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Chapter 1

Introduction

The main goal of this thesis is to study wedge product matrices, a particular general-
isation of the determinant over a commutative ring R. To motivate the idea behind
wedge product matrices, we will begin with a brief description of the construction
of the determinant in a commutative ring.

Informally, if R is a commutative ring and A ∈ Mn×n(R) (a n× n matrix with ele-
ments in R), then its determinant det(A) is computed by taking the wedge product
of all n columns/rows of A. A natural question which stems from this is: what
happens when one takes the wedge product of only k columns/rows of A, where
k ∈ {1, . . . , n− 1}? By taking all possible wedge products of k columns/rows from
A, one obtains the

(
n
k

)
×
(
n
k

)
wedge product matrix Λk(A), a generalisation of the

determinant because Λn(A) is the 1 × 1 matrix with the single entry det(A). As
such, wedge product matrices share many of the useful properties of determinants.

It should be emphasised here that wedge product matrices are commonly known
as compound matrices (see [Mul98] for instance). I decided to call them “wedge
product matrices” in order to convey the idea behind its definition.

To start the thesis, chapter 2 is dedicated to defining wedge product matrices and
proving some of their properties. Our first application of wedge product matrices
is the generalisation of familiar linear algebra identities, first exhibited by the ex-
tension of Laplace expansion along a single row/column to Laplace expansion along
multiple rows/columns.

In chapter 3, we introduce the kth adjugate matrix Υn−k(A) which satisfies the
property Λk(A)Υn−k(A) = Υn−k(A)Λk(A) = det(A)I(nk)

where A ∈ Mn×n(R),

k ∈ {1, . . . , n − 1} and I(nk)
is the

(
n
k

)
×
(
n
k

)
identity matrix. In this manner,

we generalise the construction of the adjugate matrix, which is commonly used to
compute the inverse of invertible matrices (see [Rot03, Page 766-767]). We then
apply adjugate matrices to analyse quasideterminants (see [GR91, Pages 99-101])
and generalise the eigenvector-eigenvalue identity in [DPTZ20, Theorem 1].

When presented with a matrix orbit, one of the fundamental questions is to find a
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representative of the matrix orbit. One way of doing this is to look for invariants —
quantities which do not change across the matrix orbit. It turns out that computing
wedge product matrices is an effective way of finding invariants. In this thesis, we
demonstrate this idea with two different matrix orbits. In chapter 4, we analyse the
two-sided orbit space GLm(R)\Mm×n(R)/GLn(R), where R is a commutative ring
and in chapter 5, we investigate the matrix orbit space Γ∞(3)\Γ(3), stemming from
the principal congruence subgroups Γ(3) and Γ∞(3). This particular matrix orbit
appeared in a minimal parabolic Eisenstein series defined in [BH86, p. 486].

Our primary method of constructing matrix representatives for the orbits in chap-
ter 4 and chapter 5 is termed Steinberg reduction. Steinberg used this technique in
[Ste67, §8] to provide an alternative characterisation of the Bruhat decomposition of
a Chevalley group. The specific matrices we use in Steinberg reduction are similar to
those in [Ste67, Lemma 43, Part (c)]. The general purpose of Steinberg reduction in
this thesis is to reduce a matrix A ∈ Mm×n(o) into an upper triangular form where
o is a PID. This is similar to what Steinberg did to prove the Bruhat decomposition
in [Ste67, Theorem 15].

A particular feature of the thesis is the wealth of examples accompanying the major
theorems. This was intended to make the thesis more accessible to students with
a background in linear algebra. Examples also assist with understanding the main
theorems of the thesis.
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Chapter 2

Determinants

2.1 Definition of wedge product matrices

We will begin the thesis with Definition 2.1.3 — the definition of a wedge product
matrix.

Definition 2.1.1. Let k, n ∈ Z>0 such that k ≤ n. Then, we define

T(nk)
= {L ⊆ {1, 2, . . . , n} | |L| = k}.

where |L| denotes the cardinality of the set L. The set T(nk)
has cardinality |T(nk)

| =(
n
k

)
= n!

k!(n−k)! .

Let R be a commutative ring. If n ∈ Z>0, then Rn is a free R-module, with
basis {e1, . . . , en} where ei ∈ Rn is a n× 1 matrix with a 1 in the ith entry and zeros
elsewhere.

If I = {i1, . . . , ik} ∈ T(nk)
then let eI = ei1 ∧ · · · ∧ eik where ∧ denotes the wedge

product; i.e. if x, y ∈ Rn, then x∧y = −(y∧x). This property of the wedge product
is termed anticommutativity. The reference [Rot03, Section 9.8] provides a detailed
discussion of the exterior algebra and the wedge product.

Definition 2.1.2. Let R be a commutative ring, k ∈ Z≥0 and n ∈ Z>0. Then, the

kth exterior power of Rn, denoted by
∧k(Rn) is the free R-module with basis

{ei1 ∧ · · · ∧ eik | 1 ≤ i1 < · · · < in ≤ n} = {eL | L ∈ T(nk)
}.

For k = 0, we define
∧0(Rk) = R.

Definition 2.1.2 is justified by [Rot03, Theorem 9.140], where it is proved that
if M is a R-module of rank n ∈ Z>0 and k ∈ Z>0, then

∧k(M) is a free R-module
of rank

(
n
k

)
. When k > n,

∧k(Rn) = 0, due to the anticommutativity of the wedge
product.
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Definition 2.1.3. Let R be a commutative ring and A ∈Mn×n(R) so that A = (aij).
Then, the determinant ofA, denoted det(A), is the unique element ofR determined
by ( n∑

i=1

ai1ei

)
∧
( n∑
i=1

ai2ei

)
∧ · · · ∧

( n∑
i=1

ainei

)
= (det(A))(e1 ∧ · · · ∧ en).

Let A ∈ Mm×n(R) and k ∈ Z>0. The kth wedge product matrix Λk(A) is the(
m
k

)
×
(
n
k

)
matrix determined by the equations

Λk(A) =
(

Λk(A)I,J

)
I∈T

(mk)
,J∈T

(nk)

and if J = {j1, . . . , jk} ∈ T(nk)
then

AeJ = Aej1 ∧ · · · ∧ Aejk =
∑

I∈T
(mk)

(Λk(A))I,JeI .

If k > min(m,n) then Λk(A) is the 1× 1 matrix (0).

The kth wedge product matrix Λk(A) can be thought of as a generalisation of
the determinant definition in two different ways. Firstly, Λk(A) is defined for non-
square matrices and secondly, Λk(A) is constructed from the wedge product of some
(but not all) columns of the matrix A. The rows and columns of Λk(A) are indexed
by sets in T(mk) and T(nk)

respectively, which are usually arranged with the lexico-

graphical/dictionary order.

We have used the symbol Λk to refer to a wedge product matrix and the symbol
∧k

to refer to the exterior power of a R-module, despite the fact that definitions 2.1.2
and 2.1.3 use the same functor.

Our first endeavour is to show that the entries of Λk(A) coincide with the deter-
minants of the k × k minors of A. The result we require for this is the complete
expansion of the determinant.

Definition 2.1.4. Let n ∈ Z>0 and σ ∈ Sn be a permutation. Then, the sign of σ,
denoted sgn(σ), is an element of {−1, 1} which satisfies

eσ(1) ∧ · · · ∧ eσ(n) = sgn(σ)(e1 ∧ · · · ∧ en).

Lemma 2.1.1. Let R be a commutative ring and A = (aij) ∈Mn×n(R). Then,

det(A) =
∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 . . . aσ(n),n

where sgn(σ) is the sign of the permutation σ ∈ Sn.
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Proof. Assume that R is a commutative ring and A = (aij) ∈ Mn×n(R). From
Definition 2.1.3, we have

det(A) =
∑
j1

aj1,1ej1 ∧ · · · ∧
∑
jn

ajn,nejn

=
∑
j1,...,jn

aj1,1aj2,2 . . . ajn,n(ej1 ∧ · · · ∧ ejn)

=
∑
σ∈Sn

aσ(1),1aσ(2),2 . . . aσ(n),n(eσ(1) ∧ · · · ∧ eσ(n))

where σ ∈ Sn is the permutation given by σ(k) = jk for k ∈ {1, . . . , n}. Rearranging
the basis eσ(1) ∧ · · · ∧ eσ(n) gives

det(A) =
∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 . . . aσ(n),n(e1 ∧ · · · ∧ en).

Theorem 2.1.2. Let R be a commutative ring, A = (aij) ∈ Mm×n(R) and let
k ∈ {1, . . . ,min(m,n)}. Let J ∈ T(mk), K ∈ T(nk)

and let AJ,K be the k × k matrix

formed from the rows indexed by J and the columns indexed by K. Then,

det(AJ,K) = (Λk(A))J,K .

Proof. Assume that A = (aij) ∈ Mm×n(R) and k ∈ {1, . . . ,min(m,n)}. Assume
that I = {i1, i2, . . . , ik} ∈ T(nk)

. Then, the wedge product of columns i1, i2, . . . , ik of

A is by Definition 2.1.3∑
L∈T

(mk)

(Λk(A))L,IeL = Aei1 ∧ · · · ∧ Aeik

=
∑
j1

aj1,i1ej1 ∧ · · · ∧
∑
jk

ajk,ikejk

=
∑
j1,...,jk

aj1,i1aj2,i2 . . . ajk,ik(ej1 ∧ · · · ∧ ejk).

Let σ ∈ Sk be a permutation which maps the sequence (j1, . . . , jk) to (jσ(1), . . . , jσ(k)),
where jσ(1) < · · · < jσ(k). Then, rewrite the sum over j1, . . . , jk as a sum over all
permutations in Sk to get

Aei1 ∧ · · · ∧ Aeik =
∑
σ∈Sk

ajσ(1),i1ajσ(2),i2 . . . ajσ(k),ik(ej1 ∧ · · · ∧ ejk).

By rearranging ej1 ∧ · · · ∧ ejk , we find that

Aei1 ∧ · · · ∧ Aeik =
∑
σ∈Sk

sgn(σ)ajσ(1),i1ajσ(2),i2 . . . ajσ(k),ik(ejσ(1) ∧ · · · ∧ ejσ(k)).

Applying Lemma 2.1.1 to the right hand side reveals that
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∑
L∈T

(mk)

(Λk(A))L,IeL = Aei1 ∧ · · · ∧ Aeik =
∑

L∈T
(mk)

det(AL,I)eL. (2.1)

Comparing the coefficients of eL on both sides of equation (2.1) gives det(AL,I) =
(Λk(A))L,I .

Example 2.1.5. Let R = Z and

A =

2 −1 1
0 3 −4
7 6 −3

 .

We want to take the wedge product of the first two columns of A. In Definition
2.1.3,

1. I is the set {1, 2} (Select columns 1 and 2)

2. L represents all possible selections of two rows from the available three rows:
{1, 2}, {1, 3} and {2, 3}.

3. The possible values of eL are therefore: e{1,2} = e1 ∧ e2, e{1,3} = e1 ∧ e3 and
e{2,3} = e2 ∧ e3.

We find from Theorem 2.1.2 that

Ae1 ∧ Ae2 =
∑

L∈T
(3
2)

(Λ2(A))L,IeL =
∑

L∈T
(3
2)

(Λ2(A))L,{1,2}eL

= (Λ2(A)){1,2},{1,2}e{1,2} + (Λ2(A)){1,3},{1,2}e{1,3} + (Λ2(A)){2,3},{1,2}e{2,3}

= det(A{1,2},{1,2})(e1 ∧ e2) + det(A{1,3},{1,2})(e1 ∧ e3) + det(A{2,3},{1,2})(e2 ∧ e3)

=

∣∣∣∣2 −1
0 3

∣∣∣∣ (e1 ∧ e2) +

∣∣∣∣2 −1
7 6

∣∣∣∣ (e1 ∧ e3) +

∣∣∣∣0 3
7 6

∣∣∣∣ (e2 ∧ e3)
= 6(e1 ∧ e2) + 19(e1 ∧ e3)− 21(e2 ∧ e3).

We can verify this calculation by doing the wedge product calculation directly:

Ae1 ∧ Ae2 = (2e1 + 7e3) ∧ (−1e1 + 3e2 + 6e3)

= (6− 0)(e1 ∧ e2) + (12− (−7))(e1 ∧ e3) + (0− 21)(e2 ∧ e3)
= 6(e1 ∧ e2) + 19(e1 ∧ e3)− 21(e2 ∧ e3).

Ae1 ∧ Ae2 comprises the first column of

 6 −8 1
19 −13 −3
−21 28 15

 =

(Λ2(A)){1,2},{1,2} (Λ2(A)){1,2},{1,3} (Λ2(A)){1,2},{2,3}
(Λ2(A)){1,3},{1,2} (Λ2(A)){1,3},{1,3} (Λ2(A)){1,3},{2,3}
(Λ2(A)){2,3},{1,2} (Λ2(A)){2,3},{1,3} (Λ2(A)){2,3},{2,3}

 .
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2.2 Properties of wedge product matrices

As with any newly defined mathematical object, we will now analyse some of the
basic properties of wedge product matrices.

Proposition 2.2.1. Let R be a commutative ring, A ∈Mm×n(R) and B ∈Mn×n(R).
Let In ∈Mn×n(R) denote the n× n identity matrix. Then,

(a) Λn(B) = (det(B)) (a 1× 1 matrix).

(b) Λ1(B) = B (a n× n matrix).

(c) If k ∈ {1, . . . , n} then Λk(In) = I(nk)
.

(d) If k ∈ {1, . . . ,min(m,n)} then Λk(AT ) = (Λk(A))T .

Proof. Assume that R is a commutative ring, A ∈Mm×n(R) and B ∈Mn×n(R).

(a): If k = n in Definition 2.1.3 then the only element of T(nn)
is {1, 2, . . . , n} and

Be{1,2,...,n} = Be1 ∧Be2 ∧ · · · ∧Ben = det(B)(e1 ∧ · · · ∧ en).

Therefore, if B ∈Mn×n(R), then Λn(B) = (det(B)).

(b): If k = 1 in Definition 2.1.3 then T(n1)
= {{i} | i ∈ {1, . . . , n}}. We will treat

each of these sets in T(n1)
as integers. Fix i ∈ {1, . . . , n}. Then,

Bei =
∑

L∈T
(n1)

(Λ1(B))L,ieL =
n∑
j=1

(Λ1(B))j,iej.

The LHS is the ith column of B, whereas the RHS is the ith column of Λ1(B). So,
Λ1(B) = B.

(c): Fix I = {i1, . . . , ik} ∈ T(nk)
. Then

eI = ei1 ∧ · · · ∧ eik =
∑

L∈T
(nk)

(Λk(In))L,IeL.

Equality holds when (Λk(In))L,I = δL,I , where δ denotes the Kronecker delta. Thus,
if k ≤ n then Λk(In) = I(nk)

.

(d): Assume that L ∈ T(mk) and M ∈ T(nk)
. Using Theorem 2.1.2, we have(

(Λk(A))T
)
M,L

= (Λk(A))L,M

= det(AL,M)

= det((AT )M,L) = (Λk(AT ))M,L.

So, Λk(AT ) = (Λk(A))T .
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The most critical property of wedge product matrices is that just like the deter-
minant, wedge product matrices are multiplicative.

Theorem 2.2.2 (Generalised Cauchy-Binet Formula). Let R be a commutative ring.
Let A ∈Mm×n(R) and B ∈Mn×p(R). Let k ∈ {1, 2, . . . ,min(m,n, p)}. Then,

Λk(AB) = Λk(A)Λk(B).

Proof. Assume that R is a commutative ring. Assume that A ∈ Mm×n(R) and
B ∈ Mn×p(R). Assume that k ≤ min(m,n, p). Fix a set I = {i1, . . . , ik} ∈ T(pk)

.

From Definition 2.1.3, we have

AB(eI) = A(BeI) = A(Bei1 ∧ · · · ∧Beik) = A
( ∑
J∈T

(nk)

(Λk(B))J,IeJ
)

=
∑

J∈T
(nk)

,K∈T
(mk)

(Λk(A))K,J(Λk(B))J,IeK .

On the other hand,

AB(eI) =
∑

K∈T
(mk)

(Λk(AB))K,IeK .

Comparing the two expressions, we find that

(Λk(AB))K,I =
∑

J∈T
(nk)

(Λk(A))K,J(Λk(B))J,I .

So Λk(AB) = Λk(A)Λk(B).

Example 2.2.1. Let R = Z,

A =

 4 5
−3 6
2 4

 and B =

(
−4 9 6 5
8 −1 −5 7

)
.

Then, the product C = AB is

C =

24 31 −1 55
60 −33 −48 27
24 14 −8 38

 .

