , xn] be non-zero polynomials. Then,

multideg(fg) = multideg(f) +multideg(g).

Moreover, if f + g 6= 0 then

multideg(f + g) ≤ max(multideg(f),multideg(g)).

If, in addition, multideg(f) 6= multideg(g) then equality occurs.

It is straightforward to prove the above theorem from the definition of the
monomial ordering. For instance, the first statement follows from the
second property of monomial orderings — if α, β, γ ∈ (Z≥0)n and α > β
then α + γ > β + γ. In the second statement, if LT (f) = −LT (g) then
inequality occurs.

2.2 The division algorithm in k[x1, . . . , xn]

In this section, we would like to generalise the polynomial division
algorithm for k[x] to the polynomial ring of several variables k[x1, . . . , xn].
Our goal is to divide some f ∈ k[x1, . . . , xn] by f1, . . . , fs ∈ k[x1, . . . , xn],
which amounts to expressing f in the form

f = q1f1 + · · ·+ qsfs + r

where q1, . . . , qs, r ∈ k[x1, . . . , xn]. Expecting a polynomial division
algorithm on k[x1, . . . , xn] to have the same nice properties as the
polynomial division algorithm on k[x] is rather naive, as the following
example demonstrates.

Example 2.2.1. Consider the polynomial ring R[x, y]. We will prove that
R[x, y] is not a PID by showing that the ideal (x, y) is not principal.

Suppose for the sake of contradiction that the ideal (x, y) ∈ R[x, y] is
principal. Then, there exists a polynomial p(x, y) ∈ R[x, y] such that
(p(x, y)) = (x, y). So, it must be the case that

p(x, y) = q(x, y)x+ r(x, y)y

where q(x, y), r(x, y) ∈ R[x, y]. It is important to note from this that p(x, y)
cannot be a constant polynomial.
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To show: (a) gcd(x, y) = p(x, y).

(a) To show: (aa) (x) ⊂ (p(x, y)).

(ab) (y) ⊂ (p(x, y)).

(aa) Since (p(x, y)) = (x, y), (x) ⊂ (x, y) = (p(x, y)).

(ab) Since (p(x, y)) = (x, y), (y) ⊂ (x, y) = (p(x, y)).

(a) So, p(x, y) must divide both x and y.

To show: (ac) If s(x, y) divides both x and y then (p(x, y)) ⊂ (s(x, y)).

(ac) Assume s(x, y) ∈ R[x, y] divides both x and y. Then,
x = s1(x, y)s(x, y) and y = s2(x, y)s(x, y) for some
s1(x, y), s2(x, y) ∈ R[x, y]. Assume a(x, y) ∈ (p(x, y)). Since
(p(x, y)) = (x, y), a(x, y) = r1(x, y)x+ r2(x, y)y for some
r1(x, y), r2(x, y) ∈ R[x, y]. But,

a(x, y) = r1(x, y)x+ r2(x, y)y

= r1(x, y)s1(x, y)s(x, y) + r2(x, y)s2(x, y)s(x, y)

= (r1(x, y)s1(x, y) + r2(x, y)s2(x, y))s(x, y).

Hence, a(x, y) ∈ (s(x, y)) and so, (p(x, y)) ⊂ (s(x, y)).

(a) Consequently, gcd(x, y) = p(x, y), where p(x, y) is not a constant
polynomial. However, this contradicts the fact that gcd(x, y) = 1 (x and y
are relatively prime). Hence, the ideal (x, y) is not principal.

The above example can be easily adapted to show that k[x1, . . . , xn] is not
a PID and thus, not a Euclidean domain. Hence, any remainders we obtain
from a division algorithm on k[x1, . . . , xn] cannot be expected to be unique.

As stated in [CLO15], the basic idea of division in k[x1, . . . , xn] is to cancel
the leading term of f by multiplying fi by a monomial and subtracting.
Then, the multiple of fi becomes a term in the corresponding qi. Before we
state the division algorithm on k[x1, . . . , xn], we will work through the
example [CLO15, Chapter 2 §3 Example 2] in detail so that we have a
better idea of what to expect.
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Example 2.2.2. We will work in the polynomial ring k[x, y]. Our goal is
to divide f = x2y + xy2 + y2 by the two polynomials f1 = xy − 1 and
f2 = y2 − 1. We impose the lexicographic order on k[x, y] with x >lex y.
The terms in the polynomials f, f1 and f2 are already arranged in
lexicographic order. Hence, we do not have to worry about first arranging
the terms in the polynomials involved by lexicographic order.

This time, we have two divisors and two quotients q1 and q2, which we
depict graphically by

The leading term LT (xy − 1) = xy divides LT (x2y + xy2 + y2) = x2y. We
multiply xy − 1 by x and then subtract from x2y + xy2 + y2.

Now LT (xy − 1) and LT (y2 − 1) both divide xy2. We will choose the first
polynomial xy − 1, multiply it by y and then subtract from xy2 + x+ y2.
The result is
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This time, neither LT (xy − 1) nor LT (y2 − 1) divide LT (x+ y2 + y) = x.
Here, the remainder makes it entrance into the algorithm. We could declare
x+ y2 + y as the remainder and terminate the algorithm here. However,
LT (y2 − 1) does divide LT (y2 + y) = y2. So, we can shove the x term into
the remainder r and then proceed with the division by dividing y2 + y by
y2 − 1. Our working out now becomes

Again LT (xy − 1) and LT (y2 − 1) do not divide LT (y + 1) = y. But this
time, LT (xy − 1) and LT (y2 − 1) do not divide any of y or 1. Hence, we
can bring the entire expression y + 1 into the remainder column and add it
to the remainder. We are left with no polynomial. So, the algorithm
terminates and our final working is
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One can check that

f = q1f1 + q2f2 + r = (x+ y)(xy − 1) + 1(y2 − 1) + (x+ y + 1).

Keeping this example in mind, we will now describe the polynomial division
algorithm for k[x1, x2, . . . , xn].

Step 1: Suppose that we want to divide a polynomial f ∈ k[x1, . . . , xn] by
some polynomials f1, . . . , fs ∈ k[x1, . . . , xn]. Suppose that we have a
monomial ordering < on k[x1, . . . , xn]. We first apply the monomial
ordering to arrange the terms of the polynomials f, f1, . . . , fs in decreasing
order. Set the polynomials q1 = · · · = qs = 0, p = f and r = 0.

Step 2a: If there exists a j ∈ {1, 2, . . . , s} such that LT (fj) divides LT (p)
then compute

k = min{j ∈ {1, 2, . . . , s} | LT (fj)|LT (p)}.

Then, subtract the quantity LT (p)
LT (fk)

fk from p and add LT (p)
LT (fk)

to qk.

Step 2b: If there does not exist j ∈ {1, 2, . . . , s} such that LT (fj) divides
LT (p) then subtract LT (p) from p. Add LT (p) to r.
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Step 3: If p 6= 0 then repeat steps 2a and 2b. Otherwise, the algorithm
terminates and the resulting polynomials q1, . . . , qs, r satisfy

f = q1f1 + · · ·+ qsfs + r,

where the polynomials f, f1, . . . , fs are the ones we started with. Once
again, we have to justify why the above algorithm works. Similarly to the
polynomial division algorithm in k[x], we will break down our reasoning
into different parts.

1. Does f = q1f1 + · · ·+ qsfs + p+ r at every step of the algorithm?

The answer is yes. Suppose that we have just commenced the
algorithm and we are on step 1. Since q1 = · · · = qs = 0, p = f and
r = 0, we can check directly that f = q1f1 + · · ·+ qsfs + p+ r.

To complete this argument, we need to show that steps 2a and 2b
preserve the equality f = q1f1 + · · ·+ qsfs + p+ r. To see that step 2a
preserves this equality, we compute directly that if j ∈ {1, 2, . . . , s}
then

f = q1f1 + · · ·+ (qj +
LT (p)

LT (fj)
)fj + · · ·+ qsfs + (p− LT (p)

LT (fj)
fj) + r.

To see that step 2b preserves the equality, note that

f = q1f1 + qsfs + (p− LT (p)) + (r + LT (p)).

Therefore, f = q1f1 + · · ·+ qsfs + p+ r at every step of the algorithm
given above.

2. Do we actually obtain f = q1f1 + · · ·+ qsfs + r when the algorithm
terminates?

If p = 0 then the algorithm terminates. Since
f = q1f1 + · · ·+ qsfs + p+ r at every step of the algorithm, we find
that f = q1f1 + · · ·+ qsfs + r once the algorithm is terminated
(because p = 0).
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3. Do the terms of the remainder r divide any of the leading terms
LT (f1), . . . , LT (fs)?

The answer is no. Notice that in step 2b, we add terms to r which are
divisible by none of the leading terms LT (f1), LT (f2), . . . , LT (fs).
Therefore, the terms of r cannot divide any leading terms.

4. Does the algorithm always terminate?

This question is where the properties of a monomial ordering on
k[x1, . . . , xn] come into play. We claim that in steps 2a and 2b, the
multidegree of p decreases. In step 2b, this is obvious because we
always subtract the leading term LT (p) from p.

In step 2a, we subtract the quantity

LT (p)

LT (fi)
fi

from p. We know that

LT (
LT (p)

LT (fi)
fi) =

LT (p)

LT (fi)
LT (fi) = LT (p)

Since LT (p)
LT (fi)

fi has the same leading term as p, the mutlidegree of p
must be strictly smaller after step 2a is executed.

Suppose for the sake of contradiction that the division algorithm
never terminates. By repeated applications of steps 2a and 2b, we
obtain an infinite decreasing sequence of multidegrees; decreasing
with respect to the monomial ordering < on k[x1, . . . , xn]. However,
this contradicts Theorem 2.1.1. Thus, the algorithm must terminate.

5. How does multideg(qifi) compare to multideg(f)?

By step 2a, every term of qi is of the form LT (p)/LT (fi) for some
p ∈ k[x1, . . . , xn]. We know that in steps 2a and 2b, the multidegree
of p always decreases. So, multideg(p) ≤ multideg(f) and
consequently, if qifi 6= 0 then by Theorem 2.1.3,
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multideg(qifi) ≤ multideg(
LT (p)

LT (fi)
fi) = multideg(p) ≤ multideg(f).

The polynomial division algorithm on k[x1, . . . , xn] constitutes a proof of
the following generalisation of Theorem 1.5.1.

Theorem 2.2.1. Let > be a monomial order on (Z≥0)n and
f1, . . . , fs ∈ k[x1, . . . , xn]. If f ∈ k[x1, . . . , xn] then there exists
q1, . . . , qs, r ∈ k[x1, . . . , xn] such that

f = q1f1 + · · ·+ qsfs + r.

Either r = 0 or r is a k-linear combination of monomials, none of which
are divisible by any of the leading terms LT (f1), LT (f2), . . . , LT (fs).
Moreover, if qifi 6= 0 then multideg(qifi) ≤ multideg(f).

Observe that in Theorem 2.2.1, the polynomials q1, . . . , qs, r ∈ k[x1, . . . , xn]
are not unique.

Example 2.2.3. Recall that in the previous example, we imposed the
lexicographic order on k[x, y] with x >lex y. We used the polynomial
division algorithm on k[x, y] to divide f = x2y + xy2 + y2 by f1 = xy − 1
and f2 = y2 − 1. We found that

f = q1f1 + q2f2 + r = (x+ y)(xy − 1) + 1(y2 − 1) + (x+ y + 1).

For clarity, q1 = x+ y, q2 = 1 and r = x+ y + 1. We will repeat the
polynomial division algorithm for this particular scenario, but instead we
will reverse the order of the two polynomials f1 and f2. Let f ′1 = f2 and
f ′2 = f1. The resulting division is displayed below:
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So,

f = q′1f
′
1 + q′2f

′
2 + r′ = (x+ 1)(y2 − 1) + x(xy − 1) + (2x+ 1).

It is clear that q1 6= q′1, q2 6= q′2 and r 6= r′.

To top this section off, let us briefly discuss how the polynomial division
algorithm addresses the ideal membership problem for k[x1, . . . , xn].
Suppose that we have an ideal (f1, . . . , fs) in k[x1, . . . , xn] and are given a
polynomial f ∈ k[x1, . . . , xn]. We want to determine whether
f ∈ (f1, . . . , fs).

Just like in the single variable case, we use Theorem 2.2.1 to find
q1, . . . , qs, r ∈ k[x1, . . . , xn] such that

f = q1f1 + · · ·+ qsfs + r.

If r = 0 then f ∈ (f1, . . . , fs). Thus, we have shown that if we apply the
polynomial division algorithm to divide f by f1, . . . , fs and we obtain a
remainder of r = 0 then f ∈ (f1, . . . , fs).

One might ask if the converse statement holds. That is, if f ∈ (f1, . . . , fs)
then is it the case that the remainder r = 0 if we use the division algorithm
to divide f by f1, . . . , fs? In the one variable case, the answer is yes, but for
the general case, the answer is no, as demonstrated by the following
example.
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Example 2.2.4. We work in the polynomial ring k[x, y] and impose the
lexicographic order on k[x, y]. Let f = xy2 − x, f1 = xy − 1 and
f2 = y2 − 1. Notice that f ∈ (f1, f2) because

f = x(y2 − 1) + 0(xy − 1).

But, if we apply the polynomial division algorithm to divide f by f1 and f2,
we obtain

The remainder we obtain is −x+ y 6= 0.

So, unlike in the single variable case, the polynomial division algorithm in
k[x1, . . . , xn] provides a partial and imperfect answer to the ideal
membership problem. How do we improve on this? The idea we will pursue
lies with Theorem 1.4.3. If we have an ideal (f1, . . . , fs) in k[x1, . . . , xn]
then we could potentially find a nicer generating set for (f1, . . . , fs), nicer in
the sense that if we divide a polynomial f by the new generators then the
remainder r is unique and the condition r = 0 is equivalent to being an
element of (f1, . . . , fs). Later on, we will see that this idea can be realised
by the use of a Grobner basis for the ideal.

2.3 Dickson’s lemma

In this section, we will put aside the ideal membership problem for now and
turn our attention to the ideal description problem — is every ideal
I ⊆ k[x1, . . . , xn] finitely generated? We will take a big leap towards
proving this statement in the affirmative by proving a result known as
Dickson’s lemma.
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The approach towards the ideal description problem is to solve the problem
first for monomial ideals, which we will define below.

Definition 2.3.1. Let k be a field. An ideal I ⊆ k[x1, . . . , xn] is a
monomial ideal if there exists a subset A ⊆ (Z≥0)n such that

I = (xα | α ∈ A).

That is, there exists a subset A ⊆ (Z≥0)n such that I is generated by
monomials xα for α ∈ A.

Let us prove some properties satisfied by monomial ideals. Firstly, we
observe that it is easy to tell whether a given monomial is an element of a
monomial ideal.

Lemma 2.3.1. Let I = (xα | α ∈ A) be a monomial ideal in k[x1, . . . , xn].
Let β ∈ (Z≥0)n. Then, xβ ∈ I if and only if there exists α ∈ A such that xβ

is divisible by xα.

Proof. Assume that I = (xα | α ∈ A) is a monomial ideal in k[x1, . . . , xn].
Assume that β ∈ (Z≥0)n.

To show: (a) If xβ ∈ I then there exists α ∈ A such that xβ is divisible by
xα.

(b) If there exists α ∈ A such that xβ is divisible by xα then xβ ∈ I.

