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0.1 Purpose

(DUE FOR A REVAMP) This document serves two purposes. Firstly, it
serves as a summary of what I have learnt from functional analysis. Secondly,
typesetting this document allows me to learn LaTeX. Essentially, we are
“killing two birds with one stone” with this endeavour. The main reference
for my studies are ”Lecture Notes on Functional Analysis and Linear Partial
Differential Equations” by Alberto Bressan (see [AB10]).
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Chapter 1

Basic Definitions

1.1 Normed vector spaces

Generally speaking, a norm is a function which allows us to measure mag-
nitude. A norm could refer to the norm of a Euclidean domain or the norm
induced by the inner product of a Hilbert space. For now, we will focus on
equipping a vector space V with a norm, giving rise to the definition of a
normed vector space.

We will assume that the underlying field of the vector space, denoted by
K, is either the real numbers R or the complex numbers C.

Definition 1.1.1. A normed vector space is a vector space V , equipped
with a function ‖.‖ : V → R≥0 (called a norm) such that the following axioms
are satisfied:

1. ∀x ∈ V and ∀λ ∈ K, ‖λx‖ = |λ| ‖x‖ (Scalar Multiplication).

2. ∀x ∈ V, ‖x‖ = 0 if and only if x = 0 (Positive definiteness).

3. ∀x, y ∈ V, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle Inequality).

We will also like to quantify the notion of “distance” between two vectors.
Fortunately, we can use the norm to do this. A natural definition of
distance is

d(x, y) = ‖x− y‖ ∀x, y ∈ V (1.1)

From the axioms satisfied by the norm, we can determine the axioms
d(x, y) satisfies. This leads to the important definition of a metric space
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Definition 1.1.2. A metric space (X, d) is a set X, equipped with a
function d : X ×X → R≥0 (called a metric) which satisfies the following
axioms:

1. ∀x, y ∈ X, d(x, y) = d(y, x) (Symmetry).

2. ∀x, y ∈ X, d(x, y) = 0 if and only if x = y (Positive definiteness).

3. ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality).

Note that in the definition of a metric space, we are equipping a set with a
metric, whereas for normed vector spaces, we are equipping a vector space
with a norm. Now, we will focus on normed vector spaces and give
illustrative examples.

Example 1.1.1. The vector space Rn with the Euclidean norm
‖(x1, x2, . . . , xn)‖ =

√
x2

1 + x2
2 + · · ·+ x2

n is a normed vector space.

Example 1.1.2. Once again, consider the vector space Rn. Let

1 ≤ p <∞. Then, the norms ‖(x1, x2, . . . , xn)‖p = (xp1 + xp2 + · · ·+ xpn)
1
p and

‖(x1, x2, . . . , xn)‖∞ = max (|x1|, |x2|, . . . , |xn|) also turn Rn into normed
vector spaces.

Example 1.1.3. Consider the vector space of real number sequences
lp = {(x1, x2, . . . , xn, . . . )|xi ∈ R,

∑∞
i=1|xi|p <∞}. This is a normed vector

space with the norm defined as ‖x‖ = (
∑∞

i=1|xi|p)
1
p .

Example 1.1.4. Consider the vector space of bounded real number
sequences l∞ = {(x1, x2, . . . , xn, . . . )|xi ∈ R, ∀xi ∈ Rxi <∞}. This is also
a normed vector space with the norm defined as
‖x‖ = sup{|x1|, |x2|, . . . , |xn|, . . . }.

Example 1.1.5. Let X be an open subset of R. Then, consider the vector
space Lp = {f : X → R | |f |p is Lebesgue integrable and

∫
X
|f |p dx = 0 if

and only if f = 0}. This is a normed vector space with norm defined as

‖f‖ = (
∫
X
|f |p dx)

1
p

It is worth observing that (1.1) provides a natural, intuitive way of defining
a metric for vector spaces. This allows us to utilise topological concepts in
order to analyse normed vector spaces. We will begin with basic definitions
first.

Let X be a normed vector space. Let x ∈ X. We define the open ball
centred at x with radius r as follows:
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B(x, r) = {y ∈ X| ‖y − x‖ < r} (1.2)

Similarly, the closed ball centred at x with radius r is defined as

B(x, r) = {y ∈ X| ‖y − x‖ ≤ r} (1.3)

Definition 1.1.3. Let X be a set and x ∈ X. If for some
r ∈ R>0, B(x, r) ⊂ V , then V is called a neighbourhood of the point x.

Definition 1.1.4. Let V ⊆ X be a set. We say that V is an open set if
for all x ∈ V , there exists a r ∈ R>0 such that B(x, r) ⊂ V .

Definition 1.1.5. Let V ⊆ X be a set. If for some x ∈ V , there exists a
r ∈ R>0 such that B(x, r) ⊂ V , then x is called an interior point of V .

Definition 1.1.6. Let V ⊆ X be a set. The interior V ◦ of V is the set of
all interior points of V .

An alternative definition of an open set uses the definitions above. A set
V ⊆ X is open if V = V ◦.

Theorem 1.1.1. Let X be a set and V ⊆ X be a subset of V. Then, V ◦ is
the largest open set that is contained within V .

Proof. Assume that X is a set. Assume that V ⊂ X is an open subset of X.