Using Definition 2.1.3, we compute Λ2(A) and Λ2(B) to be

Λ2(A) =

 39
6
−24

 and Λ2(B) =
(
−68 −28 −68 −39 68 67

)
.

In the above calculations, the rows and columns of Λ2(A) and Λ2(B) are indexed by
sets in the lexicographical/dictionary order. From Theorem 2.2.2,
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Λ2(C) = Λ2(A)Λ2(B) =

−2652 −1092 −2652 −1521 2652 2613
−408 −168 −408 −234 408 402
1632 672 1632 936 −1632 −1608

 .

One can check by directly applying Definition 2.1.3 to the matrix C that this is the
correct matrix for Λ2(C).

We called the multiplicative property in Theorem 2.2.2 the generalised Cauchy-
Binet formula because it is a more general form of the standard Cauchy-Binet for-
mula, which we will demonstrate below.

Corollary 2.2.3 (Cauchy-Binet Formula). Let R be a commutative ring, A ∈
Mm×n(R), B ∈ Mn×m(R) and m < n. Noting that AB is a m × m matrix, we
have

det(AB) =
∑

J∈T
(nm)

det(A{1,2,...,m},J) det(BJ,{1,2,...,m}).

Proof. Assume that R is a commutative ring, m < n, A ∈ Mm×n(R) and B ∈
Mn×m(R). Using Proposition 2.2.1 (a), Theorem 2.2.2 and Theorem 2.1.2, we have

det(AB) = Λm(AB) = Λm(A)Λm(B)

=
∑

J∈T
(nm)

(Λm(A)){1,2,...,n},J(Λm(B))J,{1,2,...,n}

=
∑

J∈T
(nm)

det(A{1,2,...,m},J) det(BJ,{1,2,...,m}).

A major consequence of Theorem 2.2.2 and Proposition 2.2.1 is Corollary 2.2.4,
which tells us how to compute the inverse of a wedge product matrix.

Corollary 2.2.4. Let R be a commutative ring and A ∈ GLn(R). If k ∈ {1, . . . , n}
then Λk(A) ∈ GL(nk)

(R) and

Λk(A−1) = (Λk(A))−1.

Proof. Assume that R is a commutative ring and A ∈ GLn(R). Theorem 2.2.2 tells
us that

Λk(A)Λk(A−1) = Λk(A−1)Λk(A) = Λk(In) = I(nk)
(2.2)

where in the rightmost equality, we have used Proposition 2.2.1. Equation (2.2)
demonstrates that Λk(A) is invertible with inverse (Λk(A))−1 = Λk(A−1).
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2.3 General Laplace expansion

Our first application of wedge product matrices is to generalise known identities in
linear algebra. As a first example of this, we will use wedge product matrices to
prove a general form of Laplace expansion (see [Rot03, Proposition 9.160]), which
is essentially Laplace expansion, but across multiple rows/columns.

For m ∈ Z>0, we will denote the set {1, 2, . . . ,m} by Z[1,m].

Definition 2.3.1. Let k, n ∈ Z>0, k ≤ n and L,M be subsets of Z>0 with L ⊆M .
Then, we define

sL,M = (−1)]{(i,j) | i<j, i∈M\L, j∈L}.

An important way of interpreting this definition is that if L = {l1, . . . , lk},
M\L = {j1, . . . , jp} and M = {m1, . . . ,mk+p} with m1 < · · · < mk+p, then sL is the
sign of the permutation σ ∈ Sk+p, which sends the sequence (m1,m2, . . . ,mk+p) to
(l1, . . . , lk, j1, . . . , jp).

Proposition 2.3.1 (General Laplace Expansion). Let R be a commutative ring and
A ∈ Mm×n(R). Let p, k ∈ Z>0 such that p < k < min(m,n). Let K ∈ T(mk) and

M ∈ T(nk)
.

(a) If H ⊆M ∈ T(nk)
with |H| = p then

(Λk(A))K,M =
∑

L(K,|L|=|H|

sL,KsH,M(Λp(A))L,H(Λk−p(A))K\L, M\H . (2.3)

(b) If H ⊆ K ∈ T(mk) with |H| = p, then

(Λk(A))K,M =
∑

L(M,|L|=|H|

sL,MsH,K(Λp(A))H,L(Λk−p(A))K\H, M\L. (2.4)

Moreover, if A ∈Mn×n(R) and H ∈ T(np)
, then

(c)

det(A) =
∑

L∈T
(np)

sL,Z[1,n]
sH,Z[1,n]

(Λp(A))L,H(Λn−p(A))Lc,Hc (2.5)

(d)

det(A) =
∑

L∈T
(np)

sL,Z[1,n]
sH,Z[1,n]

(Λp(A))H,L(Λn−p(A))Hc,Lc . (2.6)

Note that in parts (c) and (d) of Proposition 2.3.1, the complements Hc and Lc

are done with respect to the set Z[1,n].
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Proof. (a): Assume that R is a commutative ring and A ∈Mm×n(R). Assume that
k, p ∈ Z>0 such that p < k < min(m,n), K ∈ T(mk), M ∈ T(nk)

and H ⊆ M with

|H| = p. Using Definition 2.1.3, we begin with the expression

AeH ∧ AeM\H = sH,MAeM =
∑

K∈T
(mk)

sH,M(Λk(A))K,MeK . (2.7)

We can obtain another expression for AeH ∧ AeM\H by computing

AeH ∧ AeM\H =
∑

L∈T
(mp)

(Λp(A))L,HeL ∧
∑

J∈T
( m
k−p)

(Λk−p(A))J, M\HeJ

=
∑

L∈T
(mp)

∑
J∈T

( m
k−p)

(Λp(A))L,H(Λk−p(A))J, M\H(eL ∧ eJ)

=
∑

K∈T
(mk)

∑
L(K,|L|=|H|

(Λp(A))L,H(Λk−p(A))K\L, M\H(eL ∧ eK\L)

=
∑

K∈T
(mk)

∑
L(K,|L|=|H|

sL,K(Λp(A))L,H(Λk−p(A))K\L, M\HeK .

Upon comparison with equation (2.7), we find that if K ∈ T(mk) then∑
L(K,|L|=|H|

sL,K(Λp(A))L,H(Λk−p(A))K\L, M\H = sH,M(Λk(A))K,M .

Multiplying both sides by sH,M then gives the desired result.

(b): Now assume that H ⊆ K ∈ T(mk) with |H| = p. Take the expression in part (a)

and apply it to the element (Λk(AT ))M,K . We find that

(Λk(A))K,M = (Λk(AT ))M,K

=
∑

L(M,|L|=|H|

sL,MsH,K(Λp(AT ))L,H(Λk−p(AT ))M\L, K\H

=
∑

L(M,|L|=|H|

sL,MsH,K((Λp(A))T )L,H((Λk−p(A))T )M\L, K\H

=
∑

L(M,|L|=|H|

sL,MsH,K(Λp(A))H,L(Λk−p(A))K\H, M\L.

(c): In the scenario for part (a), set m = n = k and p < k. Then, K = M = Z[1,n] ∈
T(nn)

, H ∈ T(np)
and by substitution into equation (2.3), we obtain equation (2.5).

(d): Similarly to part (c), we set m = n = k and p < k in part (b), which fixes
K = M = Z[1,n] ∈ T(nn)

, H ∈ T(np)
and yields equation (2.6) upon substitution into

equation (2.4).
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Example 2.3.2. Let A ∈M4×4(Z) be the matrix

A =


1 2 5 −2
0 4 2 6
5 −3 9 7
−8 −2 −1 2

 .

The determinant of A is −3342. Let us verify this by utilising Proposition 2.3.1.
We let n = 4 and k = 2. The table below depicts all possible elements L of T(4

2)
,

with their associated sign sL:

L sL,Z[1,4]

{1, 2} +1
{1, 3} -1
{1, 4} +1
{2, 3} +1
{2, 4} -1
{3, 4} +1

In our particular scenario, equation (2.5) reduces to

det(A) =
∑

L∈T
(4
2)

sL,Z[1,4]
sH,Z[1,4]

(Λ2(A))L,H(Λ2(A))Lc,Hc . (2.8)

Computing Λ2(A), we find that

Λ2(A) =

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}


4 2 6 −16 20 34 {1, 2}
−13 −16 17 33 8 53 {1, 3}
14 39 −14 8 0 8 {1, 4}
−20 −10 −30 42 46 −40 {2, 3}
32 16 48 0 20 10 {2, 4}
−34 67 66 21 8 25 {3, 4}

where we have indicated the labels of the rows and columns in lexicographical order.

If H = {1, 2}, then equation (2.8) yields

det(A) =
∑

L∈T
(4
2)

sL,Z[1,4]
s{1,2},Z[1,4]

(Λ2(A))L,{1,2}(Λ
2(A))Lc,{3,4}

=
∑

L∈T
(4
2)

sL,Z[1,4]
(Λ2(A))L,{1,2}(Λ

2(A))Lc,{3,4}

= (4 · 25)− (−13 · 10) + (14 · −40) + (−20 · 8)− (32 · 53) + (−34 · 34)

= −3342.

Let us now test Proposition 2.3.1, but with selections of rows rather than columns.
The relevant identity is

15



det(A) =
∑

L∈T
(4
2)

sL,Z[1,4]
sH,Z[1,4]

(Λ2(A))H,L(Λ2(A))Hc,Lc (2.9)

If we set H = {1, 3}, equation (2.9) gives

det(A) =
∑

L∈T
(4
2)

sL,Z[1,4]
s{1,3},Z[1,4]

(Λ2(A)){1,3},L(Λ2(A)){2,4},Lc

= −
∑

L∈T
(4
2)

sL,Z[1,4]
(Λ2(A)){1,3},L(Λ2(A)){2,4},Lc

= −
(
(−13 · 10)− (−16 · 20) + (17 · 0) + (33 · 48)− (8 · 16) + (53 · 32)

)
= −3342.

This agrees with our previous computation.
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Chapter 3

Adjugates, quasideterminants and
eigenvectors

3.1 Adjugate matrices are almost inverses

In this section, we will explore inverses of wedge product matrices in greater detail,
with Proposition 2.3.1 informing the important definition below. Recall from Defi-
nition 2.3.1 that if L = {l1, . . . , lk} and M = {m1, . . . ,mk+p} with m1 < · · · < mk+p

are two subsets of Z>0 with L ⊆M and M\L = {j1, . . . , jp} then

sL,M = (−1)]{(i,j) | i<j, i∈M\L, j∈L}.

is the sign of the permutation σ ∈ Sk+p which maps the sequence (m1, . . . ,mk+p) to
(l1, . . . , lk, j1, j2, . . . , jp).

Definition 3.1.1. Let R be a commutative ring and A ∈ Mm×n(R). Let k ∈
{0, 1, . . . ,min(m,n)}, L ∈ T(mk) and H ∈ T(nk)

. Then, the kth adjugate matrix of

A, denoted by Υn−k(A), is the
(
n
k

)
×
(
m
k

)
matrix given by

(Υn−k(A))H,L = sL,Z[1,m]
sH,Z[1,n]

(Λn−k(A))Z[1,m]\L, Z[1,n]\H (3.1)

where for n ∈ Z>0, Z[1,n] = {1, 2, . . . , n}.

Theorems 3.1.1 and 3.1.3 demonstrate how Definition 3.1.1 is connected to the
general Laplace expansion in Proposition 2.3.1.

Theorem 3.1.1. Let R be a commutative ring and A ∈ Mm×n(R) with m ≤ n.
Assume that k ∈ {0, 1, . . . ,m}. If I ∈ T( n

n−(m−k))
and J ∈ T(nk)

then

(Υm−k(A)Λk(A))I,J =

{
sI,Z[1,n]

sJ,J∪Ic(Λ
m(A))Z[1,m],J∪Ic , if J ⊆ I,

0, otherwise.

Proof. Assume that R is a commutative ring and A ∈ Mm×n(R) with m ≤ n.
Assume that k ∈ {0, 1, . . . ,m}, I ∈ T( n

n−(m−k))
and J ∈ T(nk)

. There are two cases to

consider.
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Case 1: Assume that J ⊆ I. Then,

(Υm−k(A)Λk(A))I,J =
∑

M∈T
(mk)

(Υm−k(A))I,M(Λk(A))M,J

=
∑

M∈T
(mk)

sM,Z[1,m]
sI,Z[1,n]

(Λm−k(A))Mc,Ic(Λ
k(A))M,J

=
∑

M∈T
(mk)

sM,Z[1,m]
sI,Z[1,n]

sJ,J∪IcsJ,J∪Ic(Λ
m−k(A))Mc,Ic(Λ

k(A))M,J

= sI,Z[1,n]
sJ,J∪Ic

∑
M∈T

(mk)

sM,Z[1,m]
sJ,J∪Ic(Λ

m−k(A))Mc,Ic(Λ
k(A))M,J

= sI,Z[1,n]
sJ,J∪Ic(Λ

m(A))Z[1,m],J∪Ic .

In the last line, we used Proposition 2.3.1.

Case 2: Assume that J ∩ Ic 6= ∅. Then Theorem 2.1.2 gives

(Λm(A))Z[1,m],J∪Ic = det(AZ[1,m],J∪Ic).

Since J ∩ Ic 6= ∅, the m ×m matrix AZ[1,m],J∪Ic must have a repeated column.
Thus, det(AZ[1,m],J∪Ic) = 0.

Theorem 3.1.3 is an analogue of Theorem 3.1.1 for the case where n ≤ m. We
will use the transpose to prove Theorem 3.1.3, which means that we must compute
the transpose of an adjugate matrix.

Proposition 3.1.2. Let R be a commutative ring, B ∈Mm×n(R) and k ∈ {0, 1, . . . ,min(m,n)}.
Then,

Υk(BT ) = (Υk(B))T .

Proof. Assume that B ∈ Mm×n(R), L ∈ T( m
m−k)

and H ∈ T( n
n−k)

. From equation

(3.1) and part (d) of Proposition 2.2.1, we have

((Υk(B))T )L,H = (Υk(B))H,L

= sL,Z[1,m]
sH,Z[1,n]

(Λk(B))Z[1,m]\L, Z[1,n]\H

= sL,Z[1,m]
sH,Z[1,n]

((Λk(B))T )Z[1,n]\H, Z[1,m]\L

= sL,Z[1,m]
sH,Z[1,n]

(Λk(BT ))Z[1,n]\H, Z[1,m]\L = (Υk(BT ))L,H .

So, Υk(BT ) = (Υk(B))T .

Theorem 3.1.3. Let R be a commutative ring and A ∈ Mm×n(R) with n ≤ m.
Assume that k ∈ {0, 1, . . . , n}. If I ∈ T(mk) and J ∈ T( m

m−(n−k))
then

(Λk(A)Υn−k(A))I,J =

{
sI,Jc∪I sJ,Z[1,m]

(Λn(A))Jc∪I,Z[1,n]
, if I ⊆ J,

0, otherwise.
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Proof. Assume that A ∈ Mm×n(R) with n ≤ m. Assume that k ∈ {0, 1, . . . , n},
I ∈ T(mk) and J ∈ T( m

m−n+k)
.

Case 1: If I ⊆ J then by Proposition 3.1.2 and Theorem 3.1.1,

(Λk(A)Υn−k(A))I,J = ((Λk(A)Υn−k(A))T )J,I

= (Υn−k(AT )Λk(AT ))J,I

= sI,Jc∪I sJ,Z[1,m]
(Λn(AT ))Z[1,n],I∪Jc

= sI,Jc∪I sJ,Z[1,m]
(Λn(A))I∪Jc,Z[1,n]

.

Case 2: If J c∩I 6= 0 then the same computation in Case 1 gives (Λk(A)Υn−k(A))I,J =
0.

If m = n in Theorems 3.1.1 and 3.1.3 and I, J ∈ T(nk)
then

(Υn−k(A)Λk(A))I,J = (Λk(A)Υn−k(A))I,J =

{
det(A), if J = I,

0, otherwise.

Thus, we obtain the corollary

Corollary 3.1.4. Let R be a commutative ring and n ∈ Z>0. Let A ∈ Mn×n(R).
Then,

Λk(A)Υn−k(A) = Υn−k(A)Λk(A) = det(A)I(nk)
. (3.2)

3.2 Properties of adjugate matrices

The properties exhibited by adjugate matrices are very similar to those of wedge
product matrices. Theorem 3.2.1 and Proposition 3.2.2 are analogues of Theorem
2.2.2 and Proposition 2.2.1 respectively.

Theorem 3.2.1. Let R be a commutative ring, A ∈ Mm×n(R) and B ∈ Mn×p(R).
Let k ∈ {0, 1, . . . ,min(m,n, p)}. Then,

Υk(AB) = Υk(B)Υk(A).