(a) Assume that xβ ∈ I. Then,

xβ =
s∑
i=1

hix
α(i)

where hi ∈ k[x1, . . . , xn] and α(i) ∈ A for i ∈ {1, 2, . . . , s}. The idea is to
expand each hi so that hi =

∑
j ci,jx

β(i,j) and

xβ =
s∑
i=1

hix
α(i) =

∑
i,j

ci,jx
β(i,j)xα(i).

If we collect the terms of
∑

i,j ci,jx
β(i,j)xα(i) with the same multidegree then

every term on the RHS of the above equation is divisible by some xα(i). So,
xβ must be divisible by xα(i).

(b) Assume that there exists α ∈ A such that xβ is divisible by xα. Then,
there exists f ∈ k[x1, . . . , xn] such that xβ = f · xα. So, xβ ∈ I.
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The next lemma tells us that whether a given polynomial f lies is a
monomial ideal can be determined by looking at the monomials of f .

Lemma 2.3.2. Let I ⊆ k[x1, . . . , xn] be a monomial ideal and
f ∈ k[x1, . . . , xn]. Then, the following are equivalent:

1. f ∈ I.

2. Every term of f is an element of I.

3. f is a k-linear combination of the monomials in I.

Proof. Assume that I is a monomial ideal and f ∈ k[x1, . . . , xn]. Directly
from the definitions of a monomial ideal, the implications 3 =⇒ 2 =⇒ 1
and 2 =⇒ 3 are trivial.

To see that 1 =⇒ 2, assume that f ∈ I. Since I is a monomial ideal, there
exists a subset A ⊆ (Z≥0)n such that I = (xα | α ∈ A).

So, we can write f as

f =
s∑
i=1

fix
α(i)

where fi ∈ k[x1, . . . , xn] and α(i) ∈ A for i ∈ {1, 2, . . . , s}. Since xα(i) ∈ I,
fi ∈ xα(i). So, every term of f is contained in I.

One consequence of the third statement in Lemma 2.3.2 is that a monomial
ideal is uniquely determined by its monomials. That is, two monomial
ideals are the same if and only if they contain the same monomials.

We have now arrived at Dickson’s lemma, which states that every
monomial ideal of k[x1, . . . , xn] is finitely generated. Due to the importance
of Dickson’s lemma, we will state it as a theorem.

Theorem 2.3.3 (Dickson’s lemma). Let I = (xα | α ∈ A) be a monomial
ideal in k[x1, . . . , xn]. Then, I = (xα(1), . . . , xα(s)), where α(1), . . . , α(s) ∈ A
and s ∈ Z>0 is finite.

Proof. We will Dickson’s lemma by induction on n, the number of variables
in our polynomial ring k[x1, . . . , xn].

For the base case, assume that n = 1 so that I = (xα1 | α ∈ A), where
A ⊆ Z≥0. Let β = min{α | α ∈ A}. If α ∈ A then xβ1 divides xα1 and
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consequently, I = (xβ1 ). This proves the base case.

For the inductive hypothesis, assume that n > 1 and that Dickson’s lemma
holds for n. Let I ⊆ k[x1, . . . , xn, y] be a monomial ideal. Then,

I = (uα | α ∈ A ⊆ (Z≥0)n+1)

where uα = xα1
1 . . . xαn

n yαn+1 . If A ⊆ (Z≥0)n+1 contains a least element µ —
that is, if α ∈ A then uµ|uα — then I = (uµ) and we are done. However,
such a least element does not always exist. See [Mur22, Figure 3.1] for an
example.

We will call a monomial uα minimal if there does not exist β ∈ A distinct
from α such that uβ|uα. Define

min(A) = {α ∈ A | uα is minimal}.

We claim that I = (uα | α ∈ A) = (uβ | β ∈ min(A)). Since these are both
monomial ideals, it suffices to show that they contain the same monomials.

Assume that uγ ∈ (uβ | β ∈ min(A)). Since min(A) ⊆ A, if β ∈ min(A)
then uβ ∈ I and consequently, uγ ∈ I.

Now assume that uγ ∈ I. If γ ∈ min(A) then uγ ∈ (uβ | β ∈ min(A)) by
definition. If on the other hand γ ∈ A−min(A) then there exists δ ∈ A
such that δ 6= γ and uδ|uγ. If δ ∈ A−min(A) then there exists δ2 ∈ A such
that δ 6= δ2 and uδ2 |uδ.

Continuing in this fashion, we obtain a decreasing sequence
γ > δ > δ2 > δ3 > . . . This sequence must eventually terminate. So, there
exists ε ∈ min(A) such that uε|uγ and uγ ∈ (uβ | β ∈ min(A)).

We conclude that I = (uβ | β ∈ min(A)). We now have to show that the set
min(A) ⊆ A is finite.

To show: (a) min(A) is finite.

(a) Define the ideal

J = (xβ | xβym ∈ I for some m ∈ Z≥0).

and the set
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B = {β ∈ (Z≥0)n | (β,m) ∈ A for some m ∈ Z≥0}
For clarity, J is an ideal of k[x1, . . . , xn]. Consider the subset min(B) of B,
defined similarly to min(A).

To show: (aa) If β ∈ min(B) then there exists a unique m ∈ Z≥0 such that
α = (β,m) ∈ min(A).

(aa) Assume that β ∈ min(B) ⊆ B. Then, there exists m ∈ Z≥0 such that
xβym ∈ I and (β,m) ∈ A. Suppose for the sake of contradiction that
(β,m) 6∈ min(A). Then, there exists (β′,m′) ∈ A such that xβ

′
ym
′|xβym.

So, xβ
′|xβ, which contradicts the assumption that β ∈ min(B). So,

(β,m) ∈ min(A).

To see that m is unique, suppose that (β,m), (β,m′) ∈ min(A). Suppose for
the sake of contradiction that m 6= m′. Let ` = max{m,m′} and
`′ = min{m,m′}. Then, xβy`

′|xβy`, which contradicts the fact that
(β,m), (β,m′) ∈ min(A). So, m = m′ and m is unique.

By part (aa), we obtain an injective map ΦB,A from min(B) to min(A),
which sends β ∈ min(B) to α = (β,m) ∈ min(A). By the inductive
hypothesis, J is generated by a finite subset B0 ⊆ B. Since min(B) ⊆ B0,
min(B) must also be finite.

Now let min(B) = {β1, . . . , βr} and (β1,m1), . . . , (βr,mr) ∈ min(A). Define
M = max{m1, . . . ,mr}. We claim that if (γ, k) ∈ min(A) then k < M .

To see why this is the case, assume that (γ, k) ∈ min(A). Then, there exists
β ∈ min(B) such that γ ≥ β. Let α = ΦB,A(β) = (β,m) ∈ min(A). Suppose
for the sake of contradiction that k > m. Then, xβym|xγyk. This
contradicts the assumption that (γ, k) ∈ min(A). Therefore, k ≤ m.

The above argument inspires us to define for k ∈ {0, 1, . . . ,M − 1} the set

Bk = {β ∈ (Z≥0)n | (β, k) ∈ A}
and the ideal of k[x1, . . . , xn]

Jk = (xβ | β ∈ Bk).

By the same argument as before, min(Bk) is a finite set. Furthermore, if
β ∈ min(Bk) then there exists a unique n ∈ Z≥0 such that
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α = (β, n) ∈ min(A) and consequently, an injective map ΦBk,A from Bk to
A, which sends β ∈ min(Bk) to (β, n) ∈ min(A). Note that it is possible
that n < k.

Now assume that (γ, k) ∈ min(A). Let β ∈ min(Bk) such that β ≤ γ.
Suppose for the sake of contradiction that β 6= γ. Then xβyk ∈ I and
xβyk|xγyk. This contradicts the assumption that (γ, k) ∈ min(A). Hence,
β = γ ∈ min(Bk) and (γ, k) ∈ im ΦBk,A.

Since every element in min(A) belongs to the image of one of
ΦB,A,ΦB0,A, . . . ,ΦBM−1,A and each of the sets
min(B),min(B0), . . . ,min(BM−1) are finite, we deduce that min(A) is also
finite, which completes the proof.

Before we proceed, we remark that Dickson’s lemma has a few
consequences in the context of monomial orderings on (Z≥0)n.

Theorem 2.3.4. Let > be a relation on (Z≥0)n satisfying

1. > is a total/linear ordering on (Z≥0)n (and not a partial ordering; we
want to be able to compare every pair of n-tuples)

2. If α > β and γ ∈ (Z≥0)n then α + γ > β + γ, where addition on
(Z≥0)n is defined componentwise.

Then, > is a well-ordering if and only if for α ∈ (Z≥0)n, α ≥ 0.

Proof. Assume that > is a relation on (Z≥0)n which satisfies the two
properties outlined above.

To show: (a) If > is a well-ordering then for α ∈ (Z≥0)n, α ≥ 0.

(b) If for α ∈ (Z≥0)n, α ≥ 0 then > is a well-ordering.

(a) Assume that > is a well-ordering. Then, there exists α0 ∈ (Z≥0)n such
that if β ∈ (Z≥0)n then β ≥ α0. Since > satisfies the second property stated
above, it suffices to show that α0 ≥ 0.

Suppose for the sake of contradiction that α0 < 0. By adding α0 to both
sides (componentwise), we find that 2α0 < α0. However, this contradicts
the assumption that α0 is the minimal element in (Z≥0)n.
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So, α0 ≥ 0 and if β ∈ (Z≥0)n then β ≥ 0.

(b) Assume that if α ∈ (Z≥0)n then α ≥ 0. Assume that A ⊆ (Z≥0)n is
non-empty.

To show: (ba) The subset A has a minimal element with respect to the
relation >.

(ba) The ideal (xα | α ∈ A) is a monomial ideal in k[x1, . . . , xn]. By
Dickson’s lemma (see Theorem 2.3.3),

(xα | α ∈ A) = (xα(1), xα(2), . . . , xα(m))

for some m ∈ Z>0. By relabelling if necessary, we can assume that
α(1) < α(2) < · · · < α(m). We claim that α(1) is the minimal element of A.

Assume that α ∈ A. Then, xα is an element of the ideal (xα | α ∈ A) and
by Lemma 2.3.1, there exists i ∈ {1, 2, . . . ,m} such that xα(i) divides xα.
So, α = α(i) + γ for some γ ∈ (Z≥0)n and because γ ≥ 0,

α = α(i) + γ ≥ α(i) + 0 = α(i) ≥ α(1).

(b) From part (ba), we found that α(1) is the minimal element of A.
Therefore, > is a well-ordering as required.

The utility of Theorem 2.3.4 is that it makes it much easier to verify
whether an ordering on (Z≥0)n is a monomial ordering.

In light of Theorem 2.3.4, one might wonder whether Dickson’s lemma itself
can be reformulated as a statement about monomial orderings. In the next
theorem, we will reformulate Dickson’s lemma so that it applies to
monomial orderings.

Theorem 2.3.5. Dickson’s lemma is equivalent to the following statement:

If n ∈ Z>0 and A ⊆ (Z≥0)n is a non-empty subset then there exists finitely
many elements α(1), . . . , α(s) ∈ A such that if α ∈ A then there exists
i ∈ {1, 2, . . . , s} and γ ∈ (Z≥0)n such that α = α(i) + γ.

Proof. Assume that n ∈ Z≥0 and A ⊆ (Z≥0)n is a non-empty set.

To show: (a) If Theorem 2.3.3 is satisfied then there exists finitely many
elements α(1), . . . , α(s) ∈ A such that if α ∈ A then there exists
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i ∈ {1, 2, . . . , s} and γ ∈ (Z≥0)n such that α = α(i) + γ.

(b) If there exists finitely many elements α(1), . . . , α(s) ∈ A such that if
α ∈ A then there exists i ∈ {1, 2, . . . , s} and γ ∈ (Z≥0)n such that
α = α(i) + γ then Theorem 2.3.3 holds.

(a) Assume that Dickson’s lemma holds (see Theorem 2.3.3). Then, the
monomial ideal I = (xα | α ∈ A) must be finitely generated. So,
I = (xα(1), . . . , xα(s)) for some finite s ∈ Z>0. Now assume that α ∈ A.
Then, xα ∈ I. By Lemma 2.3.1, there exists i ∈ {1, 2, . . . , s} such that
xα(i)|xα. Consequently, there exists γ ∈ (Z≥0)n such that α = α(i) + γ.

(b) Assume that there exists α(1), . . . , α(s) ∈ A such that if α ∈ A then
there exists i ∈ {1, 2, . . . , s} and γ ∈ (Z≥0)n such that α = α(i) + γ. We will
show that I = (xα | α ∈ A) = (xα(1), . . . , xα(s)). Since xα(i) ∈ I for
i ∈ {1, 2, . . . , s}, (xα(1), . . . , xα(s)) ⊆ I.

Now assume that f =
∑p

j=1 ajx
β(j) ∈ I, where β(p) ∈ (Z≥0)n. By

assumption, for j ∈ {1, 2, . . . , p}, there exists ij ∈ {1, 2, . . . , s} and
γj ∈ (Z≥0)n such that β(j) = α(ij) + γj. So,

f =

p∑
j=1

ajx
β(j) =

p∑
j=1

ajx
γjxα(ij).

Since xα(ij) ∈ (xα | α ∈ A), the terms of f

ajx
γjxα(ij) ∈ (xα | α ∈ A).

By Lemma 2.3.2, f ∈ (xα | α ∈ A). Therefore, I ⊆ (xα(1), . . . , xα(s)) and the
monomial ideal I must be finitely generated, which in turn gives Dickson’s
lemma in Theorem 2.3.3.

Finally, we will single out a particular basis for a monomial ideal.

Theorem 2.3.6. Let k be a field and I ⊆ k[x1, . . . , xn] be a monomial
ideal. Then, there exists a unique finite basis xα(1), . . . , xα(s) of I such that
I = (xα(1), . . . , xα(s)) and if i, j ∈ {1, 2, . . . , s} are distinct then xα(i) does
not divide xα(j).

Proof. Assume that k is a field and I ⊆ k[x1, . . . , xn] is a monomial ideal.
By Dickson’s lemma (see Theorem 2.3.3), I is finitely generated so that
I = (xα(1), . . . , xα(t)) for some t ∈ Z>0.

54



If xα(p) divides xα(q) for some p, q ∈ {1, 2, . . . , t} then we can discard xα(q)

from the basis and the resulting set still generates I. By doing this, we
obtain a basis xα(1), . . . , xα(s) such that if i, j ∈ {1, 2, . . . , s} are distinct
then xα(i) does not divide xα(j).

To see that the basis xα(1), . . . , xα(s) is unique, assume that xβ(1), . . . xβ(u) is
another basis for I such that if i, j ∈ {1, 2, . . . , u} are distinct then xβ(i)

does not divide xβ(j). By Lemma 2.3.1, there exists j1 ∈ {1, 2, . . . , t} such
that xβ(j1)|xα(1). But since xβ(j1) ∈ I, there exists `1 ∈ {1, 2, . . . , s} such
that xα(`1)|xβ(j1). Consequently, xα(`1)|xα(1), but due to the construction of
the basis for I, `1 = 1 and xβ(j1) = xα(1).

By repeating this argument, we find that if i ∈ {1, 2, . . . , s} then there
exists ji ∈ {1, 2, . . . , t} such that xβ(ji) = xα(i). So,
{α(1), . . . , α(s)} ⊆ {β(1), . . . , β(u)}.

By interchanging the roles of the two bases for I and repeating the above
argument, we also have {β(1), . . . , β(u)} ⊆ {α(1), . . . , α(s)}. Hence,
{β(1), . . . , β(u)} = {α(1), . . . , α(s)} and so, the basis xα(1), . . . , xα(s) of I is
unique.

The unique basis of a monomial ideal in Theorem 2.3.6 is called a minimal
basis.

2.4 The Hilbert basis theorem and Gröbner

bases

Recall that Dickson’s lemma (see Theorem 2.3.3) is a special case of the
Hilbert basis theorem, which states that k[x1, . . . , xn] is a Noetherian ring
— every ideal of k[x1, . . . , xn] is finitely generated. We will begin this
section by using Dickson’s lemma to prove the Hilbert basis theorem. The
idea is to use the fact that with a monomial ordering on k[x1, . . . , xn], every
polynomial f ∈ k[x1, . . . , xn] has a unique leading term LT (f).

Definition 2.4.1. Let I ⊆ k[x1, . . . , xn] be a non-zero ideal and fix a
monomial ordering on k[x1, . . . , xn]. Define

LT (I) = {cxα | There exists f ∈ I − {0} such that LT (f) = cxα}

We denote by (LT (I)) the ideal generated by the elements of LT (I).
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It is tempting to claim that if I = (f1, . . . , fs) then
(LT (I)) = (LT (f1), . . . , LT (fs)). Since LT (fi) ∈ LT (I) where
i ∈ {1, 2, . . . , s}, LT (fi) ∈ LT (I) ⊆ (LT (I)). So,
(LT (f1), . . . , LT (fs)) ⊆ (LT (I)). But, the ideal (LT (I)) can be strictly
larger than (LT (f1), . . . , LT (fs)), as the following example demonstrates.

Example 2.4.2. We work in the polynomial ring k[x, y]. Let
I = (x3 − 2xy, x2y − 2y2 + x). We impose the grlex ordering on k[x, y], with
x >grlex y. Then,

x(x2y − 2y2 + x)− y(x3 − 2xy) = x2 ∈ I.
So, x2 = LT (x2) ∈ (LT (I)). However, x2 is not divisible by either
LT (x3 − 2xy) = x3 or LT (x2y − 2y2 + x) = x2y. By Lemma 2.3.1,
x2 6∈ (LT (x3 − 2xy), LT (x2y − 2y2 + x)). Therefore,

(LT (I)) 6= (LT (x3 − 2xy), LT (x2y − 2y2 + x)).

The point of defining the ideal (LT (I)) from an ideal I ⊆ k[x1, . . . , xn] is
that (LT (I)) is a monomial ideal, providing the perfect setup for Theorem
2.3.3.

Lemma 2.4.1. Let I ⊆ k[x1, . . . , xn] be a non-zero ideal. Then, (LT (I)) is
a monomial ideal and there exists g1, . . . , gt ∈ I such that
(LT (I)) = (LT (g1), . . . , LT (gt))

Proof. Assume that I ⊆ k[x1, . . . , xn] is a non-zero ideal.

To show: (a) The ideal (LT (I)) is a monomial ideal.

(b) There exists g1, . . . , gt ∈ I such that (LT (I)) = (LT (g1), . . . , LT (gt)).

(a) For arbitrary g ∈ I − {0}, the leading monomials LM(g) generate the
monomial ideal (LM(g) | g ∈ I − {0}). Since LM(g) and LT (g) differ by
multiplication by a constant, we find that

(LM(g) | g ∈ I − {0}) = (LT (g) | g ∈ I − {0}) = (LT (I)).

Hence, (LT (I)) is a monomial ideal.

(b) From part (a), (LT (I)) is a monomial ideal generated by the monomials
LM(g) for g ∈ I − {0}. By Dickson’s lemma (see Theorem 2.3.3), there
exists g1, . . . , gt ∈ I − {0} such that (LT (I)) = (LM(g1), . . . , LM(gt)).
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Again, since LM(g) and LT (g) differ by multiplication by a constant, we
find that

(LT (I)) = (LM(g1), . . . , LM(gt)) = (LT (g1), . . . , LT (gt)).

Lemma 2.4.1 and Theorem 2.2.1 are the key ingredients to the proof of the
Hilbert basis theorem, which we finally prove below.

Theorem 2.4.2 (Hilbert basis theorem). Let n ∈ Z>0 and
I ⊆ k[x1, . . . , xn] be an ideal of k[x1, . . . , xn]. Then, I is finitely generated.

Proof. Assume that n ∈ Z>0 and I ⊆ k[x1, . . . , xn] is an ideal of
k[x1, . . . , xn]. Suppose that we have a monomial ordering > on k[x1, . . . , xn].
If I is the zero ideal then I is generated by the single element 0 ∈ k.

So, assume that I 6= 0. Since we have a monomial ordering on k[x1, . . . , xn],
we can construct an ideal of leading terms (LT (I)). Using Lemma 2.4.1,
there exists g1, . . . , gt ∈ I such that (LT (I)) = (LT (g1), . . . , LT (gt)). Notice
that we have the containment of ideal (g1, . . . , gt) ⊆ I by construction.

To show: (a) I ⊆ (g1, . . . , gt).

(a) Assume that f ∈ I. By Theorem 2.2.1, there exists
q1, . . . , qt, r ∈ k[x1, . . . , xn] such that

f = q1g1 + · · ·+ qtgt + r.

To show: (aa) r = 0.

(aa) Suppose for the sake of contradiction that r 6= 0. By Theorem 2.2.1, r
is a k-linear combination of monomials, none of which are divisible by any
of the leading terms LT (g1), . . . , LT (gt). Observe that

r = f − q1g1 − · · · − qtgt ∈ I.

This means that LT (r) ∈ (LT (I)) = (LT (g1), . . . , LT (gt)). By Lemma
2.3.1, there exists j ∈ {1, 2, . . . , t} such that LT (gj)|LT (r). But this
contradicts the assumption that r is a k-linear combination of monomials,
none of which are divisible by any of the leading terms LT (g1), . . . , LT (gt).
So, r = 0.
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(a) Since r = 0, f ∈ (g1, . . . , gt) and I ⊆ (g1, . . . , gt).

Consequently, I = (g1, . . . , gt) and the ideal I is finitely generated.

With Theorem 2.4.2, we have completely solved the ideal description
problem for k[x1, . . . , xn]. The proof of Theorem 2.4.2 hinged on the fact
that there exists g1, . . . , gt ∈ I such that (LT (I)) = (LT (g1), . . . , LT (gt)).
The generating set {g1, . . . , gt} is clearly special and deserves its own
definition.

Definition 2.4.3. Let k[x1, . . . , xn] be equipped with a monomial order.
Let I ⊆ k[x1, . . . , xn] be a non-zero ideal. We say that a finite subset
G = {g1, . . . , gt} of I is a Gröbner basis if

(LT (I)) = (LT (g1), . . . , LT (gt)).

Note that we define the empty set ∅ to be the Gröbner basis of the zero
ideal 0.

By Lemma 2.3.1, a finite subset G = {g1, . . . , gt} of I is a Gröbner basis if
and only if the leading term of any non-zero element of I is divisible by
some LT (gi).

A consequence of Theorem 2.4.2 is that every ideal I ⊆ k[x1, . . . , xn] has a
Gröbner basis and any Gröbner basis is a basis (generating set) for I. What
is not clear at the moment is how to construct a Gröbner basis. This will be
discussed in the next section where we investigate Buchberger’s algorithm.

As mentioned previously, Theorem 2.4.2 can be reformulated to the
statement that k[x1, . . . , xn] is a Noetherian ring. Let us make this
translation precise.

Definition 2.4.4. Let R be a commutative ring. We say that R is
Noetherian if for any ascending chain of ideals in R

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ . . .

there exists k ∈ Z>0 such that if ` ∈ Z≥k then I` = Ik.

Theorem 2.4.3. Let R be a ring. Then, the following are equivalent:

(a) R is a Noetherian ring.

(b) Every ideal of R is finitely generated.
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Proof. First, assume that R is a Noetherian ring so that R satisfies the
ascending chain condition. We will prove this by contrapositive. So,
suppose that there exists an ideal J of R which is not finitely generated.
Pick r1 ∈ J . Since J is not finitely generated, r1R 6= J as ideals in R and
subsequently, there exists r2 ∈ J\r1R. Since J is not finitely generated,
r1R + r2R 6= J and so, there exists r3 ∈ J\(r1R + r2R).

By continuing this argument, we create an infinite ascending chain of ideals

r1R ⊂ r1R + r2R ⊂ · · · ⊂
n∑
i=1

rnR ⊂ . . .

where each inclusion is strict. This demonstrates that R is not Noetherian.

Conversely, assume that every ideal of R is finitely generated. Suppose that
we have the following ascending chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ . . . (2.1)

Observe that the set
⋃
i≥1 Ii is an ideal of R. This is because if

j1, j2 ∈
⋃
i≥1 Ii then there exists k ∈ Z>0 such that j1, j2 ∈ Ik, due to

equation (2.1). Hence, by assumption,
⋃
i≥1 Ii must be finitely generated.

Suppose that r1, r2, . . . , rm ∈ R such that

r1R + r2R + · · ·+ rmR =
⋃
i≥1

Ii

as ideals. Since r1, r2, . . . , rm ∈
⋃
i≥1 Ii, there exists t ∈ Z>0 as a result of

equation (2.1) such that r1, r2, . . . , rm ∈ It. Hence,
⋃
i≥1 Ii ⊆ It. But by

definition, It ⊆
⋃
i≥1 Ii and consequently, It =

⋃
i≥1 Ii. So, for all s ≥ t,

It ⊆ Is ⊆
⋃
i≥1

Ii = It.

Therefore, It = Is and the ascending chain in equation (2.1) terminates.

By Theorem 2.4.3 and the Hilbert basis theorem in Theorem 2.4.2,
k[x1, . . . , xn] is a Noetherian ring as required. We will now give an example
of a Gröbner basis.

Example 2.4.5. Here is a well-known example of a Gröbner basis. Let
A = (aij) ∈Mm×n(R) be a matrix in row echelon form and
J ⊆ R[x1, . . . , xn] be an ideal generated by the polynomials
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n∑
j=1

aijxj

for i ∈ {1, 2, . . . ,m}. We claim that the generators form a Gröbner basis for
J , with respect to a specific lexicographic order on R[x1, . . . , xn].

Supose that the jth column of A corresponds to the variable xj for
j ∈ {1, 2, . . . , n}. On the polynomial ring R[x1, . . . , xn], we impose the
lexicographic order with x1 >lex x2 >lex · · · >lex xn. The leading term of a
generator

∑n
j=1 aijxj is therefore,

LT (
n∑
j=1

aijxj) = min
`∈{1,2,...,n}

{x` | ai` 6= 0}.

Now suppose that f ∈ J − {0}. Then, there exists polynomials
p1, . . . , pn ∈ R[x1, . . . , xn] such that

f = p1
( n∑
j=1

a1jxj
)

+ · · ·+ pn
( n∑
j=1

anjxj
)
.

Since A is in row echelon form, if k, ` ∈ {1, 2, . . . , n} are distinct then
LT (

∑n
j=1 akjxj) > LT (

∑n
j=1 a`jxj). So, the leading term of f is

LT (f) = LT (p1)LT (
n∑
j=1

a1jxj)

which is divisible by LT (
∑n

j=1 a1jxj). Hence, the generators for J

{
n∑
j=1

a`jxj | ` ∈ {1, 2, . . . , n}}

form a Gröbner basis for J .

Before we investigate the properties of Gröbner bases further, we will
discuss a second, geometric consequence of Theorem 2.4.2. We are able to
talk about the affine variety defined by an ideal I ⊆ k[x1, . . . , xn].

Definition 2.4.6. Let n ∈ Z>0 and I ⊆ k[x1, . . . , xn] be an ideal. Define
V (I) to be the set

V (I) = {(a1, . . . , an) ∈ kn | If f ∈ I then f(a1, . . . , an) = 0}.
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Generally a non-zero ideal I ⊆ k[x1, . . . , xn] contains infinitely many
polynomials. However, Theorem 2.4.2 tells us that the set V (I) can still be
defined by a finite set of polynomial equations because I is finitely
generated.

Lemma 2.4.4. Let n ∈ Z>0 and I ⊆ k[x1, . . . , xn] be an ideal. Then the set
V (I) is an affine variety. In particular, if I = (f1, . . . , fs) then
V (I) = V (f1, . . . , fs).

Proof. Assume that n ∈ Z>0 and I ⊆ k[x1, . . . , xn] is an ideal. Assume that

V (I) = {(a1, . . . , an) ∈ kn | If f ∈ I then f(a1, . . . , an) = 0}.
By Theorem 2.4.2, there exists a finite set of polynomials {f1, . . . , fs} in
k[x1, . . . , xn] such that I = (f1, . . . , fs). We claim that V (I) = V (f1, . . . , fs).

To show: (a) V (f1, . . . , fs) ⊆ V (I).

(b) V (I) ⊆ V (f1, . . . , fs).

(a) Assume that (b1, . . . , bn) ∈ V (f1, . . . , fs) so that if i ∈ {1, 2, . . . , s} then
fi(b1, . . . , bn) = 0. Now, assume that g ∈ I. Then, there exists polynomials
p1, . . . , ps ∈ k[x1, . . . , xn] such that g = p1f1 + · · ·+ psfs. Note that by
assumption,

g(b1, . . . , bn) =
n∑
i=1

pi(b1, . . . , bn)(0) = 0.

Therefore, (b1, . . . , bn) ∈ V (I) and V (f1, . . . , fs) ⊆ V (I).

(b) Assume that (c1, . . . , cn) ∈ V (I). If h ∈ I then h(c1, . . . , cn) = 0. Since
f1, . . . , fs ∈ I, fi(c1, . . . , cn) = 0 for i ∈ {1, 2, . . . , s}. Therefore,
(c1, . . . , cn) ∈ V (f1, . . . , fs) and V (I) ⊆ V (f1, . . . , fs).

Combining parts (a) and (b) together, we find that V (I) = V (f1, . . . , fs) as
required.

2.5 Properties of Gröbner bases

In order to reinforce why Gröbner bases are important and useful, we will
prove some important properties Gröbner bases satisfy. Firstly, if we divide
a polynomial f ∈ k[x1, . . . , xn] by a set of polynomials {f1, . . . , fs} which
form a Gröbner basis then the remainder we obtain is unique.
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Theorem 2.5.1. Let I ⊆ k[x1, . . . , xn] be an ideal and G = {g1, . . . , gt} be
a Gröbner basis for I. If f ∈ k[x1, . . . , xn] then there exists a unique
r ∈ k[x1, . . . , xn] such that no term of r is divisible by any of
LT (g1), . . . , LT (gt) and there exists g ∈ I such that f = g + r.

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and G = {g1, . . . , gt} is a
Gröbner basis for I. Assume that f ∈ k[x1, . . . , xn]. By Theorem 2.2.1,
there exists polynomials q1, . . . , qt, r ∈ k[x1, . . . , xn] such that

f = q1g1 + · · ·+ qtgt + r

where either r = 0 or no term of r divides LT (g1), . . . , LT (gt). Note that
q1g1 + · · ·+ qtgt ∈ I. Hence, it remains to show that r ∈ k[x1, . . . , xn] is
unique.

To show: (a) r ∈ k[x1, . . . , xn] is unique.

(a) Assume that f = g + r = g′ + r′, where g, g′ ∈ I and r, r′ ∈ k[x1, . . . , xn]
are polynomial with no terms dividing LT (g1), . . . , LT (gt). Suppose for the
sake of contradiction that r 6= r′. Then, r − r′ = g − g′ ∈ I and the leading
term

LT (r − r′) ∈ (LT (I)) = (LT (g1), . . . , LT (gt)).