Proof. Assume that A ∈ Mm×n(R) and B ∈ Mn×p(R). Let z = min(m,n, p). If
k ∈ {0, 1, . . . , z}, K ∈ T(mk) and I ∈ T(pk)

then

(Υk(AB))Ic,Kc = sKc,Z[1,m]
sIc,Z[1,p]

(Λk(AB))K,I

= sKc,Z[1,m]
sIc,Z[1,p]

∑
J∈T

(nk)

(Λk(A))K,J(Λk(B))J,I

=
∑

J∈T
(nk)

sKc,Z[1,m]
sJc,Z[1,n]

(Λk(A))K,J sIc,Z[1,p]
sJc,Z[1,n]

(Λk(B))J,I

=
∑

J∈T
(nk)

(Υk(A))Jc,Kc(Υk(B))Ic,Jc

=
∑

J∈T
(nk)

(Υk(B))Ic,Jc(Υ
k(A))Jc,Kc = (Υk(B)Υk(A))Ic,Kc .
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Thus, Υk(AB) = Υk(B)Υk(A).

Proposition 3.2.2. Let R be a commutative ring, A ∈Mn×n(R) and B ∈Mm×n(R).
Let k ∈ {0, 1, . . . , n− 1} and In ∈Mn×n(R) denote the identity matrix. Then,

(a) Υ0(A) is the 1× 1 matrix I1.

(b) If A is invertible then Υn−1(A) = det(A)A−1.

(c) Υk(In) = I(nk)
.

Proof. Assume that R is a commutative ring, A ∈ Mn×n(R), B ∈ Mm×n(R) and
k ∈ {0, . . . , n− 1}.

(a): By equation (3.2), we note that Λn(A)Υ0(A) = det(A)I1 = (det(A)) (a 1 × 1
matrix). Since Λn(A) = (det(A)), Υ0(A) = (1) = I1.

(b): Assume that A is invertible. From equation (3.2), Λ1(A)Υn−1(A) = det(A)In.
Since Λ1(A) = A, we have Υn−1(A) = det(A)A−1.

(c): By equation (3.2), Λn−k(In)Υk(In) = I(nk)
. Since Λn−k(In) = I(nk)

, we have

Υk(In) = I(nk)
.

It is worth noting that in part (b) of Proposition 3.2.2, the matrix Υn−1(A) is
commonly called the adjugate matrix of A, i.e. the transpose of the cofactors matrix
of A. The adjugate matrix is commonly used to compute the inverse of an invertible
matrix (see [Rot03, Page 766-767]).

Example 3.2.1. Continuing from Example 2.3.2, we have

A =


1 2 5 −2
0 4 2 6
5 −3 9 7
−8 −2 −1 2

 and Λ2(A) =


4 2 6 −16 20 34
−13 −16 17 33 8 53
14 39 −14 8 0 8
−20 −10 −30 42 46 −40
32 16 48 0 20 10
−34 67 66 21 8 25

 .

From equation (3.1), we compute the 2nd adjugate matrix Υ2(A) as

Υ2(A) =


25 −10 −40 8 −53 34
−8 20 −46 0 8 −20
21 0 42 8 −33 −16
66 −48 −30 −14 −17 6
−67 16 10 −39 −16 −2
−34 −32 −20 14 13 4

 .

One can then verify by direct calculation that Λ2(A)Υ2(A) = det(A)I6 with I6 being
the 6× 6 identity matrix. This is consistent with equation (3.2).
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We will now improve on Corollary 2.2.4 by computing the determinant of wedge
product and adjugate matrices.

Theorem 3.2.3 (Sylvester-Franke). Let R be a commutative ring and A ∈Mn×n(R).
If k ∈ {1, . . . , n}, then

det(Λk(A)) = det(Υk(A)) = (det(A))(
n−1
k−1).

Our proof of Theorem 3.2.3 will follow the reference [Con]. In particular, we will
prove two preliminary results first. The method we use is referred to as the principle
of permanence of identities in [Art91, Chapter 12, Section 3].

Lemma 3.2.4. Let R be a commutative ring and a1, . . . , an ∈ R. Define eva1,...,an :
Z[x1, . . . , xn]→ R by

eva1,...,an(f(x1, . . . , xn)) = f(a1, . . . , an) for f ∈ Z[x1, . . . , xn].

Then, eva1,...,an is a ring homomorphism.

Proof. Assume that R is a commutative ring and a1, . . . , an ∈ R. Assume that
f, g ∈ Z[x1, . . . , xn]. If i = (i1, . . . , in) ∈ (Z≥0)n is a n-tuple, let xi = xi11 . . . x

in
n and

ai = ai11 . . . a
in
n . Write f and g as

f(x1, . . . , xn) =
∑

i∈(Z≥0)n

cix
i and g(x1, . . . , xn) =

∑
j∈(Z≥0)n

djx
j.

Then,

eva1,...,an(f + g) = eva1,...,an(
∑

i∈(Z≥0)n

cix
i +

∑
j∈(Z≥0)n

djx
j)

=
∑

i∈(Z≥0)n

cia
i +

∑
j∈(Z≥0)n

dja
j = eva1,...,an(f) + eva1,...,an(g)

and

eva1,...,an(fg) = eva1,...,an(
∑

i,j∈(Z≥0)n

cidjx
i+j) =

∑
i,j∈(Z≥0)n

cidja
i+j

= (
∑

i∈(Z≥0)n

cia
i)(

∑
j∈(Z≥0)n

dja
j) = eva1,...,an(f)eva1,...,an(g).

So, the evaluation map eva1,...,an is a ring homomorphism from Z[x1, . . . , xn] to R.

Lemma 3.2.5. Let f, g ∈ C[x1, . . . , xn] and U be a non-empty open set in Cn. If f
and g satisfy the statement

If a1, . . . , an ∈ U then eva1,...,an(f) = eva1,...,an(g)

then f = g in C[x1, . . . , xn].

Proof. Assume that U is a non-empty open subset of Cn. Assume that a1, . . . , an ∈
U and eva1,...,an(f) = eva1,...,an(g). Then, f and g are equal holomorphic functions
in Cn and by the identity theorem (see [FG02, p. 156]), f = g.
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By combining Lemma 3.2.4 and Lemma 3.2.5, we will use the powerful technique
developed in [Con] in order to supply a proof of Theorem 3.2.3.

Proof of Theorem 3.2.3. Assume that R is a commutative ring, k ∈ {1, 2, . . . , n}
and A = (aij) ∈ Mn×n(R). We will first prove Theorem 3.2.3 in the case where
R = C.

Assume that A ∈ Mn×n(C). Since C is an algebraically closed field, Jordan normal
form (see [DF04, Section 12.3]) tells us that there exists P ∈ GLn(C) such that
A = PJP−1, where

J =

λ1 ∗ ∗
. . . ∗

λn


and λ1, . . . , λn are the eigenvalues of A.

If J is upper triangular with diagonal entries λ1, . . . , λn then Λk(J) is upper tri-
angular with diagonal entries λL, where if L = {i1, . . . , ik} ∈ T(nk)

then λL is the

product

λL = λi1λi2 . . . λik .

Since A = PJP−1 then Λk(A) = Λk(P )Λk(J)Λk(P )−1. By taking determinants of
both sides,

det(Λk(A)) =
∏

L∈T
(nk)

λL = λ
(n−1
k−1)

1 . . . λ
(n−1
k−1)
n = (

n∏
i=1

λi)
(n−1
k−1) = (det(A))(

n−1
k−1),

since every eigenvalue λl is contained in the product
∏

L∈T
(nk)

λL exactly
(
n−1
k−1

)
times.

Hence, if A ∈Mn×n(C), then det(Λk(A)) = (det(A))(
n−1
k−1). Both sides of the equation

are polynomials in the polynomial ring C[a11, . . . , ann]. So, let

f(a11, . . . , ann) = det(Λk(A)) and g(a11, . . . , ann) = (det(A))(
n−1
k−1)

as polynomials in C[a11, . . . , ann]. By identifying Mn×n(C) with Cn2
, we deduce that

evx1,...,xn2 (f) = evx1,...,xn2 (g) on Cn2
. Hence, from Lemma 3.2.5, f(a11, . . . , ann) =

g(a11, . . . , ann) in C[a11, . . . , ann] and consequently, in Z[a11, . . . , ann] as well. Finally,
by an application of Lemma 3.2.4, we deduce that if i ∈ {1, . . . , n2} and zi ∈ R then
f(z1, . . . , zn2) = g(z1, . . . , zn2). From the definitions of f and g, we deduce that if

A ∈Mn×n(R) then det(Λk(A)) = (det(A))(
n−1
k−1).

Finally, from equation (3.2), Λn−k(A)Υk(A) = det(A)I(nk)
. Taking the determinant

of both sides, we obtain

det(Υk(A)) = det(A)(
n
k)−( n−1

n−k−1) = det(A)(
n
k)−(n−1

k ) = det(A)(
n−1
k−1) = det(Λk(A)).
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3.3 Quasideterminants in a commutative ring

Quasideterminants are an analogue of determinants used for square matrices with en-
tries in a non-commutative ring. In [Mol07, Section 1.10] and [GR91, Pages 99-101],
quasideterminants were used to provide a factorisation of the quantum determinant
— another variant of the determinant used for non-commutative rings.

In this section, we will consider a more general analogue of the quasideterminant
and demonstrate, by following [Mol07, Section 1.10], that in a commutative ring,
they are linked to the elements of adjugate matrices.

Let R be a possibly non-commutative ring and J = {j1, . . . , jk} and L = {l1, . . . , lk}
be elements of T(nk)

(see Definition 2.1.1), where k ∈ {1, 2, . . . , n−1}. Denote by AJ,L

the k × k matrix of A formed from rows j1, j2, . . . , jk of A and columns l1, l2, . . . , lk
of A.

Definition 3.3.1. Let R be a possibly non-commutative ring and A = (aij) ∈
Mn×n(R). Let J = {j1, . . . , jk} and L = {l1, . . . , lk} be elements of T(nk)

, where

k ∈ {1, . . . , n−1}. Suppose that the (n−k)× (n−k) matrix AJc,Lc has a two-sided
inverse. Then, the J, L quasideterminant of A is the matrix

|A|J,L ∈Mk×k(R) given by |A|J,L = AJ,L − AJ,Lc(AJc,Lc)−1AJc,L. (3.3)

The complements J c and Lc are taken with respect to the set Z[1,n] = {1, 2, . . . , n}.

Setting k = 1 gives the definition of a quasideterminant in [GR91, Equation 1.1].
We will now build up to the main result of this section, following the exposition of
[Mol07, Section 1.10] for the k = 1 case.

Lemma 3.3.1. Let R be a possibly non-commutative ring. Let k ∈ {1, . . . , n− 1},
A = (aij) ∈ Mn×n(R) and X = (xij) ∈ Mn×k(R). Let J = {j1, . . . , jk} ∈ T(nk)

and

L = {l1, . . . , lk} ∈ T(nk)
. Suppose that if p ∈ {1, 2, . . . , n} and r ∈ {1, 2, . . . , k} then

A and X satisfy

n∑
`=1

ap,`x`,r = 0 (3.4)

for p 6= jr. Define yjr =
∑n

`=1 ajr,`x`,r ∈ R. If AJc,Lc has a two-sided inverse then

|A|J,LXL,Z[1,k]
= diag[yj1 , yj2 , . . . , yjk ] ∈Mk×k(R).

Proof. Assume that R is a (possibly non-commutative) ring and A ∈ Mn×n(R).
Assume that k ∈ {1, . . . , n − 1} and J = {j1, . . . , jk} and L = {l1, . . . , lk} are
elements of T(nk)

. Assume that equation (3.4) holds, yjr ∈ R is defined as above and

AJc,Lc has a two-sided inverse. Then,

AJ,LXL,Z[1,k]
+ AJ,LcXLc,Z[1,k]

= diag[yj1 , yj2 , . . . , yjk ] ∈Mk×k(R) (3.5)
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and

AJc,LcXLc,Z[1,k]
= −AJc,LXL,Z[1,k]

∈M(n−k)×k(R).

Since AJc,Lc has a two-sided inverse by assumption, then

XLc,Z[1,k]
= −(AJc,Lc)

−1AJc,LXL,Z[1,k]
. (3.6)

Now substitute equation (3.6) into equation (3.5) to get

(AJ,L − AJ,Lc(AJc,Lc)−1AJc,L)XL,Z[1,k]
= |A|J,LXL,Z[1,k]

= diag[yj1 , yj2 , . . . , yjk ].

Lemma 3.3.2. Let R be a possibly non-commutative ring and A = (aij) ∈Mn×n(R)
be an invertible matrix with two-sided inverse B = (bij). Let k ∈ {1, . . . , n − 1},
J = {j1, . . . , jk} ∈ T(nk)

and L = {l1, . . . , lk} ∈ T(nk)
. Suppose that the matrix

(BL,J)−1 is a two-sided inverse for BL,J . Then,

|A|J,LBL,J = Ik.

Proof. Assume that R is a possibly non-commutative ring and A = (aij) ∈Mn×n(R)
has the two-sided inverse B = (bij). Assume that k ∈ {1, . . . , n− 1} and J, L ∈ T(nk)
as defined above. Assume that the matrix(BL,J)−1 is a two-sided inverse for BL,J .
Then,

AB =

(
AJ,L AJ,Lc
AJc,L AJc,Lc

)(
BL,J BL,Jc

BLc,J BLc,Jc

)
=

(
Ik 0
0 In−k

)
.

From the block multiplication above, we have the following two equations:

AJc,LBL,Jc + AJc,LcBLc,Jc = In−k. (3.7)

AJc,LBL,J + AJc,LcBLc,J = 0. (3.8)

Rearranging equation (3.8) we find that AJc,L = −AJc,LcBLc,J(BL,J)−1 and upon
substitution into equation (3.7), we obtain

AJc,Lc(BLc,Jc −BLc,J(BL,J)−1BL,Jc) = AJc,Lc |B|Lc,Jc = In−k.

This shows that AJc,Lc is invertible. Hence, the quasideterminant |A|J,L is well-
defined.

Define C = (cij) = B{1,...,n},J ∈ Mn×k(R). Since AB = In, if p ∈ {1, 2, . . . , n} and
q, r ∈ {1, 2, . . . , k} then

n∑
`=1

ap,`c`,q =

{
1, if (p, q) = (jr, r),

0, otherwise.

By Lemma 3.3.1, we deduce that
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|A|J,LBL,J = |A|J,LCL,{1,...,k} = Ik.

Hence, |A|J,L = (BL,J)−1.

Now, we will use Lemma 3.3.2 to prove our characterisation of quasideterminants
for matrices whose entries are in a commutative ring.

Theorem 3.3.3. Let R be a commutative ring and A ∈ GLn(R). Let J, L ∈ T(nk)
where k ∈ {1, . . . , n− 1}. Then, det(|A|L,J), det(A) and (Υn−k(A))J,L are elements
of R which satisfy

det(|A|L,J)(Υn−k(A))J,L = det(A).

Proof. Assume that R is a commutative ring and A ∈ Mn×n(R) is an invertible
matrix. Assume that J, L ∈ T(nk)

, where k ∈ {1, . . . , n− 1}. Assume that B = A−1.

The kth wedge product matrix Λk(B) is well-defined for a commutative ring (see
Definition 2.1.3). By Lemma 3.3.2, |A|L,J = (BJ,L)−1 and by Theorem 2.1.2,

det(|A|L,J)(Υn−k(A))J,L = (det(BJ,L))−1(Υn−k(A))J,L

= ((Λk(B))J,L)−1(Υn−k(A))J,L

= ((Λk(A−1))J,L)−1(Υn−k(A))J,L

=
( 1

det(A)
(Υn−k(A))J,L

)−1
(Υn−k(A))J,L

= det(A)
1

(Υn−k(A))J,L
(Υn−k(A))J,L = det(A).

Example 3.3.2. Let R = Q and

A =


1 −2 5 23
3 4 3 −12
0 −3 4 15
−2 −6 3 13

 ∈ GL4(Q).

Note that det(A) = 5. In the context of Theorem 3.3.3, set k = 2. Then,

Λ2(A) =


10 −12 −81 −26 −68 −129
−3 4 15 7 39 −17
−10 13 59 24 112 −4
−9 12 45 25 24 93
−10 15 15 30 −20 75
−6 8 30 15 51 7


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and

Υ2(A) =

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}


7 −75 93 −4 17 −129 {1, 2}
−51 −20 −24 −112 39 68 {1, 3}
15 −30 25 24 −7 −26 {1, 4}
30 −15 45 59 −15 −81 {2, 3}
−8 15 −12 −13 4 12 {2, 4}
−6 10 −9 −10 3 10 {3, 4}

Let J = {2, 4} and L = {1, 4}. Then, (Υ2(A)){2,4},{1,4} = −12. The quasidetermi-
nant |A|{1,4},{2,4} is

|A|{1,4},{2,4} =

(
−2 23
−6 13

)
−
(

1 5
−2 3

)(
3 3
0 4

)−1(
4 −12
−3 15

)
=

(
−1/3 12
5/12 −55/4

)
.