By Lemma 2.3.1, there exists i ∈ {1, 2, . . . , t} such that LT (gi)|LT (r − r′).
This contradicts the assumption that the terms of r and r′ are divisible by
none of the LT (g1), . . . , LT (gt). So, r = r′ and the remainder r must be
unique.

Note that as a consequence of Theorem 2.5.1, the remainder
r ∈ k[x1, . . . , xn] we obtain after dividing a polynomial f by a Gröbner
basis {g1, . . . , gt} remains unique even if we switch the order of the
generators g1, . . . , gt.

Note that the uniqueness in Theorem 2.5.1 only applies to the remainder.
The quotient polynomials q1, . . . , qt in the division algorithm can still
change if we switch the order of the generators g1, . . . , gt. Let us peruse an
example of this observation.

Example 2.5.1. We will work in the polynomial ring k[x, y, z]. We impose
the lexicographic order on k[x, y, z], declaring that x >lex y >lex z. The set
G = {x+ z, y − z} forms a Gröbner basis. We will divide xy by x+ z and
y − z in two different ways. Firstly, we have
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Next, we switch the order of the generators for G and then divide xy again.
We obtain

Observe that the remainder stays the same, in accordance with Theorem
2.5.1. However, the polynomials q1, q2 in both computations differ.

As a consequence of Theorem 2.5.1, we have

Theorem 2.5.2. Let I ⊆ k[x1, . . . , xn] be an ideal and G = {g1, . . . , gt} be
a Gröbner basis for I. Let f ∈ k[x1, . . . , xn]. Then, f ∈ I if and only if
when we divide f by g1, . . . , gt using the polynomial division algorithm, the
remainder r is zero.

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and G = {g1, . . . , gt} is a
Gröbner basis for I.
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To show: (a) If f ∈ I then the remainder is zero when f is divided by
g1, . . . , gt.

(b) If the remainder is zero when f is divided by g1, . . . , gt then f ∈ I.

(a) Assume that f ∈ I. Then, there exists polynomials
q1, . . . , qt ∈ k[x1, . . . , xn] such that f = q1g1 + · · ·+ qtgt. Note that f ∈ I
satisfies f = f + 0. By Theorem 2.5.1, we find that if we divide f by
g1, . . . , gt then 0 must be the remainder.

(b) Assume that if we divide f by g1, . . . , gt then the remainder is zero.
Then, there exists q1, . . . , qt ∈ k[x1, . . . , xn] such that f = q1g1 + · · ·+ qtgt.
Consequently, f ∈ I.

Theorem 2.5.2 actually provides us with a solution to the ideal membership
problem in k[x1, . . . , xn], but this is under the assumption that given an
ideal I ⊆ k[x1, . . . , xn], we can construct a Gröbner basis for I using an
algorithm. As we have mentioned before, this will be dealt with in a
separate section.

Definition 2.5.2. Let f ∈ k[x1, . . . , xn] and F = (f1, . . . , fs) be an ordered

s-tuple consisting of polynomials fi ∈ k[x1, . . . , xn]. Define f
F

to be the
remainder when we divide f by the polynomials in F (beginning from left
to right).

If F happens to be a Gröbner basis then we can regard F as a set since
changing the order of the elements in a Gröbner basis does not affect the
remainder by Theorem 2.5.1.

Suppose that I = (f1, . . . , fs) ⊆ k[x1, . . . , xn]. The main obstruction to
{f1, . . . , fs} being a Gröbner basis is that there could be polynomial
combinations of f1, . . . , fs whose leading terms are not in (LT (I)). One way
this can occur is if the leading terms in a suitable combination cancel,
leaving the smaller terms behind (with respect to a monomial ordering on
k[x1, . . . , xn]). The purpose of S-polynomials is to study this type of
cancellation.

Definition 2.5.3. Let f, g ∈ k[x1, . . . , xn] be non-zero polynomials.
Suppose that multideg(f) = α and multideg(g) = β. Let
γ = (γ1, . . . , γn) ∈ (Z≥0)n where for i ∈ {1, 2, . . . , n},

γi = max(αi, βi).

64



The monomial xγ is called the least common multiple of LM(f) and
LM(g). It is denoted by

xγ = lcm(LM(f), LM(g)).

The S-polynomial of f and g is the combination

S(f, g) =
xγ

LT (f)
f − xγ

LT (g)
g.

As explained in [CLO15], a S-polynomial is designed to produce
cancellation of the leading terms. The next important lemma demonstrates
that every cancellation of leading terms arising from polynomials of the
same multidegree originates from the cancellation which is artificially
produced by S-polynomials.

Lemma 2.5.3. Let s ∈ Z>0 and suppose that we have a monomial ordering
on k[x1, . . . , xn]. For i ∈ {1, 2, . . . , s}, let pi ∈ k[x1, . . . , xn] with
multideg(pi) = δ. If multideg(

∑s
i=1 pi) < δ then

∑s
i=1 pi is a k-linear

combination of the S-polynomials S(pj, pl) for j, l ∈ {1, 2, . . . , s}. Also,
multideg(S(pj, pl)) < δ.

Proof. Assume that for i ∈ {1, 2, . . . , s}, we have pi ∈ k[x1, . . . , xn] where
multideg(pi) = δ. Assume that multideg(

∑s
i=1 pi) < δ.

For i ∈ {1, 2, . . . , s}, let di = LC(pi) so that LT (pi) = dix
δ. Since

multideg(
∑s

i=1 pi) < δ,
∑s

i=1 di = 0. By definition, the S-polynomial of pi
and pj is

S(pi, pj) =
xδ

dixδ
pi −

xδ

djxδ
pj =

1

di
pi −

1

dj
pj.

Using the S-polynomials, we compute directly that
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s−1∑
i=1

diS(pi, ps) =
s−1∑
i=1

di
( 1

di
pi −

1

ds
ps
)

=
s−1∑
i=1

(pi −
di
ds
ps)

= (p1 + · · ·+ ps−1)−
d1 + · · ·+ ds−1

ds
ps

= (p1 + · · ·+ ps−1) +
ds
ds
ps

=
s∑
i=1

pi.

Hence
∑s

i=1 pi can be expressed as a k-linear combination of S-polynomials
S(pi, ps). It is obvious from the expression that S(pi, ps) has multidegree
less than δ, which completes the proof.

Buchberger’s criterion uses S-polynomials to tell us when a basis is a
Gröbner basis.

Theorem 2.5.4 (Buchberger’s criterion). Let I ⊆ k[x1, . . . , xn]. Let
G = {g1, . . . , gt} be a basis for I so that I = (g1, . . . , gt). Then, G is a
Gröbner basis of I if and only if for distinct pairs i, j ∈ {1, 2, . . . , t}, the
remainder on division of S(gi, gj) by G (listed in some order) is zero.

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal. Assume that
G = {g1, . . . , gt} is a basis for I so that I = (g1, . . . , gt).

To show: (a) If G is a Gröbner basis for I then for distinct pairs
i, j ∈ {1, 2, . . . , t}, the remainder on division of S(gi, gj) by G (listed in
some order) is zero.

(b) If for distinct pairs i, j ∈ {1, 2, . . . , t}, the remainder on division of
S(gi, gj) by G (listed in some order) is zero then G is a Gröbner basis for I.

(a) Assume that G is a Gröbner basis for I. Assume that i, j ∈ {1, 2, . . . , t}
are distinct. Then, the S-polynomial S(gi, gj) ∈ I. By Theorem 2.5.2, we
find that if we divide S(gi, gj) by g1, . . . , gt (in any order) then the
remainder is zero.
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(b) Assume that i, j ∈ {1, 2, . . . , t} are distinct and that if S(gi, gj) is
divided by g1, . . . , gt in some order then the remainder is zero. Assume that
f ∈ I − {0}

To show: (ba) LT (f) ∈ (LT (g1), . . . , LT (gt)).

(ba) Since f ∈ I − {0}, there exists polynomials hi ∈ k[x1, . . . , xn] (with not
all of them zero) such that

f = h1g1 + h2g2 + · · ·+ htgt.

We know that the multidegree satisfies

multideg(f) ≤ max{multideg(higi) | higi 6= 0}.

The idea of the proof is that there are multiple representations of f as a
sum

∑t
i=1 higi. We pick a representation such that the quantity

δ = max{multideg(higi) | higi 6= 0}

is minimal. Since any monomial ordering on k[x1, . . . , xn] has the
well-ordering property, the minimum δ does exist. Of course, we still have
multideg(f) ≤ δ. We now divide the proof into two cases:

Case 1: multideg(f) = δ.

If multideg(f) = δ then multideg(f) = multideg(higi) for some
i ∈ {1, 2, . . . , t}. So, LT (gi)|LT (f). Consequently,
LT (f) ∈ (LT (g1), . . . , LT (gt)). So, (LT (I)) = (LT (g1), . . . , LT (gt)) and
consequently, G is a Gröbner basis for I.

Case 2: multideg(f) < δ

Suppose for the sake of contradiction that multideg(f) < δ. Write
f =

∑t
i=1 higi, where the quantity δ is minimal. The idea is to break up

this sum so that

f =
∑

multideg(higi)=δ

higi +
∑

multideg(higi)<δ

higi.

By breaking up the first sum even further, we have
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f =
∑

multideg(higi)=δ

LT (hi)gi +
∑

multideg(higi)=δ

(hi−LT (hi))gi +
∑

multideg(higi)<δ

higi.

Note that the monomials appearing in the second and third sums above all
have multidegree less than δ. Since multideg(f) < δ, the first sum must
also have multidegree less than δ.

We recognise that the first sum∑
multideg(higi)=δ

LT (hi)gi

is a sum of polynomials pi = LT (hi)gi with multidegree δ and the
multidegree of the sum is less than δ. By Lemma 2.5.3, the sum is a
k-linear combination of the S-polynomials S(pi, pj). By a direct
computation, we have

S(pi, pj) = S(LT (hi)gi, LT (hj)gj)

=
xδ

LT (higi)
LT (hi)gi −

xδ

LT (hjgj)
LT (hj)gj

=
xδ

LT (hi)LT (gi)
LT (hi)gi −

xδ

LT (hj)LT (gj)
LT (hj)gj

= xδ(
1

LT (gi)
gi −

1

LT (gj)
gj)

= xδ−γij(
xγij

LT (gi)
gi −

xγij

LT (gj)
gj)

= xδ−γijS(gi, gj)

where xγij = lcm(LM(gi), LM(gj)). Now take one of the S-polynomials
S(gi, gj). By assumption, we can apply the polynomial division algorithm
to divide S(gi, gj) by g1, . . . , gt to obtain

S(gi, gj) =
t∑
l=1

Algl

where Al ∈ k[x1, . . . , xn] and if Algl 6= 0 then
multideg(Algl) ≤ multideg(S(gi, gj)). Multiply both sides of the equation
by xδ−γij to obtain
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S(pi, pj) = xδ−γijS(gi, gj) =
t∑
l=1

Blgl

where Bl = xδ−γijAl. If Blgl 6= 0 then

multideg(Blgl) ≤ multideg(xδ−γijS(gi, gj)) < δ

because LT (S(gi, gj)) < lcm(LM(gi), LM(gj)) = xγij .

It follows that the first sum in the expansion of f can be written as

∑
multideg(higi)=δ

LT (hi)gi =
t∑
l=1

B̃lgl

where if B̃lgl 6= 0 then multideg(B̃lgl) < δ. So,

f =
t∑
l=1

B̃lgl +
∑

multideg(higi)=δ

(hi − LT (hi))gi +
∑

multideg(higi)<δ

higi.

is a linear combination of g1, . . . , gt where all the terms have multidegree
less than δ. However, this contradicts the assumption that δ was minimal
amongst all representations of f as a linear combination of g1, . . . , gt.

Therefore multideg(f) = δ and the second case can never occur. This
completes the proof.

Unsurprisingly, Buchberger’s criterion in Theorem 2.5.4 forms the basis for
the Buchberger algorithm in the next section. Buchberger’s algorithm is
sometimes called the S-pair criterion.

Example 2.5.4. In this example, we will use Buchberger’s criterion. We
will work in the polynomial ring R[x, y, z]. Let I = (y − x2, z − x3). We
claim that G = {y − x2, z − x3} is a Gröbner basis, where we impose
lexicographic order on R[x, y, z] with y > z > x.

To see that the claim is true, note that there is only one S-polynomial to
consider by Theorem 2.5.4. It is

S(y − x2, z − x3) =
yz

y
(y − x2)− yz

z
(z − x3) = −zx2 + yx3.

By applying the polynomial division algorithm, we obtain
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S(y − x2, z − x3) = −zx2 + yx3 = x3(y − x2) + (−x2)(z − x3) + 0.

Since the remainder is zero, Theorem 2.5.4 tells us that G is a Gröbner
basis for I.

We now claim that G is not a Gröbner basis for I if we impose lexicographic
order on R[x, y, z] with x > y > z. We compute the S-polynomial as

S(y−x2, z−x3) =
x3

−x2
(y−x2)− x3

−x3
(z−x3) = −xy+x3+z−x3 = −xy+z.

But this time, if we apply the division algorithm, we obtain

−xy + z = 0(y − x2) + 0(z − x3) + (−xy + z).

The remainder is not zero. So, G is not a Gröbner basis with respect to the
lexicographic order with x > y > z.

2.6 Buchberger’s algorithm

Suppose that I = (f1, . . . , fs) is an ideal in the polynomial ring
k[x1, . . . , xn]. Buchberger’s algorithm provides us with a method of
converting the basis F = {f1, . . . , fs} to a Gröbner basis. The idea behind
this is that by Theorem 2.5.4, we compute the S-polynomials S(fi, fj) for
distinct i, j ∈ {1, 2, . . . s}. Then, we divide them by f1, . . . , fs, using the
polynomial division algorithm. If the remainder

S(fi, fj)
F

= 0

then we add S(fi, fj) to F and repeat the process. In other words, we keep
adding S-polynomials to F until it becomes a Gröbner basis for I.

We describe Buchberger’s algorithm in detail below:

1. Suppose that I = (f1, . . . , fs) is an ideal in the polynomial ring
k[x1, . . . , xn]. Suppose that F = {f1, . . . , fs}. Set F = G.

2. For distinct i, j ∈ {1, 2, . . . , s} where i < j, compute the
S-polynomials S(fi, fj).

3. Use the polynomial division algorithm to divide S(fi, fj) by the
polynomials in G.
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4. If there exists a distinct pair (i, j) with i < j such that S(fi, fj)
G

= 0,
add the S-polynomial S(fi, fj) to G and repeat the algorithm from
step 1. Otherwise, G is a Gröbner basis by Theorem 2.5.4 and the
algorithm terminates.

As with the other algorithms described in these notes, we must justify why
Buchberger’s algorithm works.

1. Does G ⊆ I hold at every step of the algorithm?

In step 1 of Buchberger’s algorithm, G = F ⊆ I. In step 4, we enlarge

G by adding the remainder S(fi, fj)
G

to G. If G ⊆ I then

S(fi, fj) ∈ I and by the division algorithm, S(fi, fj)
G
∈ I. Therefore,

G ∪ {S(fi, fj)
G
} ⊆ I. So, G ⊆ I at every step of Buchberger’s

algorithm.

2. Does G remain a basis for I?

Since F ⊆ I is a basis for I and F ⊆ G ⊆ I at every step of
Buchberger’s algorithm, we deduce that G must be a basis for I.

3. Does Buchberger’s algorithm terminate?

Suppose that G′ is the basis we started with in step 1 and G is the
union of G′ with the non-zero remainders of S-polynomials of
elements of G′. Since G′ ⊆ G, the ideals

(LT (G′)) ⊆ (LT (G)).

Moreover, if G′ 6= G then (LT (G′)) ⊂ (LT (G)). To see why this is the

case, suppose that r = S(fi, fj)
G′

6= 0 is a remainder which is adjoined
to G. By Theorem 2.2.1, the leading term LT (r) cannot be divisible
by any of the leading terms of elements in G′. By Lemma 2.3.1,
LT (r) 6∈ (LT (G′)). But by assumption, LT (r) ∈ (LT (G)). Hence,
(LT (G′)) ⊂ (LT (G)).

Consequently, as we loop through the algorithm, we create a strictly
ascending chain of ideals:
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(LT (G′)) ⊂ (LT (G1)) ⊂ · · · ⊂ (LT (Gk)) ⊂ . . .

By Theorem 2.4.2, k[x1, . . . , xn] is a Noetherian ring. Thus, there
exists k ∈ Z>0 such that if m ∈ Z≥k then (LT (Gm)) = (LT (Gk)). By
the contrapositive of the previous claim, we deduce that
Gm = Gk = G. Thus, Buchberger’s algorithm must terminate.

It is mentioned in [CLO15, §7] that Buchberger’s algorithm given above is
not a practical method of doing the computation. There are several
refinements of the algorithm given in [CLO15, §10], but we will not discuss

them here. Observe that once a remainder S(p, q)
G′

= 0, the remainder will
stay zero even if we add extra elements to G′. Hence, if we add new
generators fj to G′ one at a time, the only remainders that need to be

checked are S(fi, fj)
G′

for i ∈ {1, 2, . . . , j − 1}.

Often, we find that with Buchberger’s algorithm, the Gröbner bases
constructed have unnecessary generators. We can eliminate them with the
following lemma:

Lemma 2.6.1. Let G be a Gröbner basis of an ideal I ⊆ k[x1, . . . , xn]. Let
p ∈ G be a polynomial such that LT (p) ∈ (LT (G− {p})). Then, G− {p} is
also a Gröbner basis for I.

Proof. Assume that G is a Gröbner basis for the ideal I ⊆ k[x1, . . . , xn].
Assume that p ∈ G is a polynomial such that LT (p) ∈ (LT (G− {p})).
Since G is a Gröbner basis for I, (LT (G)) = (LT (I)). Since
LT (p) ∈ (LT (G− {p})), (LT (G− {p})) = (LT (G)) = (LT (I)), which
means that G− {p} is a Gröbner basis for I.

Definition 2.6.1. Let I be an ideal of k[x1, . . . , xn] and G = {g1, . . . , gt}
be a Gröbner basis for I.

We say that G is a minimal Gröbner basis if for i ∈ {1, 2, . . . , t}, the
leading constants LC(gi) = 1 and LT (gi) 6∈ (LT (G− {gi})).

We say that G is a reduced Gröbner basis if for i ∈ {1, 2, . . . , t}, the
leading constants LC(gi) = 1 and no monomial in the expression for gi ∈ G
lies in (LT (G− {gi})).

By definition, a reduced Gröbner basis is a minimal Gröbner basis. The
point of reduced Gröbner bases is that they are unique.
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Theorem 2.6.2. Let I ⊆ k[x1, . . . , xn] be a non-zero ideal. For a given
monomial ordering on k[x1, . . . , xn], I has a reduced Gröbner basis.
Moreover, the reduced Gröbner basis is unique.

Proof. Assume that I ⊆ k[x1, . . . , xn] is a non-zero ideal. Assume that we
have a monomial ordering on k[x1, . . . , xn]. By definition of a Gröbner
basis, all minimal Gröbner bases for I must have the same leading terms.

Let G be a minimal Gröbner basis for I. We say that g ∈ G is fully reduced
for G if no monomial in the expression for g lies in (LT (G− {g})). If g ∈ G
is fully reduced for G then g must be fully reduced for any other minimal
Gröbner basis G′ such that g ∈ G′ because the leading terms of G and G′

are the same.

Now let h ∈ G be arbitrary and set h′ = h
G−{h}

. Let G′ = (G− {h})∪ {h′}.

To show: (a) G′ is a minimal Gröbner basis for I.

(a) First, we observe that LT (h′) = LT (h). To see why this is the case, if

we divide h by the polynomials in G− {h} then the remainder h′ = h
G−{h}

must have LT (h) as one of its terms because LT (h) 6∈ (LT (G− {h})) and
thus, LT (h) is not divisible by any of the leading terms of G− {h}.

Subsequently, LT (h) = LT (h′) and (LT (G′)) = (LT (G)).

Notice that by construction, G′ is a minimal Gröbner basis for I and

h′ = h
G−{h}

is fully reduced for G′ by construction of G′ and Theorem 2.2.1.

By repeating the above process for every h ∈ G, we obtain a minimal
Gröbner basis G∗ for I such that every element of G∗ is fully reduced for
G∗. Despite the fact that the Gröbner basis changes every time we apply
the process, a fully reduced element stays fully reduced because the leading
terms never change throughout the entire process. Hence, G∗ is a reduced
Gröbner basis.

We will now prove uniqueness. Suppose that G and G∗ are both reduced
Gröbner bases for I. Then, G and G∗ are both minimal Gröbner bases and
hence, LT (G) = LT (G′) as sets of leading terms. This means that if g ∈ G
then there exists g′ ∈ G′ such that LT (g) = LT (g′).
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To show: (b) g = g′.

(b) Consider the difference g − g′. Then, g − g′ ∈ I and since G is a

Gröbner basis, the remainder g − g′G = 0 by Theorem 2.5.2. Since
LT (g) = LT (g′), these terms must cancel each other out in the difference
g − g′. The remaining terms in g − g′ are divisible by none of the leading
terms LT (G) = LT (G′) because G and G′ are reduced Gröbner bases.

So, g − g′G = g − g′ and consequently, g − g′ = 0.

Therefore, a reduced Gröbner basis for I must be unique.

A major consequence of Theorem 2.6.2 is that we can now tell when two
sets of polynomials generate the same ideal. Suppose that F = {f1, . . . , fs}
and G = {g1, . . . , gt} are two different sets of polynomials in k[x1, . . . , xn].
Then, we compute reduced Gröbner bases for the ideals (f1, . . . , fs) and
(g1, . . . , gt). If the reduced Gröbner bases for both ideals are the same then
by the uniqueness of a reduced Gröbner basis in Theorem 2.6.2,
(f1, . . . , fs) = (g1, . . . , gt).

We will end with an involved example on how to use Buchberger’s
algorithm to compute a Gröbner basis and then, we will convert it to a
reduced Gröbner basis.

Example 2.6.2. Let I = (x2 − y, x3 − x) ⊆ Q[x, y]. We will compute a
Gröbner basis for I using Buchberger’s algorithm. We will use the
lexicographic order on Q[x, y] with x >lex y.

Let G = {x2 − y, x3 − x}. We commence by computing the S-polynomial

S(x2 − y, x3 − x) = x(x2 − y)− (x3 − x) = −xy + x.

Notice that the leading term LT (−xy + x) cannot be divided by either

LT (x2 − y) = x2 or LT (x3 − x) = x3. Therefore, −xy + x
G

= −xy + x and
consequently, we add the polynomial −xy + x to G.

Now we have two more S-polynomials to compute. These are

S(x2 − y,−xy + x) = y(x2 − y) + x(−xy + x) = x2 − y2

and

S(x3 − x,−xy + x) = y(x3 − x) + x2(−xy + x) = x3 − xy.
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Note that x3 − xyG = 0 because x3 − xy = x(x2 − y). So, we can discard
the polynomial x3 − xy from our computations. On the other hand,

x2 − y2G = −y2 + y.

So, we add x2 − y2 to the set G and then repeat Buchberger’s algorithm.

Continuing in this fashion, we find that a Gröbner basis for I is

G = {x2 − y, x3 − x,−xy + x, x2 − y2, y2 − y,−xy + y3}.

Let us now find a reduced Gröbner basis for I. First, we want all the
leading coefficients of each generator to be 1. So, we multiply each
generator in G by an appropriate constant so that

G = {x2 − y, x3 − x, xy − x, x2 − y2, y2 − y, xy − y3}.

Next, we remove any redundant generators, in accordance with Lemma
2.6.1. For instance, x2 − y2 is redundant because

LT (x2 − y2) = x2 ∈ (LT (G− {x2 − y2})) = (x2, x3, xy, y2, xy).

Hence, we remove x2 − y2 from G so that

G = {x2 − y, x3 − x, xy − x, y2 − y, xy − y3}

The other redundant generators in G are x3 − x and xy − y3. We are left
with G = {x2 − y, xy − x, y2 − y}. Straight from the definition, we check
that G is a reduced Gröbner basis for I.

As a quick check, we can use Theorem 2.5.2 to show that
x2 − y, x3 − x ∈ (x2 − y, xy − x, y2 − y). We already know that
x2 − y ∈ (x2 − y, xy − x, y2 − y). By the polynomial division algorithm, we
find that

x3 − x = x(x2 − y) + 1(xy − x).

Since the remainder is zero, we deduce that x3− x ∈ (x2− y, xy− x, y2− y).
So, I ⊆ (x2 − y, xy − x, y2 − y) as expected.
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Chapter 3

An introduction to elimination
theory

3.1 The elimination and extension theorems

Similarly to [CLO15, Chapter 3, §1], we will commence with an example in
order to establish what elimination theory is all about.

Example 3.1.1. Suppose that we want to solve the system of equations

x2 + y + z = 1,
x+ y2 + z = 1,
x+ y + z2 = 1.

The idea is to consider the ideal

I = (x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1)

generated by these equations. We impose lexicographic order on k[x, y, z]
with x >lex y >lex z. By using Buchberger’s algorithm, we find that a
Gröbner basis for I is

G = {x+ y + z2 − 1, y2 − y − z2 + z, 2yz2 + z4 − z2, z6 − 4z4 + 4z3 − z2}.

Hence, the original equations are satisfied if and only if the generators of G
are equal to zero. In particular, we have the equation

z6 − 4z4 + 4z3 − z2 = z2(z − 1)2(z2 + 2z − 1) = 0

which has solutions z = 0, 1,−1±
√

2. If we substitute these values into the
equations
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2yz2 + z4 − z2 = 0 and y2 − y − z2 + z = 0

then we can solve for the values of y. Once we obtain the values of y, we
substitute them into the equation x+ y + z2 − 1 in order to obtain the
values of x. The five solutions turn out to be

(x, y, z) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1±
√

2,−1±
√

2,−1±
√

2).

In the above example, we accentuate two key steps which allowed us to solve
the system of equations. Firstly, we have the elimination step. We were
able to obtain an equation where the LHS was a polynomial in z and the
RHS was 0. This allowed us to isolate the variable z and solve for it first.

Secondly, we have the extension step. Once we solved for z, we were able to
extend the solutions to solve for y and then solve for x. The key concept
behind elimination theory is that these two steps can be generally executed.

We will first explain why the elimination step works. We require the
following definition.

Definition 3.1.2. Let I ⊆ k[x1, . . . , xn] be an ideal. For ` ∈ {1, 2, . . . , n},
the `th elimination ideal, denoted by I`, is defined as the ideal of
k[x`+1, . . . , xn]

I` = I ∩ k[x`+1, . . . , xn].

If I = (f1, . . . , fs) then the elimination ideal I` consists of all consequence of
f1 = · · · = fs = 0 which eliminate the variables x1, . . . , x`. It is easy to
check that I` is an ideal of k[x`+1, . . . , xn]. We define I0 = I as the zeroth
elimination ideal.

So, if we want to solve the simultaneous equations f1 = · · · = fs = 0 then
eliminating the variables x1, . . . , x` is the same as computing non-zero
polynomials in the `th elimination ideal. The elimination theorem tells us
that with a Gröbner basis, this is very easy to do.

Theorem 3.1.1 (Elimination theorem). Let I ⊆ k[x1, . . . , xn] be an ideal
and let G be a Gröbner basis of I. Impose the lexicographic order on
k[x1, . . . , xn] where x1 > x2 > · · · > xn. If ` ∈ {0, 1, . . . , n} then the set

G` = G ∩ k[x`+1, . . . , xn]

is a Gröbner basis for the `th elimination ideal I`.
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Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and that G is a Gröbner
basis for I. Assume that ` ∈ {0, 1, . . . , n} and that G` = G∩ k[x`+1, . . . , xn].
We claim that (LT (G`)) = (LT (I`)). Since G` ⊆ I, (LT (G`)) ⊆ (LT (I`)).

To show: (a) (LT (I`)) ⊆ (LT (G`)).

(a) Assume that f ∈ I`. We want to show that there exists g ∈ G` such
that LT (g)|LT (f). Since f ∈ I, there exists g′ ∈ G such that
LT (g′)|LT (f). Recall that we imposed lexicographic order on k[x1, . . . , xn]
with x1 >lex · · · >lex xn. Since LT (f) ∈ k[x`+1, . . . , xn], the lexicographic
order ensures that LT (g′) ∈ k[x`+1, . . . , xn] and subsequently, that
g′ ∈ k[x`+1, . . . , xn]. Therefore, g′ ∈ G` satisfies LT (g′)|LT (f). So,
f ∈ (LT (G`)) and (LT (I`)) ⊆ (LT (G`)).

So, (LT (I`)) = (LT (G`)), which means that G` = G ∩ k[x`+1, . . . , xn] is a
Gröbner basis for the elimination ideal I`.

By Theorem 3.1.1, the elimination step can be carried out easily, provided
that we have a Gröbner basis (with the lexicographic order). Even with
Buchberger’s algorithm, constructing such a Gröbner basis is easier said
than done. Sometimes, the Gröbner bases can be quite unwieldy to work
with (see [CLO15, Chapter 2, §10, Exercise 13]). Versions of the
elimination theorem exist which use more efficient monomial orderings than
the lexicographic order.

Next, we will discuss the extension step. Let I ⊆ k[x1, . . . , xn] be an ideal
and

V (I) = {(a1, . . . , an) ∈ kn | If f ∈ I then f(a1, . . . , an) = 0}

be the affine variety associated to I. The idea behind the extension step is
to build a solution to our system of equations by considering one variable at
a time. Let ` ∈ {1, 2, . . . , n}. A point (a`+1, . . . , an) ∈ V (I`) is called a
partial solution to the original system of equations.

To extend (a`+1, . . . , an) to a complete solution, we must add an extra
variable to the solution, which amounts to finding al such that

(a`, a`+1, . . . , an) ∈ V (I`−1).

If I`−1 = (g1, . . . , gr) in k[x`, . . . , xn] then we want to find solutions x` = a`
of the equations
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g1(x`, a`+1, . . . , an) = · · · = gr(x`, a`+1, . . . , an) = 0.

Here, we run into a few problems. It might be the case that the
polynomials g1, . . . , gr do not have a common root, which means that some
partial solutions might not extend to complete solutions.

Example 3.1.3. Here is a simple example from [CLO15]. Suppose that we
want to solve the system of equations

xy = 1,
xz = 1.

Let I = (xy − 1, xz − 1) ∈ k[x, y, z]. A Gröbner basis for the first
elimination ideal I1 is G1 = {y − z}. Hence, the partial solutions to the
system of equations are given by (a, a) for a ∈ k. These partial solutions
extend to a complete solution (x, y, z) = (a−1, a, a), except for the partial
solution (y, z) = (0, 0).