Let B = A−1. Then,

B{2,4},{1,4} =

(
33 144/5
1 4/5

)
=

(
−1/3 12
5/12 −55/4

)−1
= |A|−1{1,4},{2,4}.

as in Lemma 3.3.2. Moreover,

det(|A|{1,4},{2,4}) =

∣∣∣∣−1/3 12
5/12 −55/4

∣∣∣∣ = − 5

12
=

det(A)

(Υ2(A)){2,4},{1,4}

as in Theorem 3.3.3.

3.4 The eigenvector-eigenvalue identity

As the final application of wedge product matrices in this chapter, we will investigate
a technique outlined in [DPTZ20, Page 6, Section 2.1]. The authors use this tech-
nique to prove the eigenvector-eigenvalue identity ([DPTZ20, Theorem 1]), which
links the eigenvalues of a Hermitian matrix A ∈ Mn×n(C) to the elements of the
eigenvectors of A and the eigenvalues of the (n− 1)× (n− 1) minors of A.

Theorem 3.4.1 (Eigenvector-eigenvalue identity). Let A ∈ Mn×n(C) such that
AA∗ = A∗A and let λ1, . . . , λn be distinct eigenvalues of A, with corresponding
eigenvectors v1, v2, . . . , vn ∈ Mn×1(C). For i, j ∈ {1, 2, . . . , n}, let vi,j be the jth

entry of vi, j
c = Z[1,n]\{j} ∈ T( n

n−1)
and µ

(j)
1 , . . . , µ

(j)
n−1 be the eigenvalues of the

matrix Ajc,jc ∈M(n−1)×(n−1)(C). Then,

|vi,j|2 =

∏n−1
k=1(λi − µ(j)

k )∏n
k=1, k 6=i(λi − λk)

.

We will give an independent proof of Theorem 3.4.1 at the end of this section.
One of the proofs of the eigenvector-eigenvalue identity given in [DPTZ20, Page
6, Section 2.1] revolves around the adjugate matrix of A, which is Υn−1(A) from
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Definition 3.1.1. Thus, it is expected that the same proof technique can be adapted
to use Υn−k(A) for k ∈ {1, . . . , n− 1}.

Let R be a commutative ring. An important calculation we will use in what follows
is that if D = diag[λ1, . . . , λn] ∈Mn×n(R) then for k ∈ {1, 2, . . . , n},

Λk(D) = diag[λL | L ∈ T(nk)
] (3.9)

where if L = {l1, . . . , lk} ∈ T(nk)
then λL = λl1λl2 . . . λlk .

Definition 3.4.1. Let L = {l1, . . . , lk} ∈ T(nk)
. Define DL = (dij) ∈ Mn×n(R) to

be a diagonal matrix such that dlili = 1 for all i ∈ {1, 2, . . . , k} and the rest of the
entries are zero. We also define pL = Λk(DL) ∈ M(nk)×(nk)

(R). In particular, the

matrix pL is the diagonal matrix whose LL entry is 1 and every other entry is zero.

Theorem 3.4.2. Let R be a commutative ring, A ∈Mn×n(R) and k ∈ {1, . . . , n−1}.
Let P,Q ∈ GLn(R), A = PUQ and A′ = PUP−1, where U = diag[u1, . . . , un] ∈
Mn×n(R) and ur 6= us whenever r 6= s. Let L ∈ T(nk)

. Then,(∏
l∈L

∏
a∈Lc

(ua − ul)
)
Λk(P )pLΛk(Q) = Λk(

∏
a∈Lc

(uaIn − A′)PQ). (3.10)

Proof. Assume that A ∈Mn×n(R) and L ∈ T(nk)
. Let βb ∈ R for b ∈ {1, . . . , n− k}.

Then,

βbIn − A′ = P (βbIn)P−1 − PUP−1 = P (βbIn − U)P−1. (3.11)

By taking the product over the variable b from 1 to n − k on both sides of (3.11)
and then multiplying by PQ, we obtain

( n−k∏
b=1

(βbIn − A′)
)
PQ = P

( n−k∏
b=1

(βbIn − U)
)
Q = P diag[λ1, . . . , λn] Q

where, for m ∈ {1, 2, . . . , n}, λm =
∏n−k

b=1 (βb − um). Taking Λk of both sides of the
above equation, we obtain from equation (3.9),

Λk(
n−k∏
a=1

(βaIn − A′)PQ) = Λk(P ) diag[λK | K ∈ T(nk)
] Λk(Q).

Now let Lc = {i1, i2, . . . , in−k} ∈ T( n
n−k)

. If we set βb = uib for b ∈ {1, 2, . . . , n− k},
the above equation simplifies immensely, yielding

Λk(
n−k∏
b=1

(uibIn−A′) PQ) = Λk(
∏
a∈Lc

(uaIn−A′) PQ) =
(∏
l∈L

∏
a∈Lc

(ua−ul)
)
Λk(P )pLΛk(Q)

where pL is from Definition 3.4.1
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Next, we will prove an analogue of Theorem 3.4.2, where the LHS of equation
(3.10) is replaced with an adjugate matrix.

Theorem 3.4.3. Let R be a commutative ring, A ∈Mn×n(R) and k ∈ {1, . . . , n−1}.
Let P,Q ∈ GLn(R), A = PUQ and A′ = PUP−1, where U = diag[u1, . . . , un] ∈
Mn×n(R) and ur 6= us whenever r 6= s. Let L ∈ T(nk)

. Then,

( ∏
l∈Lc

∏
a∈L

(ua − ul)
)

Λk(P )pLΛk(Q) = det(PQ) Υn−k(Q−1P−1(
∏
a∈L

(uaIn − A′))).

(3.12)

Proof. Assume that A ∈ Mn×n(R) and L = {i1, . . . , ik} ∈ T(nk)
. Let βb ∈ R for

b ∈ {1, . . . , k}. Then, equation (3.11) holds and by taking the product over the
variable b from 1 to k on both sides of equation (3.11), we have

k∏
b=1

(βbIn − A′) = P
( k∏
b=1

(βbIn − U)
)
P−1 = P diag[λ1, . . . , λn] P−1

where for m ∈ {1, 2, . . . , n}, λm =
∏k

b=1(βb − um). Taking Λk of both sides, we
obtain from equation (3.9)

Λk(
k∏
b=1

(βbIn − A′)) = Λk(P ) diag[λK | K ∈ T(nk)
] (Λk(P ))−1.

We know from equation (3.2) that the product

Λk(
k∏
b=1

(βbIn − A′))Υn−k(
k∏
b=1

(βbIn − A′)) =
n∏

m=1

k∏
b=1

(βb − um)I(nk)
.

So,

Υn−k(
k∏
b=1

(βbIn − A′)) = Λk(P ) diag[λKc | K ∈ T(nk)
] (Λk(P ))−1.

Multiplying both sides by det(PQ)Υn−k(P−1)Υn−k(Q−1), we find that

det(PQ)Υn−k(Q−1P−1
k∏
b=1

(βbIn − A′)) = Λk(P ) diag[λKc | K ∈ T(nk)
] Λk(Q).

Recalling that L = {i1, i2, . . . , ik}, if we set βb = uib for b ∈ {1, 2, . . . , k} in the above
equation then we obtain equation (3.12).

Example 3.4.2. Let R = C,

A = P


1

1
2

6

P−1 and B = P


0

1
2

6

P−1
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where

P =


1 −2 5 −3
2 −1 4 2
−2 3 −2 5
4 −1 0 4

 ∈ GL4(C).

By applying Theorem 3.4.2 to the matrix B with n = 4 and k = 2, we obtain

1. Λ2((2I4 −B)(6I4 −B)) = 60 Λ2(P )p{1,2}Λ
2(P−1).

2. Λ2((I4 −B)(6I4 −B)) = −24 Λ2(P )p{1,3}Λ
2(P−1).

3. Λ2((I4 −B)(2I4 −B)) = 40 Λ2(P )p{1,4}Λ
2(P−1).

4. Λ2(−B(6I4 −B)) = 40 Λ2(P )p{2,3}Λ
2(P−1).

5. Λ2(−B(2I4 −B)) = −24 Λ2(P )p{2,4}Λ
2(P−1).

6. Λ2(−B(I4 −B)) = 60 Λ2(P )p{3,4}Λ
2(P−1).

From equation (3.9), we compute that Λ2(A) = Λ2(P ) diag[1, 2, 6, 2, 6, 12] Λ2(P )−1,
which is explicitly from Definition 3.4.1

Λ2(A) = Λ2(P )(p{1,2} + 2p{1,3} + 6p{1,4} + 2p{2,3} + 6p{2,4} + 12p{3,4})Λ
2(P−1).

Consequently, we can use the above computations from Theorem 3.4.2 to express
Λ2(A) as the following Q-linear combination:

Λ2(A) =
1

60
Λ2((2I4 −B)(6I4 −B))− 1

12
Λ2((I4 −B)(6I4 −B))

+
3

20
Λ2((I4 −B)(2I4 −B)) +

1

20
Λ2(−B(6I4 −B))

−1

4
Λ2(−B(2I4 −B)) +

1

5
Λ2(−B(I4 −B)).

By Theorem 2.1.2, the elements of Λ2(A) are the 2 × 2 minors of A. So, the de-
composition above provides a decomposition of the 2× 2 minors of A as the sum of
other 2× 2 minors. For example, if we take the {1, 2}, {1, 2} element of both sides,
we obtain the equation∣∣∣∣ 314/9 −65/2
−152/9 19

∣∣∣∣ =
1

60

∣∣∣∣−176/9 18
488/9 −54

∣∣∣∣− 1

12

∣∣∣∣ 52/9 −11
272/9 −34

∣∣∣∣+
3

20

∣∣∣∣1144/9 −127
−592/9 66

∣∣∣∣
+

1

20

∣∣∣∣280/9 −40
56/9 −14

∣∣∣∣− 1

4

∣∣∣∣1408/9 −156
−808/9 90

∣∣∣∣+
1

5

∣∣∣∣ 1690/9 −185
−1024/9 116

∣∣∣∣
which can be checked by direct computation to be true.
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Our main goal now is to use Theorem 3.4.2 to generalise Theorem 3.4.1. To
this end, we will now work in C. For A ∈ Mn×n(C), we will denote the complex
conjugate transpose of A as A∗.

Theorem 3.4.4. Let A ∈Mn×n(C) and λ1, . . . , λn be distinct eigenvalues of A with
corresponding eigenvectors v1, . . . , vn. Suppose that there exists a unitary matrix U
such that A = Udiag[λ1, . . . , λn]U∗. If L = {i1, . . . , ik} ∈ T(nk)

with k ∈ {1, . . . , n−
1}, define vL = vi1 ∧ · · · ∧ vik . If M,P ∈ T(nk)

and vL,M is the M element of vL then

vL,MvL,P =
1(∏

l∈L, a∈Lc(λa − λl)
)(Λk(

∏
a∈Lc

(λaIn − A))
)
M,P

(3.13)

and

vL,MvL,P =
sM,Z[1,n]

sP,Z[1,n](∏
l∈L, a∈Lc(λl − λa)

)(Λn−k(
∏
a∈L

(λaIn − A))
)
P c,Mc . (3.14)

where sM,Z[1,n]
and sP,Z[1,n]

are the signs from Definition 2.3.1.

Proof. Assume that A ∈ Mn×n(C) satisfies A = U diag[λ1, . . . , λn] U∗ for some
unitary matrix U . Assume that k ∈ {1, . . . , n−1} and M,P ∈ T(nk)

. An application

of Theorem 3.4.2 gives

Λk(
∏
a∈Lc

(λaIn − A)) =
( ∏
l∈L, a∈Lc

(λa − λl)
)

Λk(U)pLΛk(U∗).

Taking the M,P entry of both sides then yields equation (3.13). Similarly, if we
apply Theorem 3.4.3 then we obtain

Υn−k(
∏
a∈L

(λaIn − A)) =
( ∏
l∈L, a∈Lc

(λl − λa)
)

Λk(U)pLΛk(U∗).

Taking the M,P entry of both sides and using equation (3.1) on the LHS gives
equation (3.14).

Theorem 3.4.1 allows one to compute eigenvectors of a matrix A ∈ Mn×n(C)
satisfying AA∗ = A∗A from its eigenvalues. As we will see in the example below,
Theorem 3.4.4 tells us that knowledge of the eigenvalues λi allows us to compute
wedge products of eigenvectors, even without knowing the eigenvectors of A them-
selves.

Example 3.4.3. Let

A =


−1 1 2 −3
1 3 −4 1
2 −4 −3 −2
−3 1 −2 1

 .
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The eigenvalues of A are λ1 = −6, λ2 = −3, λ3 = 3 and λ4 = 6. We will compute
the wedge product v2 ∧ v4 = v{2,4}. With L = {2, 4}, the LHS of equation (3.13) is

Λk(
∏
l∈Lc

(λlIn − A)) = Λ2(
∏

l∈{1,3}

(λlI3 − A))

= Λ2((−6I4 − A)(3I4 − A))

= Λ2


−6 −6 0 −12
−6 18 −12 12
0 −12 6 −12
−12 12 −12 0

 .

By direct computation, the first column of Λ2((−6I −A)(3I −A)) (indexed by the
set {1, 2}) is [−144, 72,−144, 72, 144,−144]T . On the RHS of equation (3.13), we
have ∏

l∈L, a∈Lc
(λa − λl) = −648.

By taking M = P = {1, 2} in equation (3.13), −144 = −648(v{2,4},{1,2})
2. So,

v{2,4},{1,2} =
√

2/3, where we chose the positive square root. Now, we take M =
{1, 3} and P = {1, 2} so that,

−648 v{2,4},{1,3}v{2,4},{1,2} =
(
Λ2((−6I − A)(3I − A))

)
{1,3},{1,2} = 72.

Thus, v{2,4},{1,3} = −1/9× 3/
√

2 = −
√

2/6. By fixing P = {1, 2}, varying M ∈ T(nk)
and using equation (3.13), we find that v{2,4},{2,3} = −

√
2/6, v{2,4},{2,4} = −

√
2/3

and v{2,4},{1,4} = v{2,4},{3,4} =
√

2/3. Therefore,

v{2,4} =





√
2/3 {1, 2}

−
√

2/6 {1, 3}√
2/3 {1, 4}

−
√

2/6 {2, 3}
−
√

2/3 {2, 4}√
2/3 {3, 4}

(3.15)

The constituent eigenvectors of the wedge product in equation (3.15) are

v2 =


2/3
0

1/3
2/3

 and v4 =


√

2/6

−1/
√

2√
2/3

−
√

2/3

 .

By computing the wedge product v2 ∧ v4 directly, we obtain equation (3.15) scaled
by a factor of −1.

We will finish this section with a proof of Theorem 3.4.1 for matrices A ∈
Mn×n(C) AA∗ = A∗A. Recall that if AA∗ = A∗A then there exists a unitary
matrix U ∈ GLn(C) such that A = Udiag[λ1, . . . , λn]U∗.
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Proof of Theorem 3.4.1. Assume that A ∈ Mn×n(C) satisfies AA∗ = A∗A. Let
λ1, . . . , λn denote the distinct eigenvalues of A and v1, . . . , vn be the corresponding
eigenvectors. Let µ

(j)
1 , . . . , µ

(j)
n−1 be the eigenvalues of Ajc,jc .

From equation (3.14), we have(
Λn−k(

∏
a∈L

(λaIn − A))
)
Mc,Mc =

∏
a∈L, l∈Lc

(λa − λl) |vL,M |2

where L,M ∈ T(nk)
. Specialising to the case k = 1, let i, j ∈ {1, 2, . . . , n} and

M = {j} ∈ T(n1)
and L = {i} ∈ T(n1)

so that

(
Λn−1(λiIn − A)

)
Mc,Mc =

n∏
l=1, l 6=i

(λi − λl) |vi,j|2. (3.16)

From Theorem 2.1.2,(
Λn−1(λiIn − A)

)
Mc,Mc = det((λiIn − A)Mc,Mc) = det(λiIn−1 − Ajc,jc).

By diagonalising Ajc,jc ∈M(n−1)×(n−1)(C), we find that

det(λiIn−1 − Ajc,jc) =
n−1∏
k=1

(λi − µ(j)
k ).