The extension of partial solutions is also sensitive to the field we are
working over.

Example 3.1.4. Here is another example from [CLO15]. Suppose that we
have the equations

x2 = y,
x2 = z.

The partial solutions are (y, z) = (a, a) for a ∈ k. These partial solutions
extend to complete solutions, provided that k = C. However, if k = R then
only the solutions with a ≥ 0 extend to complete solutions.

The above example suggests that the extension theorem should, at the very
least, be stated for an algebraically closed field.

Let us provide the necessary context for the extension theorem. Suppose
that we eliminate just the first variable x1. We want to know if a partial
solution (a2, . . . , an) ∈ V (I1) can be extended to a complete solution
(a1, a2, . . . , an) ∈ V (I). The extension theorem tells us when this can be
done.

Theorem 3.1.2 (Extension theorem). Let I = (f1, . . . , fs) ⊆ C[x1, . . . , xn]
be an ideal and let I1 be the first elimination ideal of I. If i ∈ {1, 2, . . . , s}
then write fi in the form
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fi = ci(x2, . . . , xn)xNi
1 + (terms where x1 has degree less than Ni).

Here Ni ∈ Z>0 and ci ∈ C[x2, . . . , xn] are non-zero polynomials. Let
(a2, . . . , an) ∈ V (I1) be a partial solution. If (a2, . . . , an) 6∈ V (c1, . . . , cs)
then there exists a1 ∈ C such that (a1, a2, . . . , an) ∈ V (I).

We will defer the proof of Theorem 3.1.2 to a later, separate section. The
proof we will give uses Gröbner bases. For now, we will address the
conditions of Theorem 3.1.2 and demonstrate how it can be applied to solve
systems of equations.

We have already established from Example 3.1.4 why Theorem 3.1.2 is
stated for the algebraically closed field C, rather than R or Q. Next, we will
talk about why we insist that (a2, . . . , an) 6∈ V (c1, . . . , cs) in Theorem 3.1.2.

The point is that in Theorem 3.1.2, if i ∈ {1, 2, . . . , s} then ci is the leading
coefficient of the polynomial fi with respect to the variable x1. So, the
condition (a2, . . . , an) 6∈ V (c1, . . . , cs) tells us that if we substitute
(x2, . . . , xn) = (a2, . . . , an) into the polynomials c1, . . . , cs ∈ k[x2, . . . , xn]
then c2, . . . , cs cannot vanish simultaneously.

To illustrate this point, let us return to Example 3.1.3. The only partial
solution we could not extend to a complete solution was (y, z) = (0, 0). If
we substitute (y, z) = (0, 0) into the leading coefficients y and z (with
respect to the variable x) then they both vanish. This establishes that if
the leading coefficients c1, . . . , cs vanish simultaneously on a partial solution
then Theorem 3.1.2 may fail.

Finally, let us explain why the extension theorem can be used when
eliminating any number of variables.

Theorem 3.1.3. Let I ⊆ k[x1, . . . , xn] be an ideal and ` ∈ {1, 2, . . . , n}.
Let I` ⊆ k[x`+1, . . . , xn] be the `th elimination ideal. Then, I`+1 is the first
elimination ideal of I`.

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and ` ∈ {1, 2, . . . , n}.
Recall that the `th elimination ideal satisfies

I` = I ∩ k[x`+1, . . . , xn].

Then,
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I`+1 = I ∩ k[x`+2, . . . , xn]

= (I ∩ k[x`+1, . . . , xn]) ∩ k[x`+2, . . . , xn]

= I` ∩ k[x`+2, . . . , xn].

Hence, I`+1 is the first elimination ideal of I`.

We will see how Theorem 3.1.3 allows us to use the extension theorem to
extend partial solutions for any number of variables by considering an
example.

Example 3.1.5. We will work in the polynomial ring C[x, y, z]. Suppose
that we want to solve the system of equations

x2 + y2 + z2 = 1,
xyz = 1.

Let I = (x2 + y2 + z2 − 1, xyz − 1). A Gröbner basis for I with respect to
the lexicographic order on C[x, y, z] (with x > y > z) is

G = {y4z2 + y2z4 − y2z2 + 1, x+ y3z + yz3 − yz}.

Let g1 = y4z2 + y2z4 − y2z2 + 1 and g2 = x+ y3z + yz3 − yz. By Theorem
3.1.1, the elimination ideals I1 and I2 are

I1 = (g1) and I2 = 0.

Note that V (I2) = V (0) = C. So, every c ∈ C is a partial solution to the
above system of equations.

By Theorem 3.1.3, I2 is the first elimination ideal of I1. We write g1 in the
prescribed form of Theorem 3.1.2:

g1 = z2(y4) + (y2z4 − y2z2 + 1).

The leading coefficient of g1 with respect to the variable y is z2, which only
vanishes if z = 0. By Theorem 3.1.2, if c ∈ C− {0} then there exists b ∈ C
such that (b, c) ∈ V (I1) and (y, z) = (b, c) is a partial solution to our
original system of equations.

Now, I1 is the first elimination ideal of I. Let us again verify that Theorem
3.1.2 applies here. First, we write x2 + y2 + z2 − 1 and xyz − 1 in the forms
required by Theorem 3.1.2:
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x2 + y2 + z2 − 1 = 1(x2) + (y2 + z2 − 1)

and

xyz − 1 = yz(x)− 1.

The leading coefficients of x2 + y2 + z2 − 1 and xyz − 1 with respect to the
variable x are 1 and yz respectively. Note that V (1, yz) = 0 since the first
leading coefficient is constant. Since the partial solution
(b, c) ∈ C× (C− {0}), (b, c) 6∈ V (1, yz) = 0. By Theorem 3.1.2, there exists
a ∈ C such that (a, b, c) ∈ V (I).

Therefore, all partial solutions z = c ∈ C− {0} extend to complete
solutions (x, y, z) = (a, b, c) of the original system of equations, which are
points in the affine variety V (I).

Example 3.1.5 also tells us that it is particularly easy to use the extension
theorem when one of the leading coefficients involved is a constant. We
state this as a corollary.

Corollary 3.1.4. Let I = (f1, . . . , fs) ⊆ C[x1, . . . , xn] be an ideal and let I1
be the first elimination ideal of I. Suppose that there exists i ∈ {1, 2, . . . , n}
such that

fi = cix
Ni
1 + (terms where x1 has degree less than Ni)

where Ni ∈ Z>0 and ci ∈ C. Let (a2, . . . , an) ∈ V (I1) be a partial solution.
Then, there exists a1 ∈ C such that (a1, a2, . . . , an) ∈ V (I).

Together, the elimination and extension theorems (Theorem 3.1.1 and
Theorem 3.1.2 respectively) show that if we have a system of equations and
we work in polynomial ring C[x1, . . . , xn] with lexicographic order (and
x1 > x2 > · · · > xn) then we can prove that under specific circumstances,
partial solutions extend to complete solutions. Of course, constructing the
complete solutions is an entirely different question to demonstrating the
existence of complete solutions. Most of time, numerical approximation
methods (Newton-Rhapson for instance) are needed to compute the
necessary roots required for the method to work.

3.2 Geometric interpretation of elimination

We will work over the field C. In this section, we will highlight geometric
interpretations of the elimination theorem (Theorem 3.1.1) and the
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extension theorem (Theorem 3.1.2). Geometrically, the elimination theorem
corresponds to projecting an affine variety to a lower dimensional subspace.

In order to make this precise, assume that V = V (f1, . . . , fs) ⊆ Cn is an
affine variety. For ` ∈ {1, 2, . . . , n− 1}, define the projection map

π` : Cn → Cn−`

(a1, . . . , an) 7→ (a`+1, . . . , an)

We want to relate the image π`(V ) to the `th elimination ideal I`.

Lemma 3.2.1. Let I = (f1, . . . , fs) ⊆ C[x1, . . . , xn] be an ideal. Let
V = V (f1, . . . , fs) be the affine variety associated with I. Let
` ∈ {1, 2, . . . , n− 1}. Then, in Cn−`,

π`(V ) ⊆ V (I`).

Proof. Assume that I = (f1, . . . , fs) ⊆ C[x1, . . . , xn] is an ideal and
V = V (f1, . . . , fs) is the affine variety associated with I. Assume that
` ∈ {1, 2, . . . , n− 1}.

Assume that (a`+1, . . . , an) ∈ π`(V ). Then, there exists (a1, . . . , an) ∈ Cn

such that if i ∈ {1, 2, . . . , s} then

fi(a1, a2, . . . , an) = 0

and π`(a1, . . . , an) = (a`+1, . . . , an). Now assume that
p ∈ I` = I ∩ k[x`+1, . . . , xn]. Since p ∈ I = (f1, . . . , fs), there exist
polynomials q1, . . . , qs ∈ k[x1, . . . , xn] such that

p(x`+1, . . . , xn) =
s∑
i=1

qi(x1, . . . , xn)fi(x1, . . . , xn).

Substituting (x1, x2, . . . , xn) = (a1, a2, . . . , an) into the above equation, we
find that

p(a`+1, . . . , an) =
s∑
i=1

qi(a1, . . . , an)fi(a1, . . . , an) = 0.

Therefore, (a`+1, . . . , an) ∈ V (I`) and consequently, π`(V ) ⊆ V (I`).

Similarly to the previous section, points of the affine variety V (I`) are
called partial solutions. By 3.2.1, we can write the image π`(V ) as
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π`(V ) =
{

(a`+1, . . . , an) ∈ V (I`)
∣∣∣ There exists a1, . . . , a` ∈ C

such that (a1, . . . , an) ∈ V
}

(3.1)

The points of π`(V ) are partial solutions which extend to complete
solutions. To illustrate this point, let us use Example 3.1.3 again.

Recall that in Example 3.1.3, we want to solve the system of equations

xy = 1,
xz = 1.

Again, let I = (xy − 1, xz − 1). The partial solutions are given by the affine
variety

V (I1) = {(y, z) ∈ C2 | y = z}.

The image of the affine variety V = V (xy − 1, xz − 1) under the projection
map π1 : C3 → C2 which projects to the latter two coordinates is

π1(V ) = {(a, a) ∈ C2 | a 6= 0}.

Notice that π1(V ) cannot be an affine variety because (0, 0) 6∈ π1(V ). This
leads us to the geometric interpretation of the extension theorem, which in
this context, tells us how close the set of extendable partial solutions π1(V )
is to being an affine variety.

Theorem 3.2.2 (Geometric extension theorem). Let
I = (f1, . . . , fs) ⊆ C[x1, . . . , xn] be an ideal. Let V = V (f1, . . . , fs) ⊆ Cn be
the affine variety associated to I. For i ∈ {1, 2, . . . , s}, let ci ∈ C[x2, . . . , xn]
be the leading coefficient of fi with respect to the variable x1 (see Theorem
3.1.2). Let I1 be the first elimination ideal of I. Then, in Cn−1,

V (I1) = π1(V ) ∪ (V (c1, . . . , cs) ∩ V (I1))

where π1 : Cn → Cn−1 is the projection map onto the last n− 1 coordinates.

Proof. Assume that I ⊆ C[x1, . . . , xn], V ⊆ Cn and I1 are defined as above.

To show: (a) V (I1) ⊆ π1(V ) ∪ (V (c1, . . . , cs) ∩ V (I1)).

(b) π1(V ) ∪ (V (c1, . . . , cs) ∩ V (I1)) ⊆ V (I1).
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(a) Recall that the points in V (I1) are partial solutions to the system of
equations f1 = · · · = fs = 0. Pick any point a ∈ V (I1). Then, a either
extends to a complete solution or it does not. Hence, there are two cases to
consider.

Case 1: Suppose that a ∈ V (I1) such that a extends to a complete solution
to the system of equations f1 = · · · = fs = 0. By equation (3.1), this means
that a ∈ π1(V ).

Case 2: On the contrary, suppose that a ∈ V (I1) does not extend to a
complete solution. By the contrapositive statement of Theorem 3.1.2, this
means that a ∈ V (I1) ∩ V (c1, . . . , cs).

By combining the two cases together, we find that
V (I1) ⊆ π1(V ) ∪ (V (c1, . . . , cs) ∩ V (I1)).

(b) Observe that V (I1) ∩ V (c1, . . . , cs) ⊆ V (I1) and by Lemma 3.2.1,
π1(V ) ⊆ V (I1). Therefore, π1(V ) ∪ (V (c1, . . . , cs) ∩ V (I1)) ⊆ V (I1).

By combining parts (a) and (b), we deduce that

π1(V ) ∪ (V (c1, . . . , cs) ∩ V (I1)) = V (I1)

as required.

As stated in [CLO15], Theorem 3.2.2 tells us that π1(V ) fills up the affine
variety V (I1), except possibly for a part which lies in V (c1, . . . , cs). What is
not clear in Theorem 3.2.2 is how big V (c1, . . . , cs) is. If we take Example
3.1.3 again, the affine variety V (c1, . . . , cs) is in this case, {(0, 0)}, which is
quite small.
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The closure theorem gives us more information about the size of π`(V )
relative to V (I`).

Theorem 3.2.3 (Closure theorem). Let I = (f1, . . . , fs) ⊆ C[x1, . . . , xn] be
an ideal. Let V = V (f1, . . . , fs) ⊆ Cn be the affine variety associated to I.
Let ` ∈ {1, 2, . . . , n− 1} and I` be the `th elimination ideal of I. Let π`
denote the projection map

π` : Cn → Cn−`

(a1, . . . , an) 7→ (a`+1, . . . , an)

Then, V (I`) is the smallest affine variety containing π`(V ) ⊆ Cn−`.
Moreover, if V 6= ∅ then there exists an affine variety W ⊂ V (I`) such that
V (I`)\W ⊆ π`(V ).

The proof of Theorem 3.2.3 is provided in [CLO15, §4]. The closure
theorem gives us a precise structure for the image π`(V ). There exists affine
varieties Zi ⊆ Wi ⊆ Cn−` for i ∈ {1, 2, . . . ,m} such that

π`(V ) =
m⋃
i=1

(Wi\Zi).

The closure theorem is stated for the field C, but just like the extension
theorem, it holds over any algebraically closed field.

3.3 A proof of the extension theorem

We begin with the necessary terminology.

Definition 3.3.1. Let f ∈ k[x1, . . . , xn] be non-zero. Write f in the form

f = cf (x2, . . . , xn)xN1 + (terms where x1 has degree less than N).

where N ∈ Z≥0 and cf ∈ k[x2, . . . , xn] is non-zero. Define deg(f, x1) = N . If
f = 0 then we define cf = 0.

Definition 3.3.2. Fix a monomial order on k[x1, . . . , xn]. Let
G = {g1, . . . , gt} ⊆ k[x1, . . . , xn]. We say that f has a standard
representation with respect to G if there exists polynomials
A1, . . . , At ∈ k[x1, . . . , xn] such that

f = A1g1 + · · ·+ Atgt.

In the standard representation above if Aigi 6= 0 then we must have
multideg(f) ≥ multideg(Aigi).
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We require the following lemma regarding the quantity deg(f, xi) and the
polynomial cf .

Lemma 3.3.1. Suppose that we impose lexicographic order on k[x1, . . . , xn]
with x1 > · · · > xn. Let f =

∑t
j=1Ajgj be a standard representation.

1. If Ajgj 6= 0 then deg(f, x1) ≥ deg(Ajgj, x1).

2. If N = deg(f, x1) then

cf =
∑

deg(Ajgj ,x1)=N

cAj
cgj .