Substituting the above equality into the LHS of equation (3.16), we find that if
i ∈ {1, 2, . . . , n} then

|vi,j|2
n∏

l=1, l 6=i

(λi − λl) =
n−1∏
k=1

(λi − µ(j)
k )

as required.
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Chapter 4

Smith normal form

4.1 Steinberg reduction

In the next two chapters, wedge product matrices are used to obtain invariants of a
matrix orbit — quantities which remain unchanged throughout the entire orbit —
and to construct a particular representative of the matrix orbit. The flagship method
we will employ for constructing representatives originates from [Ste67, §8], where
it was used to prove multiple variants of the Bruhat decomposition of a Chevalley
group (see [Ste67, Theorem 4]). Our variant of the method will be called Steinberg
reduction. The goal of this section is to provide an explicit description of Steinberg
reduction suitable for the construction of matrix representatives in this chapter and
the next.

Let R be a principal ideal domain and R× be the group of units of R, which acts on
R via multiplication. The set of R×-orbits R/R× consists of representatives of the
ideals of R.

Example 4.1.1. Let ω = e2πi/3 and R = Z[ω] denote the ring of Eisenstein integers.
Then, R× = {±1,±ω,±ω2}. The representatives of the R×-orbits in R/R× are
depicted pictorially by the sector 0 ≤ arg(z) < π/3:

Re(z)

Im(z)
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Each black point corresponds to an element of R and the six red points are the
units of R. The shaded green sector without the dashed black line contains the
elements of R/R×. For example, the point −ω2 = 1 + ω lies on the dashed black
line, but −ω2R = R as ideals in R.

Definition 4.1.2. Let R be a PID and g1, g2, . . . , gn ∈ R. The greatest common
divisor gcd(g1, g2, . . . , gn) is an element of R/R× satisfying

gcd(g1, g2, . . . , gn)R = g1R + g2R + · · ·+ gnR.

Let A = (aij) ∈Mm×n(R). We define gcd(A) to be

gcd(A) = gcd(a11, a12, . . . , amn).

In an abuse of notation, we will refer to the gcd as both a representative of an
ideal in R/R× and as an element of R, up to multiplication by a unit.

In [Ste67, Theorem 15], the Bruhat decomposition provided by Steinberg relies on
a particular subset of SL2(R). For our purposes, we will follow this approach and
define

Y (R) =
{(a b

c d

)
∈ SL2(R)

∣∣∣ c ∈ (R− {0})/R×,
a ∈ R/cR

}
∪ {±I2} (4.1)

where I2 denotes the 2× 2 identity matrix.

4.1.1 Steinberg reduction on a 2× 1 matrix

Assume that (a, b)T ∈M2×1(R). We will construct a matrix(
p q
r s

)
∈ Y (R) such that

(
p q
r s

)(
a
b

)
=

(
gcd(a, b)

0

)
. (4.2)

There are three separate cases to consider.

Case 1: a 6= 0 and b 6= 0

Step 1: Since R is a unique factorisation domain, select r, s ∈ R such that ra+sb = 0,
r ∈ R−{0}/R× and gcd(r, s) = 1. This is accomplished by selecting r ∈ R−{0}/R×
and s ∈ R such that a = gcd(a, b)s and b = − gcd(a, b)r.

Step 2: Since gcd(r, s) = 1 from step 1, choose p, q ∈ R such that ps− qr = 1. For
all t ∈ Z, define pt = p− rt and qt = q− st so that pts− qtr = 1. Then, select v ∈ Z
such that pv ∈ R/rR.

Step 3: The result of Steinberg reduction is a matrix(
pv qv
r s

)
∈ Y (R) satisfying

(
pv qv
r s

)(
a
b

)
=

(
gcd(a, b)

0

)
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because pva+ qvb = (pvs− qvr) gcd(a, b) = gcd(a, b).

Case 2: a = 0 and b 6= 0

Assume that (0, b)T ∈M2×1(R). Then, the matrix(
0 −1
1 0

)
∈ Y (R) satisfies

(
0 −1
1 0

)(
0
b

)
=

(
−b
0

)
.

Case 3: b = 0

In this vacuous case, the matrix (a, 0)T ∈ M2×1(R) is already in the form required
by equation (4.2).

4.1.2 Steinberg reduction on a n× 1 matrix

Assume that n ∈ Z>1. For i, j ∈ {1, 2, . . . , n}, define the map ϕi,j : GL2(R) →
GLn(R) by

ϕi,j : GL2(R) → GLn(R)(
p q
r s

)
7→ ϕi,j(p, q, r, s)

where the 2× 2 block formed from the ith and jth rows and columns of ϕi,j(p, q, r, s)
is

(ϕi,j(p, q, r, s)){i,j},{i,j} =

(
p q
r s

)
.

The remaining diagonal entries of ϕi,j(p, q, r, s) are 1 and the remaining non-diagonal
entries are 0.

Assume that (a1, . . . , an)T ∈Mn×1(R). The goal of Steinberg reduction in this case
is to construct a matrix A ∈ GLn(R) such that

A


a1
a2
...
an

 =


g
0
...
0

 where g = gcd(a1, a2, . . . , an).

Step 1: Using Steinberg reduction for the 2×1 case, obtain pn−1, qn−1, rn−1, sn−1 ∈ R
such that

(
pn−1 qn−1
rn−1 sn−1

)
∈ Y (R) and

(
pn−1 qn−1
rn−1 sn−1

)(
an−1
an

)
=

(
gcd(an−1, an)

0

)
.

In the case where an = 0, we select pn = sn = 1 and qn = rn = 0, which yields the
identity matrix I2 ∈ Y (R). Consequently, we have
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ϕn−1,n(pn−1, qn−1, rn−1, sn−1)


a1
a2
...

an−1
an

 =


a1
a2
...

gcd(an−1, an)
0

 .

Step 2: For i ∈ {1, . . . , n − 2}, repeat Step 1 for each matrix (an−i−1, gn−i)
T ∈

M2×1(R), where gi = gcd(ai, ai+1, . . . , an). This ensures that

ϕ1,2(p1, q1, r1, s1)ϕ2,3(p2, q2, r2, s2) . . . ϕn−1,n(pn−1, qn−1, rn−1, sn−1)


a1
a2
...
an

 =


g1
0
...
0


where

ϕ1,2(p1, q1, r1, s1)ϕ2,3(p2, q2, r2, s2) . . . ϕn−1,n(pn−1, qn−1, rn−1, sn−1) ∈ GLn(R).

4.2 Smith normal form algorithm

4.2.1 The case of n× 1 matrices

The matrix orbit space we are interested in is GLm(R)\Mm×n(R)/GLn(R), where R
is a PID. It is proved in [Art91, Chapter 12, Section 5] and [Rot03, Section 9.4] that
if A ∈ Mm×n(R), then a representative of the matrix orbit GLm(R) · A · GLn(R)
is given by its Smith normal form — a diagonal matrix D = (dij) ∈ Mm×n(R)
satisfying d11|d22| . . . |dkk, where k = min(m,n). To be clear, d11|d22 means d11
divides d22.

Theorem 4.2.1 is a consequence of Steinberg reduction and can be thought of as
computing the Smith normal form of a n× 1 matrix.

Theorem 4.2.1. Let R be a PID. Then, the following map is a bijection:

φ : R/R× → GLn(R) ·Mn×1(R)

g 7→ GLn(R) ·


g
0
...
0


with inverse given by
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φ−1 : GLn(R) ·Mn×1(R) → R/R×

GLn(R) ·


a1
a2
...
an

 7→ gcd(a1, a2, . . . , an).

Proof. Assume that R is a PID. Assume that (a1, a2, . . . , an)T ∈ Mn×1(R). By
following the steps of Steinberg reduction in subsection 4.1.2, we obtain a matrix
A ∈ GLn(R) which satisfies

A


a1
a2
...
an

 =


gcd(a1, . . . , an)

0
...
0

 . (4.3)

Thus, the map φ−1 is a well-defined map from the orbit space GLn(R) ·Mn×1(R)
to R/R×. Moreover, the maps φ and φ−1 are inverses of each other because from
equation (4.3), we have the equality of matrix orbits

GLn(R) ·


a1
a2
...
an

 = GLn(R) ·


gcd(a1, . . . , an)

0
...
0

 .

Corollary 4.2.2 is obtained by taking the transpose of the RHS of the bijection φ
in Theorem 4.2.1. It forms an important part of the Smith normal form algorithm
we describe in the next section.

Corollary 4.2.2. Let R be a PID. Then, the following map is a bijection:

ψ : R/R× → M1×n(R) ·GLn(R)

g 7→
(
g 0 . . . 0

)
·GLn(R)

4.2.2 Reduction to a diagonal form

We will now describe in detail an algorithm for computing the Smith Normal form
of a matrix A = (aij) ∈ Mm×n(R), which uses Theorem 4.2.1 and Corollary 4.2.2
extensively. The first part of the algorithm converts A to a form where at the very
least, all the non-main diagonal elements of A are zero. Suppose that

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .
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Step 1: (First column of A) Use Theorem 4.2.1 to construct a matrix B ∈ GLm(R)
such that

BA =


g1 a12 . . . a1n
0 a′22 . . . a′2n
...

...
. . .

...
0 a′m2 . . . a′mn

 where g1 = gcd(a11, a21, . . . , am1).

Step 2: (First row of A) Next, Corollary 4.2.2 tells us that there exists a matrix
B2 ∈ GLn(R) such that

g1 a12 . . . a1n
0 a′22 . . . a′2n
...

...
. . .

...
0 a′m2 . . . a′mn

B2 =


g2 0 . . . 0
∗ a′′22 . . . a′′2n
...

...
. . .

...
∗ a′′m2 . . . a′′mn


Here g2 is the gcd of all of the elements in the first row and first column of A and ∗
represents some unknown elements.

Step 3: (First row and first column of A) If there exists a non-zero element below
g2 in the current matrix we have, then repeat steps 1 and 2 until the matrix takes
the form 

h1 0 . . . 0
0 b22 . . . b2n
...

...
. . .

...
0 bm2 . . . bmn

 .

This process creates a chain of ideals

g1R ⊆ g2R ⊆ g3R ⊆ . . .

Since R is a PID, it satisfies the ascending chain condition. Hence, there exists
an ideal h1R within the chain, which contains all of the ideals in the chain above.
Consequently, h1 will divide every non-zero element remaining in either the first row
or first column of the matrix, allowing it to take the form above.

Step 4: Repeat the first three steps for the `th row and `th column of the matrix,
where ` ∈ {2, . . . , k = min(m,n)} to obtain a sequence of elements h1, . . . , hk on
the main diagonal of the matrix

h1
h2

. . .

hk

 .
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4.2.3 Organising the main diagonal

So far, it is not necessarily the case that h1|h2| . . . |hk. The point of the second part
of the algorithm is to rectify this issue and obtain the Smith normal form of A. From
here, we will treat the case where m = n and the current matrix is the diagonal
square matrix diag[h1, . . . , hn], since the other cases (m > n and m < n) are very
similar.

Definition 4.2.1. Let R be a PID and c ∈ R. Define xm,ij(c) ∈ GLm(R) to be a
triangular matrix such that each diagonal entry of xm,ij(c) is 1, (xm,ij(c))ij = c and
every other entry is zero.

We now describe the second part of the Smith normal form algorithm, continuing
from step 4 and beginning with step 5.

Step 5: Assume that there exists r ∈ {2, . . . , k} such that h1 - hr. To rectify this,
we do the matrix multiplication below.



h1 0 . . . 0 . . . 0
0 h2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . hr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . hn


xn,r1(1) =



h1 0 . . . 0 . . . 0
0 h2 . . . 0 . . . 0
...

...
. . .

...
...

...
hr 0 . . . hr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . hn


where the matrix xn,r1(1) ∈ GLn(R) is from Definition 4.2.1. This leaves h1 and hr
as the only two non-zero elements in the first column of the matrix. Now we use
Steinberg reduction in subsection 4.1.1 to construct the matrix

(
a b
c d

)
∈ GL2(R) such that

(
a b
c d

)(
h1
hr

)
=

(
gcd(h1, hr)

0

)
and consequently,

ϕ1,r(a, b, c, d)



h1 0 . . . 0 . . . 0
0 h2 . . . 0 . . . 0
...

...
. . .

...
...

...
hr 0 . . . hr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . hn


=



i1 0 . . . αhr . . . 0
0 h2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . βhr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . hn


where α, β ∈ R and i1 = gcd(h1, hr). So, there exists p ∈ R such that pi1 = hr.
Hence, the final matrix multiplication in this step is
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

i1 0 . . . αhr . . . 0
0 h2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . βhr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . hn


xn,1r(−pα) =



i1 0 . . . 0 . . . 0
0 h2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . βhr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . hn


which renders the matrix diagonal.

Step 6: Repeat step 5 for all s ∈ {2, . . . , k} satisfying i1 - hs, until the a11 element of
the matrix divides all of the other diagonal elements. After this is done, the matrix
we obtain is

d1 0 . . . 0 . . . 0
0 x2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . xr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . xn


where d1 = gcd(h1, h2, . . . , hn).

Step 7: Repeat steps 5 and 6 for each of the other diagonal elements in succession,
systematically beginning with the a22 element of the matrix and ending with the
ann element. After this is done, the matrix becomes

d1 0 . . . 0 . . . 0
0 d2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . dr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . dn


with d1|d2| . . . |dn.

The above algorithm constitutes a proof of Smith normal form.

Theorem 4.2.3 (Smith Normal Form). Let R be a PID, A ∈ Mm×n(R), P ∈
GLm(R) be the product of the matrices multiplied on the LHS in the algorithm and
Q ∈ GLn(R) be the product of all the matrices multiplied on the RHS in the al-
gorithm. Then, A = PDQ where D = (dij) consists of the elements djj = dj
for all j ∈ {1, . . . ,min(m,n)} and zeros elsewhere. Furthermore, d1|d2| . . . |dk with
k = min(m,n).

Example 4.2.2. Let R = Z and

A =

 2 3 −5
−4 1 −9
7 8 −3

 .
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Step 1 of the algorithm reveals that, after applying Theorem 4.2.1 twice

 1 −1
−1 2

1

1
−2 −1
−7 −4

 2 3 −5
−4 1 −9
7 8 −3

 =

1 13 −26
0 −23 47
0 −39 75

 .

In the second step, we focus on the first row of the matrix. Fortunately, 1 divides
both 13 and -26 and the next calculation is1 13 −26

0 −23 47
0 −39 75

1 −13
1

1

1 26
1

1

 =

1 0 0
0 −23 47
0 −39 75

 .

The third step of the algorithm is simply reapplying the first two steps to bottom
right 2× 2 minor of our current matrix. Applying the first step again, we have the
computation 1

17 −10
−39 23

1 0 0
0 −23 47
0 −39 75

 =

1 0 0
0 −1 49
0 0 −108

 .

Finally, applying the second step to the bottom right 2×2 minor renders the matrix
diagonal. 1 0 0

0 −1 49
0 0 −108

1
1 49

1

 =

1
−1

−108

 .

We do not need to proceed further with the algorithm because the diagonal matrix
above is in Smith Normal form, as 1| − 1| − 108. In this case, d1 = 1, d2 = −1 and
d3 = −108.

4.3 Smith normal form invariants

In Theorem 4.2.3, D ∈Mm×n(R) is a representative of the matrix orbit GLm(R) ·A ·
GLn(R). Wedge product matrices provide us with a method for finding invariants
of the orbit GLm(R) ·A ·GLn(R), which helps us to understand Smith normal form
better. First, Lemma 4.3.1 is pertinent to our analysis of these invariants. Recall
from Definition 4.1.2 that if A = (aij) ∈Mm×n(R) then we define

gcd(A) = gcd(a11, a12, . . . , ann).

Lemma 4.3.1. Let R be a PID and A = (aij) ∈Mm×n(R). Let B = (bij) ∈ GLm(R)
and C = (cij) ∈ GLn(R). Then, gcd(A) = gcd(BAC).

Proof. Assume that R is a PID. Assume that A,B and C are the matrices defined
as in the statement of the lemma.

To show: (a) gcd(A) = gcd(BA).
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(b) gcd(A) = gcd(AC).

(a) The elements of BA are of the form
∑m

i=1 bjiaik where j ∈ {1, . . . ,m} and
k ∈ {1, . . . , n}. Since B is invertible, Laplace expansion on the kth column of B
yields the equality of ideals

b1kR + b2kR + · · ·+ bmkR = R.

So, gcd(b1k, . . . , bmk) = 1 for all k ∈ {1, . . . , n}. To see that gcd(A) = gcd(BA), we
compute directly from the elements of BA that

gcd(BA)R =
n∑
k=1

m∑
j=1

( m∑
l=1

bjlalkR
)

=
n∑
k=1

m∑
l=1

(b1l + b2l + · · ·+ bml)alkR

=
m∑
l=1

(
(b1l + b2l + · · ·+ bml)R

)
(al1 + al2 + · · ·+ aln)

=
m∑
l=1

R(al1 + al2 + · · ·+ aln)

= gcd(A)R.

(b) Since gcd(X) = gcd(XT ) for all X ∈ Mm×n(R), we can use part (a) to deduce
that gcd(AC) = gcd(CTAT ) = gcd(AT ) = gcd(A).

Therefore, gcd(A) = gcd(BAC) as required.

Proposition 4.3.2. Let R be a PID. Let A ∈ Mm×n(R) and di be the diagonal
entries of the Smith normal form of A produced by the algorithm resulting in Theorem
4.2.3, where i ∈ {1, . . . , k}, k = min(m,n) and d1| . . . |dk. Then,

(a)
∏i

j=1 dj = gcd(Λi(A)).

(b) The quantity gcd(Λi(A)) is an invariant of the orbit GLm(R) · A ·GLn(R).

Proof. Assume that R is a PID and A ∈Mm×n(R). Assume that di are the diagonal
entries of the Smith normal form of A for i ∈ {1, . . . , k}, where k = min(m,n).

Part (a): By Theorem 4.2.3, there exists P ∈ GLm(R) and Q ∈ GLn(R) such that
A = PDQ, where D is the Smith normal form of A. So Λi(A) = Λi(P )Λi(D)Λi(Q),
and since P and Q are invertible, Λi(P ) and Λi(Q) must also be invertible by
Corollary 2.2.4. From Lemma 4.3.1, we conclude that

gcd(Λi(A)) = gcd(Λi(D)) = gcd({
∏
j∈L

dj | L ∈ T(ki)
}) =

∏
j∈{1,2,...,i}

dj = d1d2 . . . di,
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since d1|d2| . . . |dk.

Part (b): From part (a), we found that if i ∈ {1, 2, . . . , k} then gcd(Λi(A)) =
gcd(Λi(D)). Thus, gcd(Λi(A)) is an invariant of the matrix orbit GLm(R) · A ·
GLn(R).

We observe that the gcd of the i × i minors of A is equal to gcd(Λi(A)) by
Theorem 2.1.2. Thus, Proposition 4.3.2 tells us that the gcd of the i × i minors
of A ∈ Mm×n(R) for i ∈ {1, . . . ,min(m,n)} is invariant under the matrix orbit
GLm(R) · A ·GLn(R). We will call these Smith normal form invariants.

Theorem 4.3.3 demonstrates the connection between the Smith normal form invari-
ants and the orbit space GLm(R)\Mm×n(R)/GLn(R).

Theorem 4.3.3. Let R be a PID. Let A,B ∈Mm×n(R). Then

GLm(R) · A ·GLn(R) = GLm(R) ·B ·GLn(R)

if and only if A and B have the same Smith normal form invariants.

Proof. Assume that R is a PID. Assume that A,B ∈Mm×n(R).

To show: (a) If GLm(R) · A ·GLn(R) = GLm(R) · B ·GLn(R), then A and B have
the same Smith normal form invariants.

(b) If A and B have the same Smith normal form invariants, then

GLm(R) · A ·GLn(R) = GLm(R) ·B ·GLn(R).

Proof of (a): Assume that GLm(R) ·A ·GLn(R) = GLm(R) ·B ·GLn(R). Then, there
existsX ∈ GLm(R) and Y ∈ GLn(R) such thatXAY = B. If i ∈ {1, . . . ,min(m,n)}
then Λi(X)Λi(A)Λi(Y ) = Λi(B). Since Λi(X) ∈ GL(mi )

(R) and Λi(Y ) ∈ GL(ni)
(R),

we can apply Lemma 4.3.1 once again to deduce that gcd(Λi(A)) = gcd(Λi(B)). So,
A has the same Smith normal form invariants as B.

Proof of (b): Assume that A and B have the same Smith normal form invariants.
Suppose that D is the Smith normal form of A produced from the algorithm resulting
in Theorem 4.2.3, with diagonal entries di for all i ∈ {1, . . . , k} where k = min(m,n),
such that d1|d2| . . . |dk. Similarly, suppose that E is the Smith normal form of B
produced from the algorithm resulting in Theorem 4.2.3, with diagonal entries ei for
all i ∈ {1, . . . , k}, such that e1|e2| . . . |ek.

To show: (ba) If i ∈ {1, 2, . . . , k} then di = ei.

(ba) We will prove this by induction on i. For the base case, suppose that i = 1.
Then, d1 = gcd(A) and e1 = gcd(B) from Theorem 4.3.3. Since gcd(A) = gcd(B)
by assumption, we deduce that d1 = e1.
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For the inductive hypothesis, suppose that dj = ej for some j ∈ {1, . . . , k}. Suppose
that dl = el for all l ≤ j. We must show that dj+1 = ej+1. Since A and B have
the same Smith normal form invariants,

∏j+1
p=1 dp =

∏j+1
p=1 ep. From the inductive

hypothesis, dl = el for all l ≤ j. So, we can simplify this as

dj+1

j∏
p=1

dp = ej+1

j∏
p=1

dp.

If
∏j

p=1 dp 6= 0, then dj+1 = ej+1 since R is an integral domain. On the other hand,

if
∏j

p=1 dp = 0, then there exists a ∈ {1, . . . , j} such that da = 0. Since da|dj+1,
ea|ej+1 and da = ea, dj+1 = ej+1 = 0. This completes the induction. Hence, if
i ∈ {1, 2, . . . , k}, di = ei.

(b) Part (ba) reveals that the matrices A and B must have the same Smith normal
form so that D = E. From Theorem 4.2.3, there exists P1, P2 ∈ GLm(R) and
Q1, Q2 ∈ GLn(R) such that P1DQ1 = A and P2DQ2 = B. We note that

A = P1P
−1
2 (P2DQ2)Q

−1
2 Q1 = (P1P

−1
2 )B(Q−12 Q1).

Since P1P
−1
2 ∈ GLm(R) and Q−12 Q1 ∈ GLn(R), A and B must lie in the same

orbit.

4.4 The structure theorem

A useful application of Smith normal form is the structure theorem for finitely
generated R-modules, where R is a PID, which we will prove as a consequence of
Smith normal form.

Before we dive into the statement of the structure theorem, we need to show that
if R is a PID then every submodule of a free R-module of rank n must be free with
rank at most n. We will give a constructive proof of this fact using Theorem 4.2.3.

Lemma 4.4.1. Let R be a PID, M be a free R-module of rank n ∈ Z>0 and N ⊆M
be a submodule of M . Then N is a finitely generated R-module with at most n
generators.

Proof. Assume that R is a PID and M is a free R-module of rank n ∈ Z>0. Assume
that N is a submodule of M . Since M is free of rank n, it is isomorphic to Rn.
Hence, it suffices to prove the lemma for M = Rn, where n ∈ Z>0.

For the base case, let n = 1 and suppose that N is a submodule of M = R. Then,
N is an ideal of R and since R is a PID, there exists rN ∈ R such that N = rNR.
So, N is generated by 1 element, which proves the base case.

For the inductive hypothesis, assume that the statement of the lemma holds for
n = k ∈ Z>0 and let N be a submodule of M = Rk+1. Let π|N : N → Rk denote
the following composite:
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N M = Rk+1 Rkπ

where π : Rk+1 → Rk is the surjective R-module homomorphism

π : Rk+1 → Rk

(r1, r2, . . . , rk+1) 7→ (r2, . . . , rk+1).

The kernel of π|N is

kerπ|N = N ∩ {(r, 0, . . . , 0) ∈ Rk+1 | r ∈ R}.

Since {(r, 0, . . . , 0) ∈ Rk+1 | r ∈ R} ∼= R, then kerπ|N is isomorphic to a submodule
of R. From the base case, there exists x0 ∈ N such that kerπ|N = Rx0. The image
π|N(N) = π(N) is a submodule of Rk. By the inductive hypothesis, π(N) is finitely
generated with at most k generators. Let {y1, . . . , y`} ⊆ Rk be a generating set for
π(N), where ` ≤ k.

For j ∈ {1, . . . , `}, we can write π(xj) = yj, where xj ∈ N . We claim that
{x0, x1, . . . , x`} is a generating set for N . Assume that n ∈ N . Then, π(n) ∈ π(N)
and

π(n) =
∑̀
i=1

niyi =
∑̀
i=1

niπ(xi) = π(
∑̀
i=1

nixi)

where ni ∈ R. So, π(n−
∑`

i=1 nixi) ∈ kerπ|N and subsequently, n−
∑`

i=1 nixi = n0x0
for some n0 ∈ R. Thus,

n =
∑̀
i=0

nixi

and N must be finitely generated with `+ 1 ≤ k+ 1 generators. This completes the
induction.

Theorem 4.4.2. Let R be a PID and M be a free R-module of rank n. Let N ⊆M
be a submodule of M . Then N itself is free R-module, with rank ≤ n.

Proof. Assume that R is a PID and M is a free R-module of rank n. Then, M has
a basis B = {m1, . . . ,mn}. Assume that N ⊆M is a submodule of M .

To show: (a) N is a free R-module.

(a) Since M is free, we have an isomorphism ϕ : M → Rn defined by

ϕ(r1m1 + · · ·+ rnmn) = (r1, r2, . . . , rn).

SinceN is a submodule ofM , we can apply Lemma 4.4.1 so thatN = span{n1, . . . , ns},
where s ≤ n. Then, we define the matrix A ∈Mn×s(R) as
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A = (ϕ(n1), . . . , ϕ(ns)) =


n11 n12 . . . n1s

n21 n22 . . . n2s

...
...

. . .
...

nk1 nk2 . . . nks

 .

Here, the ith column of A is ϕ(ni). By Smith normal form (Theorem 4.2.3), there
exists P ∈ GLn(R) and Q ∈ GLs(R) such that

PAQ =



d1
. . .

ds
0 . . . 0
...

...
...

0 . . . 0


where d1|d2| . . . |ds. Since Q ∈ GLs(R), {Qm1, . . . , Qmn} is another basis for
M . Furthermore, the Smith normal form decomposition above tells us that if
i ∈ {1, . . . , s}, then Pni = diQmi, where Pni is a linear combination of the ele-
ments in the set {n1, . . . , ns}.

We finally claim that the set {Pn1, . . . , Pns} forms a basis for N . Firstly, since
each Pni is a linear combination of elements in the set {n1, . . . , n2} then the set
{Pn1, . . . , Pns} spans N . Secondly, {Pn1, . . . , Pns} is linearly independent in N
because it is linearly independent in M , as Pni = diQmi for i ∈ {1, . . . , s}. There-
fore, {Pn1, . . . , Pns} is a basis for N and so, N is a free R-module with rank
s ≤ n.

Our proof of the structure theorem will closely follow the proof given in the
reference [Ghi18, Page 2].

Theorem 4.4.3 (Structure Theorem). Let R be a PID and M be a finitely generated
R-module over a PID. Then, there exists d1, . . . , dk ∈ R such that k ∈ {1, 2, . . . , n},
d1|d2| . . . |dk and

M ∼= R/d1R⊕R/d2R⊕ · · · ⊕R/dkR. (4.4)

Proof. Assume that R is a PID and M is a finitely generated R-module, which is
generated by k elements. Assume that i ∈ {1, . . . , k}. By applying Theorem 4.4.2
to the surjective homomorphism ϕ : Rk →M , we deduce that kerϕ is a submodule
of Rk, which is free with rank s ≤ k.

Choose a basis for kerϕ and let A ∈ Mk×s(R) be the matrix associated to the
inclusion map ι : kerϕ→ Rk. By Theorem 4.2.3, A has Smith normal form
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

d1
d2

. . .

ds
0 0 . . . 0
...

... . . .
...

0 0 . . . 0


where d1|d2| . . . |ds. So, there exists a basis {f1, f2, . . . , fk} of Rk such that

{d1f1, d2f2, . . . , dkfk}

is a basis for kerϕ. Note that dj = 0 for j > s. We now define the R-module
homomorphism ψ : Rk → R/d1R⊕ · · · ⊕R/dkR by

ψ(
k∑
i=1

rifi) = (r1 + d1R, . . . , rk + dkR).

Observe that ψ is a surjective R-module homomorphism and kerψ = kerϕ. By the
first isomorphism theorem,

M ∼= Rk/ kerϕ = Rk/ kerψ ∼= R/d1R⊕R/d2R⊕ · · · ⊕R/dkR.

The factors di ∈ R in equation (4.4) are called the invariant factors of M .

Example 4.4.1. This example was taken from [Ghi18, Page 5]. Let

M = Z2/N where N = span{(6, 4), (4, 8), (4, 0)}.

Define a surjective map ϕ : Z3 → Z2 by

ϕ(a, b, c) = a(6, 4) + b(4, 8) + c(4, 0).

Each basis element of Z3 gets sent to a generator in N . The matrix of ϕ with respect
to the standard bases of Z3 and Z2 is now(

6 4 4
4 8 0

)
.

whose Smith normal form decomposition is

(
1 −1
−2 3

)(
6 4 4
4 8 0

)1 0 −2
0 1 1
0 1 2

 =

(
2 0 0
0 8 0

)
.

Theorem 4.4.3 (the structure theorem) then tells us that

M = Z2/N ∼= Z/2Z⊕ Z/8Z.
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Explicitly, consider the bases

B = {(1, 0, 0), (0, 1, 1), (−2, 1, 2)} of Z3 and C = {(3, 2), (1, 1)} of Z2.

Then,

ϕ((1, 0, 0)) = 2(3, 2), ϕ((0, 1, 1)) = 8(1, 1) and ϕ((−2, 1, 2)) = (0, 0)

and N = span{(6, 4), (4, 8), (4, 0)} = 2(3, 2)Z⊕ 8(1, 1)Z.
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Chapter 5

Orbits of principal congruence
subgroups

5.1 Basic definitions

In this section, we will define the matrix orbit space Γ∞(3)\Γ(3), which appears in
[BH86, Page 489] in the context a minimal parabolic Eisenstein series. Let ω = e2πi/3

and Z[ω] = o be the ring of Eisenstein integers. Note that o is a Euclidean domain
and hence, a PID.

Definition 5.1.1. Define

Γ(3) = {A ∈ SL3(o) | A ≡ I3 mod 3o},

Γ∞(3) = Γ(3) ∩ U,

Γ∞(3)\Γ(3) = {Γ∞(3) · A | A ∈ Γ(3)}.
where the congruence A ≡ I3 mod 3o is computed entry by entry and U denotes the
subgroup of upper triangular matrices in SL3(o).

Equivalently, Γ∞(3) is the subgroup of upper triangular unipotent matrices in
Γ(3). This is because if A ∈ Γ∞(3) then its diagonal entries must be congruent to
1 mod 3o. Since 1 is the only element of o× = {±1,±ω,±ω2} which is congruent
to 1 mod 3o, the diagonal entries of A are all 1 and consequently, A is an upper
triangular, unipotent matrix in Γ(3).

The question we will focus on is: If A ∈ Γ(3), then what is a matrix representative
for the orbit Γ∞(3) · A? Analogously to Smith normal form, one of the most useful
ways of understanding matrix orbits is to look for invariants — elements in o which
remain the same when A is multiplied on the left by an element of the group Γ∞(3).

Definition 5.1.2. Let

A =

a b c
d e f
g h i

 ∈ Γ(3).
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Define

Inv(A) = (A1, B1, C1, A2, B2, C2) ∈ o6

where

A1 = g, B1 = h, C1 = i,
A2 = dh− eg, B2 = di− fg, C2 = ei− fh. (5.1)

We call A1, B1, C1 the Λ1 invariants of A and A2, B2, C2 the Λ2 invariants of A.

The notations A1, B1, C1, A2, B2 and C2 used for each invariant are adopted from
[BH86, Page 485]. The Λ1 invariants form the bottom row of A = Λ1(A) and the
Λ2 invariants form the bottom row of Λ2(A).

Let ϕ1, ϕ2 : SL2(o)→ SL3(o) denote the group homomorphisms

ϕ1

(
a b
c d

)
=

a b
c d

1

 and ϕ2

(
a b
c d

)
=

1
a b
c d

 .

Then with ijk = 1,

Λ2

1 x y
1 z

1

 =

1 z xz − y
1 x

1

 , (5.2)

Λ2(diag[i, j, k]) = diag[ij, ik, jk] = diag[k−1, j−1, i−1], (5.3)

Λ2(ϕ1(a, b, c, d)) = ϕ2(a, b, c, d),

Λ2(ϕ2(a, b, c, d)) = ϕ1(a, b, c, d).
(5.4)

Equation (5.2) demonstrates that Λ2(Γ∞(3)) ⊆ Γ∞(3). Since Λ2(I3) = I3, where
I3 ∈ SL3(o) is the identity matrix, Λ2(Γ(3)) ⊆ Γ(3).