Proof. Assume that f =
∑t

j=1Ajgj is a standard representation and that
we have the lexicographic order on k[x1, . . . , xn]. First, observe that if
Ajgj 6= 0 for some j ∈ {1, 2, . . . , t} then

deg(Ajgj, x1) ≤ max
j∈{1,2,...,n}

deg(Ajgj, x1) = deg(f, x1).

Next, assume that N = deg(f, x1). The polynomial cf ∈ k[x2, . . . , xn]
satisfies

f = cf (x2, . . . , xn)xN1 + (terms where x1 has degree less than N).

Since f =
∑t

i=1Aigi, we collect all the terms on the RHS which has degree
N with respect to x1. The result is∑

deg(Ajgj ,x1)=N

cAjgj =
∑

deg(Ajgj ,x1)=N

cAj
cgj .

Therefore, by comparing terms with degree N (with respect to x1), we find
that

f =
∑

deg(Ajgj ,x1)=N

cAj
cgj .

The proof of the extension theorem hinges on the following theorem, which
tells us how Gröbner bases with the lexicographic order interact with
certain partial solutions.
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Theorem 3.3.2. Let I ⊆ k[x1, . . . , xn], where we impose the lexicographic
order on k[x1, . . . , xn] with x1 > · · · > xn. Let G = {g1, . . . , gt} be a
Gröbner basis for I. For j ∈ {1, 2, . . . , t}, let cj ∈ k[x2, . . . , xn] and
Nj ∈ Z≥0 be such that

gj = cj(x2, . . . , xn)x
Nj

1 + (terms where x1 has degree less than Nj).

Assume that a = (a2, . . . , an) ∈ V (I1) is a partial solution such that
a 6∈ V (c1, . . . , ct). Then, there exists go ∈ G such that

1. The leading coefficient co ∈ k[x2, . . . , xn] satisfies co(a) 6= 0,

2. go has minimal degree (with respect to x1) among all elements gj ∈ G
with cj(a) 6= 0,

3. deg(go(x1,a)) > 0,

4. If go(a1,a) = 0 for some a1 ∈ k then (a1,a) ∈ V (I),

5. {f(x1,a) | f ∈ I} = (go(x1,a)) as ideals in k[x1].

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and G = {g1, . . . , gt} is a
Gröbner basis for I. Consider the set

{gj ∈ G | cj(a) 6= 0}
where cj ∈ k[x2, . . . , xn] is the leading coefficient of gj with respect to the
variable x1, a = (a2, . . . , an) ∈ V (I1) and a 6∈ V (c1, . . . , ct).

Since the set {gj ∈ G | cj(a) 6= 0} is finite, we can always choose a
polynomial go ∈ G from this set such that deg(go, x1) is minimal amongst
all the polynomials in the set {gj ∈ G | cj(a) 6= 0}. By construction, the
leading coefficient co must satisfy co(a) 6= 0.

To show: (a) deg(go(x1, a)) > 0.

(b) {f(x1, a) | f ∈ I} = (go(x1, a)).

(c) If go(a1, a) = 0 for some a1 ∈ k then (a1, a) ∈ V (I).

(a) Suppose for the sake of contradiction that deg(go(x1, a)) = 0. Since
co(a) 6= 0, deg(go, x1) = 0. Hence, go ∈ I1 and co = go. Since a ∈ V (I1),

co(a) = go(a) = 0
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which contradicts the assumption that co(a) 6= 0. So, deg(go(x1, a)) > 0.

(b) Consider the evaulation map

eva : k[x1, . . . , xn] → k[x1]
f(x1, x2, . . . , xn) 7→ f(x1, a).

This is a ring homomorphism. The image of I under eva is the ideal

eva(I) = (g1(x1, a), . . . , gt(x1, a)) ⊆ k[x1].

Notice that eva(I) = {f(x1, a) | f ∈ I}. Hence, it suffices to show that if
j ∈ {1, 2, . . . , t} then gj(x1, a) ∈ (go(x1, a)).

To show: (ba) If j ∈ {1, 2, . . . , t} then gj(x1, a) ∈ (go(x1, a)).

(ba) Assume that j ∈ {1, 2, . . . , t}. We proceed by induction on the degree
deg(gj, x1). For the base case, assume that deg(gj, x1) < deg(go, x1). By
construction of go, this means that either cj(a) = 0, which means that gj
drops x1-degree when evaluated at a, or gj vanishes identically when
evaluated at a.

Let do = deg(go, a). Suppose for the sake of contradiction that there exists
gj ∈ G such that deg(gj, x1) < do and gj(x1, a) 6= 0. Among all the gj, pick
a polynomial gb ∈ G which minimises the decrease in x1-degree when
evaluated at a. Set δ = deg(gb, x1)− deg(gb(x1, a)) so that the x1-degree of
gb drops by δ when we evaluate at a.

For clarity, we will introduce even more notation. Set db = deg(gb, x1) so
that deg(gb(x1, a)) = db − δ. Define the polynomial S ∈ I by

S = c0x
do−db
1 gb − cbgo = c0x

do−db
1 (cbx

db
1 + . . . )− cb(coxdo1 + . . . ).

Since the leading terms in cox
do−db
1 and cbgo cancel in the subtraction above,

deg(S, x1) < do. We aim to derive a contradiction by computing
deg(S(x1, a)) in two different ways:

Method 1: We first proceed via the direct route — evaluate S(x1, . . . , xn)
at a and then compute the degree. We obtain

S(x1, a) = c0(a)xdo−db1 gb(x1, a)− cb(a)go(x1, a) = c0(a)xdo−db1 gb(x1, a).
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This is because cb(a) = 0 (the degree of gb drops when evaluated at a).
Recall that by definition of go, co(a) 6= 0 and

deg(S(x1, a)) = do − db + deg(gb(x1, a)) = do − db + db − δ = do − δ.

Method 2: Consider a standard representation S =
∑t

j=1Bjgj. Such a
standard representation exists because S ∈ I and {g1, . . . , gt} is a Gröbner
basis for I. By the first part of Lemma 3.3.1, we have for Bj 6= 0,

deg(Bj, x1) + deg(gj, x1) = deg(Bjgj, x1) ≤ deg(S, x1) < do.

Notice that by the inequality above, the gj which appear satisfy
deg(gj, x1) < do = deg(go, x1). Therefore, either gj(x1, a) = 0 or the
x1-degree of gj drops by at least δ upon evaluation at a. Therefore,

deg(Bj(x1, a)) + deg(gj(x1, a)) ≤ deg(Bj, x1) + deg(gj, x1)− δ < d0 − δ.

Here we implicitly used the fact that a 6∈ V (c1, . . . , ct) so that at the very
least, one of the gj must drop in x1-degree by at least δ.

Consequently,

deg(S(x1, a)) ≤ max(deg(Bj(x1, a)) + deg(gj(x1, a)) < d0 − δ.
However, in Method 1 we proved that deg(S(x1, a)) = do − δ. This gives
our desired contradiction. Hence, if gj ∈ G then either d(gj, x1) ≥ do or
gj(x1, a) = 0. The first case will be addressed in the inductive step. The
second case tells us that gj(x1, a) ∈ (go(x1, a)), which proves the base case.

For the inductive hypothesis, fix d ≥ do and assume that
gj(x1, a) ∈ (g0(x1, a)) for gj ∈ G with deg(gj, x1) < d. Now assume that
gl ∈ G with deg(gl, x1) = d. Define the polynomial T ∈ I by

T = cogl − clxd−do1 go = co(cjx
d
1 + . . . )− cjxd−do1 (cox

d0
1 + . . . ).

Note that deg(T, x1) < d. Since T ∈ I, we can write it as a standard
representation T =

∑t
k=1Ckgk. Arguing as in the base case, we deduce that

if Bk 6= 0 then deg(gk, x1) < d. By the inductive hypothesis, this means
that if Bk 6= 0 then gk(x1, a) ∈ (go(x1, a)). Now write

cogl = T + clx
d−do
1 go = clx

d−do
1 go +

t∑
k=1

Ckgk.
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Then,

co(a)gl(x1, a) = cl(a)xd−do1 go(x1, a) +
t∑

k=1

Bk(x1, a)gk(x1, a)

The RHS is an element of the ideal (go(x1, a)). Since co(a) 6= 0 by
construction, we find that gl(x1, a) ∈ (go(x1, a)). This finally completes the
induction step.

By mathematical induction, we deduce that if gj ∈ G then
gj(x1, a) ∈ (go(x1, a)). So,

(go(x1, a)) = (g1(x1, a), . . . , gt(x1, a)) = {f(x1, a) | f ∈ I}.

(c) Assume that there exists a1 ∈ k such that go(a1, a) = 0. By part (b),

(go(x1, a)) = {f(x1, a) | f ∈ I}.

Therefore, if go(a1, a) = 0 then f(a1, a) = 0 and (a1, a) ∈ V (I) as
required.

Now we are ready to prove the extension theorem. We will do it over an
algebraically closed field k rather than just C. We restate the extension
theorem below for clarity.

Theorem 3.3.3 (Extension theorem V2). Let k be an algebraically closed
field and I = (f1, . . . , fs) ⊆ k[x1, . . . , xn] be an ideal and let I1 be the first
elimination ideal of I. If i ∈ {1, 2, . . . , s} then write fi in the form

fi = ci(x2, . . . , xn)xNi
1 + (terms where x1 has degree less than Ni).

Here Ni ∈ Z>0 and ci ∈ k[x2, . . . , xn] are non-zero polynomials. Let
(a2, . . . , an) ∈ V (I1) be a partial solution. If (a2, . . . , an) 6∈ V (c1, . . . , cs)
then there exists a1 ∈ k such that (a1, a2, . . . , an) ∈ V (I).

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and G = {g1, . . . , gt} is a
Gröbner basis for I with respect to the lexicographic order on k[x1, . . . , xn]
with x1 > · · · > xn. Set a = (a2, . . . , an).

To show: (a) There exists gj ∈ G such that cgj(a) 6= 0.

(a) Since a 6∈ V (c1, . . . , cs), there exists i ∈ {1, 2, . . . , t} such that ci(a) 6= 0.
Write the polynomial fi ∈ I with its standard representation
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fi =
t∑

j=1

Ajgj.

Since ci = cfi and Ni = deg(fi, x1), we can invoke the second part of
Lemma 3.3.1 to deduce that

ci =
∑

deg(Ajgj ,x1)=Ni

cAj
cgj .

Since ci(a) 6= 0, there exists a cgj appearing in the LHS such that cgj(a) 6= 0.

Now we can apply Theorem 3.3.2 to obtain go ∈ G with deg(go(x1, a)) > 0.
Since k is algebraically closed, there exists a1 ∈ k such that go(a1, a) = 0.
As yet another consequence of Theorem 3.3.2, (a1, a) ∈ V (I). This proves
the extension theorem for an algebraically closed field.
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Chapter 4

The Hilbert Nullstellensatz

4.1 The weak Nullstellensatz

Recall that if V ⊆ kn is an affine variety then we can construct the ideal

I(V ) = {f ∈ k[x1, . . . , xn] | If a ∈ V then f(a) = 0}.

Conversely, if I ⊆ k[x1, . . . , xn] then we can define the set

V (I) = {a ∈ kn | If f ∈ I then f(a) = 0}.

By the Hilbert basis theorem (see Theorem 2.4.2), there exists
f1, . . . , fs ∈ k[x1, . . . , xn] such that I = (f1, . . . , fs). Consequently,

V (I) = {a ∈ kn | If i ∈ {1, 2, . . . , s} then fi(a) = 0}

is an affine variety. Thus, we have a map

{Ideals} ↔ {Affine varieties}
I 7→ V (I)

I(V ) ← [ V

We know that the above map is not one-to-one. For instance, if
I1 = (1 + x2) and I2 = (1 + x2 + x4) are ideals in R[x] then
V (I1) = V (I2) = ∅.

The above example shows that it is possible to have different ideals
represent the empty variety. However, if we work in an algebraically closed
field then this problem goes away for the single variable case. To see why
this is the case, recall that k[x] is a PID. So, if I ⊆ k[x] is an ideal then
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I = (f) for some f ∈ k[x].

The affine variety V (I) is the set of roots of f . Assuming that k is
algebraically closed, we deduce that every non-constant polynomial in k[x]
has a root. Therefore, if V (I) = ∅ then f ∈ k − {0}. Consequently,
I = (f) = (1) = k[x]. So, I = k[x] is the only ideal of k[x] such that
V (I) = ∅.

The weak Nullstellensatz asserts that this also happens in the multivariable
case. Note that in the proof we give, we will use a particular result in
[CLO15] without proof.

Theorem 4.1.1 (Weak Nullstellensatz). Let k be an algebraically closed
field and let I ⊆ k[x1, . . . , xn] be an ideal such that V (I) = ∅. Then,
I = k[x1, . . . , xn].

Proof. We will prove the contrapositive of the statement. Assume that
I ⊂ k[x1, . . . , xn] is an ideal of k[x1, . . . , xn] which is not equal to
k[x1, . . . , xn] itself. Assume that k is an algebraically closed field.

Before we proceed, let us establish some terminology. Given a ∈ k and
f ∈ k[x1, . . . , xn], let f = f(x1, . . . , xn−1, a) ∈ k[x1, . . . , xn−1]. Define the
ideal

Ixn=a = {f | f ∈ I}.

For clarity, Ixn=a is an ideal of the polynomial ring k[x1, . . . , xn−1].

Now we claim that there exists a ∈ k such that Ixn=a ⊂ k[x1, . . . , xn−1].
Before we prove the claim, note that if we prove the claim then we can
iteratively use the claim to generate elements a1, . . . , an ∈ k such that the
ideal

Ixn=an,...,x1=a1 ⊂ k.

Since k is a field, Ixn=an,...,x1=a1 = 0 and consequently, (a1, . . . , an) ∈ V (I).
So, V (I) 6= ∅, which is the statement we want to prove.

To show: (a) There exists a ∈ k such that Ixn=a ⊂ k[x1, . . . , xn−1].

(a) There are two cases to consider.
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Case 1: I ∩ k[xn] 6= {0}.

If I ∩ k[xn] 6= {0} then let f ∈ I ∩ k[xn] be non-zero. Note that f must be
non-constant as otherwise, 1 ∈ I ∩ k[xn] ⊆ I which contradicts the
assumption that I 6= k[x1, . . . , xn].

Now since k is algebraically closed, we can write

f = c

r∏
i=1

(xn − bi)mi

where c, b1, . . . , br ∈ k and c 6= 0. Suppose for the sake of contradiction that
Ixn=bi = k[x1, . . . , xn−1] for i ∈ {1, 2, . . . , r}. If i ∈ {1, 2, . . . , r} then there
exists Bi ∈ I such that Bi(x1, . . . , xn−1, bi) = 1. A quick computation
reveals that

1 = Bi(x1, . . . , xn−1, bi) = Bi(x1, . . . , xn−1, xn − (xn − bi)) = Bi +Ai(xn − bi)

for some Ai ∈ k[x1, . . . , xn]. Since this holds for i ∈ {1, 2, . . . , r}, we deduce
that

1 =
r∏
i=1

(Ai(xn − bi) +Bi)
mi = A

r∏
i=1

(xn − bi)mi +B

where A =
∏r

i=1A
mi
i and B ∈ I. But,

1 = A
r∏
i=1

(xn − bi)mi +B = Ac−1f +B ∈ I.

So, I = k[x1, . . . , xn], which contradicts the assumption that
I 6= k[x1, . . . , xn]. Therefore, there exists bi ∈ k such that
Ixn=bi 6= k[x1, . . . , xn−1]. This proves the claim in this particular case.