5.2 Properties of Λ1 and Λ2 invariants

The main point of this section is that the invariants as defined in Definition 5.1.2
satisfy very similar properties to the Smith normal form invariants investigated in
section 4.3. The main properties we want (A1, B1, C1, A2, B2, C2) ∈ o6 in Definition
5.1.2 to satisfy are

A1 ≡ A2 ≡ B1 ≡ B2 ≡ 0 mod 3o, (I1)

C1 ≡ C2 ≡ 1 mod 3o, (I2)

gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1, (I3)
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A1C2 −B1B2 + C1A2 = 0. (I4)

Equations (I1), (I2), (I3) and (I4) together form the invariant conditions.

Proposition 5.2.1. Let A ∈ Γ(3). Then, Inv(A) ∈ o6 satisfies the invariant con-
ditions (I1), (I2), (I3) and (I4).

Proof. Assume that

A =

a b c
d e f
g h i

 ∈ Γ(3) and Inv(A) = (A1, B1, C1, A2, B2, C2).

By using the definition of Γ(3) in Definition 5.1.1 and equation (5.1), a direct com-
putation yields the conditions (I1) and (I2).

Since A ∈ SL3(o) then det(A) = 1 and Laplace expansion along the bottom row of
A yields

1 = g(bf − ec)− h(af − cd) + i(ae− bd) ∈ go+ ho+ io.

Hence, gcd(A1, B1, C1) = gcd(g, h, i) = 1. Similarly, Laplace expansion along the
top row of A yields

1 = a(ei− fh)− b(di− fg) + c(dh− eg) ∈ C2o+B2o+ A2o.

So, gcd(A2, B2, C2) = 1. Equation (I4) follows from the direct computation

A1C2 −B1B2 + C1A2 = g(ei− fh)− h(di− fg) + i(dh− eg) = 0.

The next theorem establishes a bijection between sets of invariants satisfying the
invariant conditions and orbits in Γ∞(3)\Γ(3). Observe the similarity to Theorem
4.3.3 in the previous chapter.

Theorem 5.2.2. Let A,B ∈ Γ(3). Then, Γ∞(3) · A = Γ∞(3) · B if and only if
Inv(A) = Inv(B).

Proof. Assume that A,B ∈ Γ(3).

To show: (a) If Γ∞(3) · A = Γ∞(3) ·B, then Inv(A) = Inv(B).

(b) If A and B have the same set of invariants, then Γ∞(3) · A = Γ∞(3) ·B.

Proof of (a): Suppose that Γ∞(3) · A = Γ∞(3) · B. Then there exists C ∈ Γ∞(3)
such that CA = B. Since the bottom rows of C and Λ2(C) are both [0, 0, 1], a quick
computation of the bottom rows of CA and Λ2(CA) gives Inv(A) = Inv(CA) =
Inv(B).
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Proof of (b): Now assume that Inv(A) = Inv(B) = (A1, B1, C1, A2, B2, C2).

To show: (ba) There exists a C ∈ Γ∞(3) such that CA = B.

(ba) Since A,B ∈ Γ(3) are invertible, we define C = BA−1.

To show: (baa) BA−1 ∈ Γ∞(3).

(baa) We first write A and B as

A =

a1 b1 c1
d1 e1 f1
A1 B1 C1

 and B =

a2 b2 c2
d2 e2 f2
A1 B1 C1

 .

Since det(A) = 1, we can apply Proposition 3.2.2 to find that A−1 = Υ2(A). Con-
sequently,

BA−1 = BΥ2(A) =

a2 b2 c2
d2 e2 f2
A1 B1 C1

 C2 c1B1 − b1C1 b1f1 − e1c1
−B2 a1C1 − c1A1 c1d1 − a1f1
A2 b1A1 − a1B1 a1e1 − b1d1

 . (5.5)

It remains to show that BA−1 is upper triangular and unipotent. Let dij denote
the i, j element of BA−1. By equation (5.5) and the invariant condition in equation
(I4), d31 = A1C2 −B1B2 + A2C1 = 0.

The entry d32 = A1(c1B1 − b1C1) +B1(a1C1 − c1A1) + C1(b1A1 − a1B1) = 0.

The entry

d33 =

∣∣∣∣∣∣
a1 b1 c1
d1 e1 f1
A1 B1 C1

∣∣∣∣∣∣ = det(A) = 1.

The entry

d21 =

∣∣∣∣∣∣
d2 e2 f2
d2 e2 f2
A1 B1 C1

∣∣∣∣∣∣ = 0.

Since Inv(A) = Inv(B),

d22 =

∣∣∣∣∣∣
a1 b1 c1
d2 e2 f2
A1 B1 C1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1
d1 e1 f1
A1 B1 C1

∣∣∣∣∣∣ = 1.

Finally, since det(BA−1) = 1 and d22 = d33 = 1 then d11 = 1.

So BA−1 is an upper triangular unipotent matrix in Γ(3). Hence, BA−1 ∈ Γ∞(3).
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In [BH86, Page 484], Bump and Hoffstein define the involution ι : GL3(C) →
GL3(C) by

ιA =

 1
1

1

 (A−1)T

 1
1

1

 .

The invariants of A ∈ Γ(3) in [BH86] are defined as the elements of o which comprise
the bottom rows of A and ιA, denoted by [A1, B1, C1] and [A2, B2, C2] respectively.
To see how this is related to Definition 5.1.2, we compute directly that

Λ2(A) =

1
−1

1

 1
1

1

 (Υ2(A))T

 1
1

1

1
−1

1

 .

Since det(A) = 1, then by Proposition 3.2.2, Υ2(A) = A−1. So,

Λ2(A) =

1
−1

1

 (ιA)

1
−1

1

 . (5.6)

Equation (5.6) provides the crucial link between the bottom row [A2, B2, C2] of ιA
in [BH86, p. 486] and Inv(A). In particular, the only difference between A2, B2, C2

as in [BH86, p. 486] and the Λ2 invariants in Definition 5.1.2 is the sign of B2. Thus,
we have connected our approach to the invariants of Γ∞(3)\Γ(3) with that of Bump
and Hoffstein.

5.3 The form of a representative of Γ∞(3)\Γ(3)

Suppose that we are given (A1, B1, C1, A2, B2, C2) ∈ o6 which satisfy the invariant
conditions. We would like to construct a matrix A ∈ Γ(3) such that Inv(A) =
(A1, B1, C1, A2, B2, C2). Similarly to Smith normal form, Steinberg reduction in
subsection 4.1.2 will be the main tool for achieving this construction. Define

D(3) =
{i j

k

 ∈ SL3(o) | i, j, k ∈ o× and ijk = 1
}
. (5.7)

U(3) =
{1 α β

1 γ
1

 ∈ SL3(o) | α, β, γ ∈ o/3o
}
. (5.8)

Theorem 5.3.1. We have the following equality:

SL3(o) =
⋃

y1,y2,y3∈Y (o)

⋃
d∈D(3)

⋃
u∈U(3)

ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )duΓ∞(3). (5.9)
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Proof. To show: (a) RHS of equation (5.9) ⊆ LHS of equation (5.9).

Proof of (a): Suppose that B = ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )duC where y1, y2, y3 ∈ Y (o),

d ∈ D(3), u ∈ U(3) and C ∈ Γ∞(3). Since B is a product of matrices whose
determinants are all 1, det(B) = 1. So, B ∈ SL3(o). This proves equation (5.9).

To show: (b) LHS of equation (5.9) ⊆ RHS of equation (5.9).

Proof of (b): Assume that

A =

a b c
d e f
g h i

 ∈ SL3(o).

Step 1: (First column of A) Use Steinberg reduction (see subsection 4.1.2) on the
first column to construct matrices y1, y2 ∈ Y (o), with Y (o) being the set in equation
(4.1), which satisfy

y1

(
d
g

)
=

(
gcd(d, g)

0

)
and y2

(
a

gcd(d, g)

)
=

(
p
0

)
.

Here, p = gcd(a, d, g) ∈ o×. Consequently,

ϕ1(y2)ϕ2(y1)A =

p b′ c′

0 e′ f ′

0 h′ i′

 .

Step 2: (Second column of A) Using Steinberg reduction on the second column of
ϕ1(y2)ϕ2(y1)A, we construct another matrix y3 ∈ Y (o) satisfying

y3

(
e′

h′

)
=

(
q
0

)
where q = gcd(e′, h′) ∈ o×.

Thus,

ϕ2(y3)ϕ1(y2)ϕ2(y1)A =

p x y
0 q z
0 0 r

 .

Step 3: (Decomposing the upper triangular matrix) On the RHS, we havep x y
0 q z
0 0 r

 =

p q
r

1 qrx qry
1 prz

1

 .

because pqr = 1. Furthermore,

1 qrx qry
1 prz

1

 =

1 α β
1 γ

1

1 qrx− α qry − α(prz − γ)− β
1 prz − γ

1


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where α, β, γ ∈ o/3o are chosen so that the elements

qrx− α, prz − γ, qry − α(prz − γ)− β ∈ 3o. (5.10)

Equation (5.10) ensures that the matrix

U =

1 qrx− α qry − α(prz − γ)− β
1 prz − γ

1

 ∈ Γ∞(3).

Putting all of the computations together, we obtain the decomposition

A = ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )

p q
r

1 α β
1 γ

1

U

so that

SL3(o) ⊆
⋃

y1,y2,y3∈Y (o)

⋃
d∈D(3)

⋃
u∈U(3)

ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )duΓ∞(3).

Example 5.3.1. Let

A =

 4 −3 −12
−3 4 15
−6 3 13

 ∈ Γ(3).

Following the steps in Theorem 5.3.1, A = ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )duC, where

y1 =

(
1 −1
2 −1

)
, y2 =

(
2 −3
3 −4

)
, y3 =

(
2 5
5 13

)
∈ Y (o),

d =

−1
−1

1

 ∈ D(3), u =

1
1

1

 ∈ U(3)

and C =

1 9 30
1 3

1

 ∈ Γ∞(3).

Consequently, ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )du is a representative of the orbit A · Γ∞(3).

For A ∈ Γ(3), Theorem 5.3.1 gives a representative of the right orbit A ·Γ∞(3) ∈
Γ(3)/Γ∞(3). The main motivation behind Theorem 5.3.2 is that we can obtain a
representative of the left orbit Γ∞(3) · A by using Υ1 from Definition 3.1.1.

Theorem 5.3.2. We have the following equality:

SL3(o) =
⋃

y1,y2,y3∈Y (o)

⋃
d∈D(3)

⋃
u∈U(3)

Γ∞(3)udϕ1(y3)ϕ2(y2)ϕ1(y1). (5.11)
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Proof. Assume that

A =

a b c
d e f
g h i

 ∈ Γ(3)

so that

Λ2(A) =

ae− bd af − cd bf − ec
ah− bg ai− cg bi− ch
dh− eg di− fg ei− fh

 ∈ Γ(3).

Since det(Λ2(A)) = 1, equation (3.2) gives

Υ1(A) = (Λ2(A))−1 =

 i −f c
−h e −b
g −d a

 ∈ Γ(3) (5.12)

and subsequently, A = Υ1(Υ1(A)). By Theorem 5.3.1,

Υ1(A) = ϕ2(y
−1
1 )ϕ1(y

−1
2 )ϕ2(y

−1
3 )duC

where y1, y2, y3 ∈ Y (o), d ∈ D(3), u ∈ U(3) and C ∈ Γ∞(3). Applying Υ1 to both
sides and using equation (5.4) yields

A = Υ1(Υ1(A)) = Υ1(C)Υ1(u)Υ1(d)ϕ1(y3)ϕ2(y2)ϕ1(y1)

with Υ1(C) ∈ Γ∞(3) and Υ1(d) ∈ D(3). Assume that

u =

1 x y
1 z

1

 ∈ U(3) so that Υ1(u) =

1 −z y
1 −x

1

 .

Then, Υ1(u) = KL, where

K =

1 3m 3mx+ 9mp+ 3n
1 3p

1

 and L =

1 −z − 3m y − 3n
1 −x− 3p

1

 .

The elements m,n, p ∈ o are chosen such that −z−3m, y−3n,−x−3p ∈ o/3o. This
ensures that K ∈ Γ∞(3) and L ∈ U(3). Hence,

A = Υ1(Υ1(A)) = (Υ1(C)K)LΥ1(d)ϕ1(y3)ϕ2(y2)ϕ1(y1).

which gives equation (5.11).

We remark that we can use the inverse A−1 in place of Υ1(A) to prove an analo-
gous result to Theorem 5.3.2. We used Υ1(A) in the above proof because by equation
(5.12), Υ1(A) is easier to compute than A−1.
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Example 5.3.2. Let

A =

 4 −3 −12
−3 4 15
−6 3 13

 ∈ Γ(3).

By following the steps outlined in the proof of Theorem 5.3.2, A = Cudϕ1(y3)ϕ2(y2)ϕ1(y1),
where

y1 =

(
1 −1
2 −1

)
, y2 =

(
2 −9
3 −13

)
, y3 =

(
2 23
5 58

)
∈ Y (o),

d =

1
−1

−1

 ∈ D(3), u =

1
1

1

 ∈ U(3)

and C =

1 0 15
1 −39

1

 ∈ Γ∞(3).

Consequently, udϕ1(y3)ϕ2(y2)ϕ1(y1) is a representative of the left orbit Γ∞(3) · A.

5.4 Constructing a representative from a set of

invariants

Theorem 5.4.1 forms the crucial link between Theorem 5.3.2 and the Λ1 and Λ2

invariants, as defined in Definition 5.1.2. Before we proceed, we recall the invariant
conditions (I1), (I2), (I3) and (I4).

Theorem 5.4.1. Let (A1, B1, C1, A2, B2, C2) ∈ o6 be a sequence satisfying the in-
variant conditions (I1), (I2), (I3) and (I4) with at least one of A1, B1 6= 0. Let
r1, r2, r3 ∈ o− {0}/o× and α, β ∈ o× be such that

gcd(A1, B1) = αr2,
A1 = gcd(A1, B1)r1,
A2 = gcd(A1, B1)βr3.

(5.13)

Define p1, q1, s1 ∈ o such that

p1 ∈ o/r1o, gcd(A1, B1)s1 = B1 and p1s1 − q1r1 = 1.

Define p2, q2, s2 ∈ o such that

p2 ∈ o/r2o, s2 = α−1C1 and p2s2 − q2r2 = 1.

Define p3, q3, s3 ∈ o such that

p3 ∈ o/r3o, s3 = α−1β−1(p1C2 − q1B2) and p3s3 − q3r3 = 1.

For i ∈ {1, 2, 3}, let
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d =

α−1β−1 β
α

 and yi =

(
pi qi
ri si

)
Then, define the matrix

X = VW ∈M3×3(o)

where

W = dϕ1(y1)ϕ2(y2)ϕ1(y3) and V = W−1 mod 3o.

Then,

X ∈ Γ(3) and Inv(X) = (A1, B1, C1, A2, B2, C2).

Moreover, the decomposition X = I3V dϕ1(y1)ϕ2(y2)ϕ1(y3) with the identity matrix
I3 ∈ Γ∞(3) is the decomposition from equation (5.11).

Proof. Assume that (A1, B1, C1, A2, B2, C2) ∈ o6 satisfies the invariant conditions
(I1), (I2), (I3) and (I4). Assume that we have r1, r2, r3 ∈ o − {0}/o× and α, β ∈ o×
satisfying equation (5.13). We will show that the matrix X is an element of
Γ(3) with Inv(X) = (A1, B1, C1, A2, B2, C2) and that the decomposition X =
I3V dϕ1(y1)ϕ2(y2)ϕ1(y3) is the one in Theorem 5.3.2.

To show: (a) The matrices y1, y2, y3 ∈ Y (o).

(b) The matrices d ∈ D(3) and V ∈ U(3).

(c) The matrix X ∈ Γ(3) and Inv(X) = (A1, B1, C1, A2, B2, C2).

(a) From equation (4.1), the assertion is equivalent to showing that if i ∈ {1, 2, 3}
then ri ∈ o − {0}/o× and pi ∈ o/rio. We already have by assumption r1, r2, r3 ∈
o− {0}/o×.

To show: (aa) If i ∈ {1, 2, 3} then gcd(ri, si) = 1.

(aa) To see that gcd(r1, s1) = 1, note that

gcd(gcd(A1, B1)r1, gcd(A1, B1)s1) = gcd(A1, B1) gcd(r1, s1) = gcd(A1, B1).

Since gcd(A1, B1) 6= 0, then gcd(r1, s1) = 1. Next, to see that gcd(r2, s2) = 1, the
invariant condition equation (I3) gives gcd(A1, B1, C1) = 1 and subsequently,

gcd(r2, s2) = gcd(gcd(A1, B1), C1) = gcd(A1, B1, C1) = 1.

Finally, to see that gcd(r3, s3) = 1, we first observe that since gcd(r1, s1) = 1, then
there exists p1,0, q1,0 ∈ o such that p1,0s1 − q1,0r1 = 1. If n ∈ o then define
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p1,n = p1,0 − nr1 and q1,n = q1,0 − ns1.

A quick computation reveals that if n ∈ o then p1,ns1 − q1,nr1 = 1. Thus, there
exists ` ∈ o such that p1,` ∈ o/r1o. Let p1 = p1,` and q1 = q1,` so that s3 =
α−1β−1(p1C2 − q1B2).

To see that gcd(r3, s3) = 1, we will find constants u, v ∈ o such that ur3 + vs3 = 1.
Since gcd(A2, B2, C2) = 1 by invariant condition (I3), there exists γ1, γ2, γ3 ∈ o such
that γ1A2 + γ2B2 + γ3C2 = 1.

We will now derive expressions for B2 and C2. Since p1s1 − q1r1 = 1, then

p1B1 − q1A1 = gcd(A1, B1) = αr2. (5.14)

Since s3 = α−1β−1(p1C2 − q1B2), then

p1C2 − q1B2 = αβs3. (5.15)

If we multiply equation (5.14) by C2 and then subtract equation (5.15) multiplied
by B1 from it, we find that since A1C2 −B1B2 + A2C1 = 0,

q1A2C1 = q1(B1B2 − A1C2) = αr2(C2 − αβs1s3).

Substituting the expressions A2 = αβr2r3 and C1 = αs2 into the LHS and then
solving for C2, we arrive at

C2 = αβ(q1r3s2 + s1s3). (5.16)

Similarly, if we multiply equation (5.14) by B2 and then subtract equation (5.15)
multiplied by A1 from it, we obtain the equation

p1A2C1 = p1(B1B2 − A1C2) = αr2B2 − αβs3A1.

Using the fact that A2 = αβr2r3 and C1 = αs2, we solve for B2 to obtain

B2 = αβ(p1r3s2 + r1s3). (5.17)

Therefore, if we substitute equations (5.17), (5.16) and A2 = αβr2r3 into the equa-
tion γ1A2 + γ2B2 + γ3C2 = 1, we deduce that

1 = r3(γ1αβr2 + αβγ2p1s2 + γ3αβq1s2) + s3(αβγ2r1 + αβγ3s1).

Hence, r3o + s3o = o and so, gcd(r3, s3) = 1, thereby showing that if i ∈ {1, 2, 3}
then gcd(ri, si) = 1.

(a) Since gcd(r2, s2) = gcd(r3, s3) = 1, we can construct p2, q2, p3, q3 in a similar
manner to p1 = p1,` and q1 = q1,` previously. This gives p2 ∈ o/r2o, p3 ∈ o/r3o and
q2, q3 ∈ o which satisfy p2s2 − q2r2 = 1 and p3s3 − q3r3 = 1. So, y1, y2, y3 ∈ Y (o).
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(b) The matrix d ∈ D(3) because (α−1β−1)βα = 1. To see that the matrix V ∈ U(3),
we will first show that

W =

α−1β−1(p1p3 + p2q3r1) α−1β−1(p2q3s1 + p3q1) α−1β−1q2q3
β(p1r3 + p2r1s3) β(p2s1s3 + q1r3) βq2s3

αr1r2 αr2s1 αs2

 (5.18)

is congruent to an upper triangular, unipotent matrix mod 3o. Let wij denote the
i, j entry of W . For the bottom row of W , we note that w31 = αr1r2 = A1 ≡ 0 mod
3o, w32 = αr2s1 = B1 ≡ 0 mod 3o and w33 = αs2 ≡ C1 ≡ 1 mod 3o by invariant
condition (I2).

Before we compute w11, w21 and w22 modulo 3o, we must establish several other
relations first. We begin with the fact that A1 ≡ B1 ≡ 0 mod 3o from invariant
condition (I1). This reveals that gcd(A1, B1) ≡ 0 mod 3o and thus,

r2 = α−1 gcd(A1, B1) ≡ 0 mod 3o. (5.19)

Since C1 ≡ 1 mod 3o, s2 ≡ ij mod 3o and

s2 = α−1C1 ≡ α−1 mod 3o. (5.20)

Next, we reduce the equation s3 = α−1β−1(p1C2 − q1B2) modulo 3o to obtain

s3 ≡ α−1β−1(p1(1)− q1(0)) ≡ α−1β−1p1 mod 3o (5.21)

where we used the congruence C2 ≡ 1 mod 3o from invariant condition (I2). Since
p2s2 − q2r2 = 1 by construction then

p2s2 ≡ 1 + q2r2 mod 3 ≡ 1 mod 3o,

due to equation (5.19). By using equation (5.20), we find that p2s2 ≡ p2α
−1 mod 3o

and

p2 ≡ α mod 3o. (5.22)

Since A1C2 − B1B2 + A2C1 = 0 from invariant condition (I4), then equation (5.13)
yields r1C2 − s1B2 + βr3C1 = 0. Reducing modulo 3o, we find that

0 = r1C2 − s1B2 + βr3C1 ≡ r1(1)− s1(0) + βr3(1) ≡ r1 + βr3 mod 3o,

where B2 ≡ 0 mod 3o by invariant condition (I1). So,

r1 ≡ −βr3 mod 3o. (5.23)
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Reducing the matrix elements w11, w21 and w22 modulo 3o, we obtain

w21 = β(r3p1 + p2r1s3)

= βr3p1 + βp2r1s3

≡ (−r1)p1 + βp2r1s3 mod 3o (5.23)

≡ −p1r1 + βαr1s3 mod 3o (5.22)

≡ −p1r1 + βαr1(α
−1β−1p1) mod 3o (5.21)

≡ 0 mod 3o.

w22 = β(p2s1s3 + q1r3)

= βp2s1s3 + βq1r3

≡ βp2s1s3 + q1(−r1) mod 3o (5.23)

≡ βαs1s3 − q1r1 mod 3o (5.22)

≡ βαs1(α
−1β−1p1)− q1r1 mod 3o (5.21)

≡ p1s1 − q1r1 ≡ 1 mod 3o.

w11 = α−1β−1(p1p3 + p2q3r1)

= α−1β−1p1p3 + α−1β−1p2q3r1

≡ s3p3 + α−1β−1p2q3r1 mod 3o (5.21)

≡ s3p3 + α−1β−1p2q3(−βr3) mod 3o (5.23)

≡ p3s3 − q3r3 mod 3o (5.22)

≡ 1 mod 3o.

Hence,

W ≡

1 α−1β−1(p2q3s1 + p3q1) α−1β−1q2q3
1 βq2s3

1

 mod 3o.

and so the matrix V = W−1 mod 3o must also be upper triangular and unipotent.
Since V ∈M3×3(o/3o) by construction, we conclude that V ∈ U(3).

(c) From parts (a) and (b), we find that the decompositionX = I3V dϕ1(y1)ϕ2(y2)ϕ1(y3)
is the same one in Theorem 5.3.2. The matrix X ∈ Γ(3) because X = VW ≡
W−1W ≡ I3 mod 3 and det(X) = 1 by Theorem 5.3.2.

To check that Inv(X) = (A1, B1, C1, A2, B2, C2), it suffices to compute Inv(W ) be-
cause since V ∈ U(3), Inv(W ) = Inv(VW ) = Inv(X). Recalling the definition of
W from equation (5.18), the Λ1 invariants of this matrix are αr1r2 = A1, αr2s1 = B1

and αs2 = C1. In order to compute the bottom row of Λ2(W ), which is comprised
of the Λ2 invariants of W , we calculate that

αβr2s1(p1r3 + p2r1s3)− αβr1r2(p2s1s3 + q1r3) = αβp1r2r3s1 − αβr1r2r3q1
= αβr2r3(p1s1 − q1r1)
= αβr2r3 = A2,
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gcd(A1, B1)(αβs2(p1r3 + p2r1s3)− αβq2s3r1r2) = gcd(A1, B1)(αβp1r3s2 + αβr1s3)

= p1A2C1 + p1A1C2 − q1A1B2

= p1B1B2 − q1A1B2 (by invariant condition (I4))

= gcd(A1, B1)(p1s1B2 − q1r1B2) = gcd(A1, B1)B2,

and

gcd(A1, B1)(αβs2(p2s1s3 + q1r3)− αβq2r2s1s3) = gcd(A1, B1)(αβs1s3 + αβq1r3s2)

= p1B1C2 − q1B1B2 + q1A2C1

= p1B1C2 − q1A1C2 (by invariant condition (I4))

= gcd(A1, B1)(p1s1C2 − q1r1C2) = gcd(A1, B1)C2.

Since gcd(A1, B1) 6= 0, the Λ2 invariants of W are A2, B2 and C2. Hence,

(A1, B1, C1, A2, B2, C2) = Inv(W ) = Inv(X).

Example 5.4.1. Suppose that we have the following elements of o which satisfy the
invariant conditions:

A1 = −3 + 6ω, B1 = −3, C1 = −2− 3ω,
A2 = −6 + 3ω, B2 = 3− 6ω, C2 = 4 + 3ω.

We want to construct a matrix A ∈ Γ(3) such that Inv(A) = (A1, B1, C1, A2, B2, C2)
using Theorem 5.4.1. First, we select r1, r2, r3 ∈ o− {0}/o× and α, β ∈ o× such that
equations in (5.13) are satisfied. Recalling the definition of o−{0}/o× from example
4.1.1, we find that the correct choices are

r1 = 2 + 3ω, r2 = 3, r3 = 3 + 2ω and α = β = 1 + ω.

Additionally, from Theorem 5.4.1,

α−1β−1 = −1− ω, s1 = ω, and s2 = α−1C1 = −ω(−2− 3ω) = −3− ω.

Before we compute s3, we must find p1, q1 ∈ o such that p1s1 − q1r1 = 1 and
p1 ∈ o/r1o. This is accomplished by setting p1 = 1 + 2ω and q1 = ω. Now, we are
able to compute s3 as

s3 = α−1β−1(p1C2 − q1B2) = 4 + 8ω.

By using the Euclidean algorithm in o, we also find that p2 = 1+ω, q2 = −1−ω, p3 =
2 + 2ω and q3 = 1 + 6ω. It remains to find the matrix V ∈ U(3) from Theorem
5.4.1. Since the product

−1− ω
1 + ω

1 + ω

ϕ1

(
2 + 2ω 1 + 6ω
3 + 2ω 4 + 8ω

)
ϕ2

(
1 + ω −1− ω

3 −3− ω

)
ϕ1

(
1 + 2ω ω
2 + 3ω ω

)
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≡

1 0 ω
1 2 + ω

1

 mod 3o,

V =

1 0 ω
1 2 + ω

1

−1 mod 3o =

1 0 2ω
1 1 + 2ω

1

 ∈ U(3).

Consequently, our final representative of the orbit in Γ∞(3)\Γ(3) with the original
invariants is given by the matrix X in Theorem 5.4.1, where

X =

 −11− 3ω −3− 3ω −3ω
−24− 33ω −2− 12ω 12 + 3ω
−3 + 6ω −3 −2− 3ω

 ∈ Γ(3).

One can check that Inv(X) = (A1, B1, C1, A2, B2, C2). Thus, the matrix X is
a representative of the matrix orbit Γ∞(3) · A, where A ∈ Γ(3) and Inv(A) =
(A1, B1, C1, A2, B2, C2).

In Theorem 5.4.1, we excluded the case where A1 = B1 = 0. In this case, a
direct computation reveals the following corollary.

Corollary 5.4.2. Let (0, 0, C1, A2, B2, C2) ∈ o6 satisfying the invariant conditions
(I1), (I2), (I3) and (I4). Then, the matrix

X = ϕ1

(
a− bB2 +B2 b− bC2 + C2

B2 C2

)
with aC2 − bB2 = 1 (5.24)

is an element of Γ(3) which satisfies Inv(X) = (0, 0, C1, A2, B2, C2).

Proof. Assume that (0, 0, C1, A2, B2, C2) ∈ o6 is a sequence which satisfies Proposi-
tion 5.2.1. By equation (5.1), A2 = 0 because A1 = B1 = 0. Also, gcd(0, 0, C1) = 1
and gcd(0, B2, C2) = gcd(B2, C2) = 1 from invariant condition (I3). Since C1 ≡ 1
mod 3o from invariant condition (I2) and 1 is the only element of o× which satisfies
the congruence 1 mod 3o, C1 = 1 and there exists a, b ∈ o such that aC2 − bB2 = 1.

For all m ∈ o, define am = a −mB2 and bm = b −mC2. Then, amC2 − bmB2 = 1.
By setting m = b− 1, we obtain

ab−1 = a− bB2 +B2 and bb−1 = b− bC2 + C2.

Since B2 ≡ 0 mod 3o and C2 ≡ 1 mod 3o from invariant conditions (I1) and (I2),
bb−1 ≡ 0 mod 3o. Since ab−1C2 − bb−1B2 = 1, reducing both sides of the equation
modulo 3o gives ab−1C2 ≡ 1 mod 3o and ab−1 ≡ 1 mod 3o as a result.

By defining the matrix X as in equation (5.24), we find that X ∈ Γ(3) and by direct
computation, Inv(X) = (0, 0, C1, A2, B2, C2) as required.
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Suppose that X ∈ Γ(3). Theorem 5.4.1 tells us how to construct a representative
of the orbit Γ∞(3) · X. One computes Inv(X) and then constructs a representa-
tive according to Theorem 5.4.1. The main point we emphasise here is that the
representative in Γ(3) decomposes according to equation (5.11). By constructing a
representative for all the orbits in orbit space Γ∞(3)\Γ(3), and then decomposing
them according to Theorem 5.4.1, we obtain the following Bruhat decomposition of
Γ(3):

Corollary 5.4.3. Define the map

ρ : SL3(o) → SL3(o/3o)
A 7→ A−1 mod 3o.

where A−1 mod 3o is computed entrywise. Then, we have the following equality:

Γ(3) =
⊔

y1,y2,y3∈Y (o)

⊔
d∈D(3)

Γ∞(3) ρ(dϕ1(y3)ϕ2(y2)ϕ1(y1)) dϕ1(y3)ϕ2(y2)ϕ1(y1). (5.25)

Proof. Assume that ρ : SL3(o)→ SL3(o/3o) is the map defined in the statement of
the corollary.

To show: (a) LHS of equation (5.25) ⊆ RHS of equation (5.25).

(a) Assume that X ∈ Γ(3). By Proposition 5.2.1, Inv(X) satisfies the invariant
conditions. Applying Theorem 5.4.1, we construct the matrix

A = ρ(dϕ1(y3)ϕ2(y2)ϕ1(y1))dϕ1(y3)ϕ2(y2)ϕ1(y1)

where y1, y2, y3 ∈ Y (o) and d ∈ D(3). Moreover, A ∈ Γ(3) with Inv(A) = Inv(X).
By Theorem 5.2.2, Γ∞(3) · A = Γ∞(3) ·X. So, there exists C ∈ Γ∞(3) such that

X = Cρ(dϕ1(y3)ϕ2(y2)ϕ1(y1))dϕ1(y3)ϕ2(y2)ϕ1(y1).

So, X is an element of the RHS of equation (5.25) and subsequently,

Γ(3) ⊆
⊔

y1,y2,y3∈Y (o)

⊔
d∈D(3)

Γ∞(3) ρ(dϕ1(y3)ϕ2(y2)ϕ1(y1)) dϕ1(y3)ϕ2(y2)ϕ1(y1).

To show: (b) RHS of equation (5.25) ⊆ LHS of equation (5.25)

(b) Assume that

P = K ρ(eϕ1(x3)ϕ2(x2)ϕ1(x1)) eϕ1(x3)ϕ2(x2)ϕ1(x1)

where x1, x2, x3 ∈ Y (o), e ∈ D(3) andK ∈ Γ∞(3). DefineW = eϕ1(x3)ϕ2(x2)ϕ1(x1).
Since W ∈ SL3(o), the matrix ρ(W−1) = W mod 3o is well-defined with inverse
ρ(W ). So, det(ρ(W−1)) ≡ det(W ) ≡ 1 mod 3o. Since det(ρ(W−1)) ∈ o× and
det(ρ(W−1)) ≡ 1 mod 3o, det(ρ(W )) = det(ρ(W−1)) = 1.
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Now, the matrix ρ(W )W is a product of matrices with determinant 1. So, ρ(W )W ∈
SL3(o). Moreover, ρ(W )W ≡ (W−1)W ≡ I3 mod 3o. So, ρ(W )W ∈ Γ(3). Since
K ∈ Γ∞(3) ⊆ Γ(3), then P = Kρ(W )W ∈ Γ(3), which yields equation (5.25).
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