Case 2: I ∩ k[xn] = {0}.

Assume that I ∩ k[xn] = {0}. Let G = {g1, . . . , gt} be a Gröbner basis for I
where we impose lexicographic order on k[x1, . . . , xn] with x1 > · · · > xn.
Write

gi = ci(xn)xαi + (Terms with degree less than xαi)

where ci(xn) ∈ k[xn] is non-zero and xαi is a monomial in x1, . . . , xn−1.
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Next, pick a ∈ k such that if i ∈ {1, 2, . . . , t} then ci(a) 6= 0. This is
possible because algebraically closed fields such as k are infinite. The ideal
Ixn=a ⊆ k[x1, . . . , xn−1] has basis given by

{g1, g2, . . . , gt}

where gi = gi(x1, . . . , xn−1, a). If we substitute xn = a into our previous
expression for gi, we find that LT (gi) = ci(a)xαi because ci(a) 6= 0.

We claim that if i ∈ {1, 2, . . . , t} then LT (gi) is non-constant. Suppose for
the sake of contradiction that LT (gi) = ci(a)xαi is constant. Then, xαi = 1
and gi = ci ∈ I ∩ k[xn] = 0. This contradicts the fact that ci(xn) 6= 0. So,
LT (gi) is non-constant.

To show: (aa) {g1, . . . , gt} forms a Gröbner basis for Ixn=a.

(aa) Assume that gi, gj ∈ G and compute the S-polynomial

S(gi, gj) = cj(xn)xγ−αigi − ci(xn)xγ−αjgj.

In the above expression, the subtraction γ − αi is done entrywise. Also,
xγ = lcm(xαi , xαj). By construction of S(gi, gj), x

γ > LT (S). This can be
seen clearly once we write

S(gi, gj) = cj(xn)xγ−αi(ci(xn)xαi + . . . )− ci(xn)xγ−αj(cj(xn)xαj + . . . ).

Since S(gi, gj) ∈ I, we can express it using the standard representation

S(gi, gj) =
t∑
l=1

Algl.

By substituting xn = a, we find that

cj(a)xγ−αigi − ci(a)xγ−αjgj = S(gi, gj) =
t∑
l=1

Algl.

Now LT (gi) = ci(a)xαi which means that S(gi, gj) is the S-polynomial
S(gi, gj), up to the non-zero constant ci(a)cj(a). If Algl 6= 0 then

xγ > LT (S) ≥ LT (Algl).

Therefore, if Algl 6= 0 then
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xγ > LT (Algl).

Since xγ = lcm(LM(gi), LM(gj)), S(gi, gj) has a lcm representation for
i, j ∈ {1, 2, . . . , t} (see [CLO15, Chapter 3, §9, Definition 5]). So,
{g1, . . . , gt} is a Gröbner basis for Ixn=a. This uses [CLO15, Chapter 2, §9,
Theorem 6].

(a) Since {g1, . . . , gt} is a Gröbner basis for Ixn=a, 1 6∈ Ixn=a because 1 is
not divisible by any of the non-constant leading terms LT (gi). Therefore,
Ixn=a 6= k[x1, . . . , xn−1], which proves the claim in part (a) and gives the
desired result.

In the statement of the weak Nullstellensatz in Theorem 4.1.1, set k = C.
In this sense, the weak Nullstellensatz can be thought of as a generalisation
of the fundamental theorem of algebra to multivariable polynomials
because it (informally) states that every system of polynomials which
generates an ideal strictly smaller than C[x1, . . . , xn] must have a
common zero in Cn.

Before we proceed to Hilbert’s Nullstellensatz, let us describe an
application of Theorem 4.1.1. The consistency problem asks whether a
system of polynomial equations f1 = · · · = fs = 0, where
f1, . . . , fs ∈ C[x1, . . . , xn], has a common solution in Cn.

By Theorem 4.1.1, the polynomials do not have a common root in Cn if and
only if V (f1, . . . , fs) = ∅ if and only if 1 ∈ (f1, . . . , fs). It is easy to verify
that {1} is the unique reduced basis of the ideal (1) = k[x1, . . . , xn]. Thus,
we devise the following algorithm to solve the consistency problem.

1. Suppose that f1, . . . , fs ∈ C[x1, . . . , xn] and we want to determine if
the equations f1 = f2 = · · · = fs = 0 have a common solution in Cn.

2. Let I = (f1, . . . , fs). Compute the reduced Gröbner basis G for I.

3. If G = {1} then there is no common solution in Cn. If G 6= {1} then
there exists (a1, . . . , an) ∈ V (f1, . . . , fs) such that

f1(a1, . . . , an) = · · · = fs(a1, . . . , an) = 0.

Actually, the above algorithm is valid over any algebraically closed field
because Theorem 4.1.1 holds for an algebraically closed field.
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Example 4.1.1. Let J = (x2 + y2 − 1, y − 1) ⊆ C[x, y] be an ideal. We
impose lexicographic order on C[x, y] with x >lex y. We want to use the
algorithm described previous to determine whether the equations

x2 + y2 − 1 = 0 and y − 1 = 0

have a common solution in C2. The first step is to compute a reduced
Gröbner basis for J . Let G = {x2 + y2 − 1, y − 1}

We begin with Buchberger’s algorithm. We compute the S-polynomial

S(x2 + y2 − 1, y − 1) = y(x2 + y2 − 1)− x2(y − 1) = x2 + y3 − y.

If we divide x2 + y3 − y by the polynomials in G, we obtain the remainder

x2 + y3 − yG = 0.

Thus, Buchberger’s algorithm terminates and we deduce that
G = {x2 + y2 − 1, y − 1} is a Gröbner basis for J . In particular, it is a
minimal Gröbner basis.

However, G is not a reduced Gröbner basis because the term
y2 ∈ (LT (y − 1)) = (y). Following the proof of Theorem 2.6.2, we compute
the remainder

x2 + y2 − 1
y−1

= x2.

By Theorem 2.6.2, G′ = {x2, y − 1} is a minimal Gröbner basis for J . We
can check directly from the definition that G′ is the desired reduced
Gröbner basis for J .

Now since G′ = {x2, y − 1} 6= {1}, the weak Nullstellensatz (see Theorem
4.1.1) tells us that the equations

x2 + y2 − 1 = 0 and y − 1 = 0

have a common solution, which is (x, y) = (0, 1) ∈ C2.

With this information, we will now answer the question in [CLO15,
Chapter 4, §1, Exercise 2] by finding a polynomial f ∈ I(V (J)) such that
f 6∈ J . First, we have

V (J) = {(x, y) ∈ C2 | x2 + y2 − 1 = 0, y − 1 = 0} = {(0, 1)}
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and

I(V (J)) = {f ∈ C[x, y] | f(0, 1) = 0}.

Observe that the polynomial xy ∈ I(V (J)). We claim that xy 6∈ J . If we
divide xy by the polynomials in the reduced Gröbner basis G′ = {x2, y− 1},
we obtain the remainder

xyG
′
= x.

Since xyG
′ 6= 0, we can invoke Theorem 2.5.2 to deduce that xy 6∈ J as

required.

4.2 A proof of Hilbert’s Nullstellensatz

Even though we have the weak Nullstellensatz in Theorem 4.1.1, the
correspondence between ideals and affine variety is still not one-to-one,
even if we work over an algebraically closed field such as C. For instance,
the affine varieties V (x) = V (x2) = {0} ⊆ C. As a multivariable example,
V (x2, y) = V (x, y) = {(0, 0)} ⊆ C2. The issue here is that a power of a
polynomial vanishes on the same set as the original polynomial. That is, if
f ∈ k[x1, . . . , xn] and m ∈ Z>0 then V (f) = V (fm).

The Hilbert Nullstellensatz states that over an algebraically closed field k,
the above reason is the only reason why different ideals can give the same
variety.

Theorem 4.2.1 (Hilbert’s Nullstellensatz). Let k be an algebraically closed
field and f, f1, . . . , fs ∈ k[x1, . . . , xn]. Then, f ∈ I(V (f1, . . . , fs)) if and only
if there exists m ∈ Z>0 such that

fm ∈ (f1, . . . , fs).

Proof. Assume that k is an algebraically closed field and
f, f1, . . . , fs ∈ k[x1, . . . , xn].

To show: (a) If there exists m ∈ Z>0 such that fm ∈ (f1, . . . , fs) then
f ∈ I(V (f1, . . . , fs)).

(b) If f ∈ I(V (f1, . . . , fs)) then there exists m ∈ Z>0 such that
fm ∈ (f1, . . . , fs).
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(a) Assume that there exists m ∈ Z>0 such that fm ∈ (f1, . . . , fs). Then,
fm must vanish on V (f1, . . . , fs). Consequently, f must also vanish on
V (f1, . . . , fs) and f ∈ I(V (f1, . . . , fs)).

(b) Assume that f ∈ I(V (f1, . . . , fs)). Consider the ideal

I ′ = (f1, . . . , fs, 1− yf) ⊆ k[x1, . . . , xn, y].

To show: (ba) V (I ′) = ∅.

(ba) Let (a1, . . . , an+1) ∈ kn+1. There are two cases to consider here.

Case 1: Suppose that (a1, . . . , an) ∈ kn is a common zero of f1, . . . , fs. Since
f ∈ I(V (f1, . . . , fs)), f(a1, . . . , an) = 0. So,

1− yf = 1− an+1f(a1, . . . , an) = 1 6= 0.

Consequently, (a1, . . . , an+1) 6∈ V (I ′).

Case 2: Now suppose that (a1, . . . , an) is not a common zero of f1, . . . , fs.
Then, there exists i ∈ {1, 2, . . . , s} such that fi(a1, . . . , an) 6= 0. By
considering fi as a polynomial in x1, . . . , xn, y, we have
fi(a1, . . . , an, an+1) 6= 0. Therefore, (a1, . . . , an+1) 6∈ V (I ′).

We combine the two cases above to show that if (a1, . . . , an+1) ∈ kn+1 then
(a1, . . . , an+1) 6∈ V (I ′). Therefore, V (I ′) = ∅ as claimed.

(b) Since V (I ′) = ∅, the weak Nullstellensatz (see Theorem 4.1.1) tells us
that 1 ∈ I ′. There exists p1, . . . , ps, q ∈ k[x1, . . . , xn, y] such that

1 =
( s∑
i=1

pi(x1, . . . , xn, y)fi
)

+ q(x1, . . . , xn, y)(1− yf).

Let y = 1/f(x1, . . . , xn). Then,

1 =
s∑
i=1

pi(x1, . . . , xn, 1/f)fi.

Think of the RHS as a rational function, whose denominators involve
powers of f . Choose m ∈ Z>0 sufficiently large so that multiplying both
sides by fm clears denominators on the RHS. So,
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fm =
s∑
i=1

Aifi

for some polynomials Ai ∈ k[x1, . . . , xn]. Therefore, fm ∈ (f1, . . . , fs) as
required.

4.3 Radical ideals and the strong

Nullstellensatz

One question remains unanswered by the Hilbert Nullstellensatz in
Theorem 4.2.1 — what type(s) of ideals are ideals of an affine variety? The
key observation lies with the following lemma.

Lemma 4.3.1. Let V ⊆ kn be an affine variety and m ∈ Z>0. If
fm ∈ I(V ) then f ∈ I(V ).

Proof. Assume that V ⊆ kn is an affine variety and m ∈ Z>0. Assume that
fm ∈ I(V ). If a ∈ V then (f(a))m = 0, which holds if and only if f(a) = 0.
Hence, f ∈ I(V ).

The property of an ideal of an affine variety given in Lemma 4.3.1 is
important enough to warrant its own definition.

Definition 4.3.1. Let R be a commutative ring and I ⊆ R be an ideal.
We say that I is radical if the following statement is satisfied: If m ∈ Z>0,
f ∈ R and fm ∈ I then f ∈ I.

Lemma 4.3.1 tells us that the ideal of an affine variety I(V ) is a radical
ideal. Theorem 4.2.1 tells us that an arbitrary ideal J fails to equal
I(V (J)) if J contains integer powers fm of a polynomial f 6∈ I — that is, if
J fails to be a radical ideal. This statement hints at a strong connection
between affine varieties and radical ideals. To elucidate this, we require the
following definition.

Definition 4.3.2. Let I ⊆ k[x1, . . . , xn] be an ideal. The radical of I,
denoted by

√
I, is the set

√
I = {f ∈ k[x1, . . . , xn] | There exists m ∈ Z>0 such that fm ∈ I}.

The radical of ideals is still an ideal, as the following lemma suggests.
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Lemma 4.3.2. Let I ⊆ k[x1, . . . , xn]. Then,
√
I is an ideal in k[x1, . . . , xn]

such that I ⊆
√
I. Moreover,

√
I is a radical ideal.

Proof. Assume that I ⊆ k[x1, . . . , xn] is an ideal and
√
I is the radical of I.

To show: (a) I ⊆
√
I.

(b)
√
I is an ideal of k[x1, . . . , xn].

(c)
√
I is a radical ideal.

(a) Assume that f ∈ I. Then, f ∈
√
I because f = f 1 ∈ I. Therefore,

I ⊆
√
I.

(b) First, assume that f, g ∈
√
I. Then, there exists m,n ∈ Z>0 such that

fm ∈ I and gn ∈ I. Consider the polynomial

(f + g)m+n−1 =
m+n−1∑
`=0

(
m+ n− 1

`

)
f `gm+n−1−`.

If ` ∈ {1, 2, . . . ,m− 1} then f `gm+n−1−` ∈ I because gn ∈ I. If
` ∈ {m,m+ 1, . . . ,m+ n− 1} then f `gm+n−1−` ∈ I because fm ∈ I. Hence,
(f + g)m+n−1 ∈ I and consequently, f + g ∈

√
I.

Now assume that h ∈ k[x1, . . . , xn]. Since fm ∈ I, (hf)m = hmfm ∈ I.
Therefore, hf ∈

√
I. So,

√
I is an ideal of k[x1, . . . , xn].

(c) Assume that p ∈ k[x1, . . . , xn], m ∈ Z>0 and pm ∈
√
I. We want to show

that p ∈
√
I. Since pm ∈

√
I, there exists n ∈ Z>0 such that

(pm)n = pmn ∈ I. Since mn ∈ Z>0 satisfies pmn ∈ I, we deduce that p ∈
√
I.

So,
√
I must be a radical ideal.

Now we can restate Theorem 4.2.1 in terms of ideals. The following
theorem is often referred to as the strong Nullstellensatz.

Theorem 4.3.3 (Strong Nullstellensatz). Let k be an algebraically closed
field and J ⊆ k[x1, . . . , xn] be an ideal. Then,

I(V (J)) =
√
J.

Proof. Assume that k is an algebraically closed field and J ⊆ k[x1, . . . , xn]
is an ideal.
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To show: (a)
√
J ⊆ I(V (J)).

(b) I(V (J)) ⊆
√
J .

(a) Assume that f ∈
√
J . Then, there exists m ∈ Z>0 such that fm ∈ J .

So, fm ∈ I(V (J)) and by Lemma 4.3.1, f ∈ I(V (J)). So,
√
J ⊆ I(V (J)).

(b) Assume that g ∈ I(V (J)). By Theorem 4.2.1, there exists m ∈ Z>0 such
that gm ∈ J . Therefore, g ∈

√
J and I(V (J)) ⊆

√
J .

By combining parts (a) and (b), we deduce that

I(V (J)) =
√
J

as required.
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