To show: (a) V ⊂ X◦.

(b) X◦ is an open set.

(a) Assume that v ∈ V . Since V is an open subset, there exists ε ∈ R>0

such that the open ball B(v, ε) ⊂ V . Since V ⊂ X, B(v, ε) ⊂ X. So, there
exists ε ∈ R>0 such that B(v, ε) ⊂ X. Hence, v ∈ X◦. So, V ⊂ X◦

(b) Assume that x ∈ X◦. Then, there exists a ε ∈ R>0 such that the open
ball B(x, ε) ⊂ X. Assume that y ∈ B(x, ε). We can use part (a) to deduce
that y ∈ X◦. Hence, B(x, ε) ⊂ X◦ and subsequently, X◦ is an open subset
of X.

Consequently X◦ is the largest open set contained in X.

Definition 1.1.7. Let V ⊆ X be a set. We say that V is a closed set if
its complement X\V is open.
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Definition 1.1.8. Let x ∈ X. We say that x is an adherent point of
V ⊆ X if for all r ∈ R>0, B(x, r) ∩ V 6= ∅.

Definition 1.1.9. Once again, let V ⊆ X be a subset of X. The set of all
adherent points of V is called the closure of V , denoted by V .

Similarly to open sets, we can use the closure of a set to give an alternative
definition of a closed set. We say that V ⊆ X is a closed set if V = V .
Adherent points are also referred to as accumulation points or cluster points.

Theorem 1.1.2. Let X be a set and V ⊆ X be a subset of V. Then, V is
the smallest closed set containing V .

Proof. Assume that X is a set. Assume that X ⊂ V , where V is a closed
set.

To show: (a) X ⊂ V .

(b) X is a closed set.

(a) Assume that x ∈ X. Then, for all r ∈ R>0, B(x, r) ∩X 6= ∅. Since X is
a subset of V , we can further conclude that B(x, r) ∩ V 6= ∅. This means
that x is an adherent point of V and so, x ∈ V . Finally, since V is a closed
set, V = V . So, x ∈ V and therefore, X ⊂ V .

(b) Assume that y ∈ X. Then, for all r ∈ R>0, B(y, r) ∩X 6= ∅. Assume
that the point z ∈ B(y, r) ∩X. Then, z ∈ X ⊂ X. Additionally,
z ∈ B(y, r). So, B(y, r) ∩X 6= ∅. Hence, y is an adherent point of X and
subsequently, X is a closed set.

So, X is the smallest closed set containing X.

Note that if a given set is not open, it is not necessarily the case that it is
closed and vice versa. For example, C is both open and closed, whereas the
interval (0, 1] ⊂ R is neither open nor closed.

We will end this section by proving that Lp is indeed a normed vector space.

Proof. Before we delve into verifying the axioms of a normed vector space,
we will prove the following identity first.

To show: (a) For all a, b ∈ R>0 and p ∈ [1,∞),
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inf
0<t<1

[t1−pap + (1− t)1−pbp] = (a+ b)p.

(a) Assume that a, b ∈ R>0 and p ∈ [1,∞). Define the function

g(t) = t1−pap + (1− t)1−pbp.

Then, we differentiate to obtain

g′(t) = (1− p)t−pap − (1− p)(1− t)−pbp.

g′(t) vanishes if and only if t = t1 = a/(a+ b). To determine the nature of
this stationary point, we compute g′′(t1) to be

g′′(t1) = −[(1− p)pt1−p−1ap + (1− p)p(1− t1)−p−1bp] > 0.

Hence, g(t) has a local minimum at t1, based off the convexity of the
stationary point. Note that g(t1) = (a+ b)p. So, we have

inf
0<t<1

[t1−pap + (1− t)1−pbp] = (a+ b)p.

Now we are ready to prove that Lp satisfies the axioms of a normed vector
space.

To show: (b) For all f ∈ Lp, ‖f‖p = 0 if and only if f = 0.

(c) For all f ∈ Lp and λ ∈ R, ‖λf‖p = |λ|‖f‖p.

(d) For all f, g ∈ Lp, ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

(b) From the definition of the integral, we have that for all f ∈ Lp,
‖f‖p ≥ 0. When ‖f‖p = 0, this means that∫

X

|f |p dx = 0.

Once again, by the positive definiteness of the integral (integral pair),
|f |p = 0. Therefore, f = 0. Conversely, if f = 0, then |f |p = 0 and
consequently, ‖f‖p = 0.

(c) Assume that λ ∈ R. Then, we proceed as follows
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‖λf‖p = (

∫
X

|λf |pdx)1/p

= (|λ|p
∫
X

|f |pdx)1/p

= |λ|(
∫
X

|f |pdx)1/p

= |λ|‖f‖p.

Hence, ‖λf‖p = |λ|‖f‖p.

(d) Assume that f, g ∈ Lp. Then we use the identity proven in part (a) to
argue as follows:

‖f + g‖pp =

∫
X

|f + g|pdx

≤
∫
X

(|f |+ |g|)pdx

≤
∫
X

[t1−p|f |p + (1− t)1−p|g|p]dx (t ∈ (0, 1))

= t1−p
∫
X

|f |pdx+ (1− t)1−p
∫
X

|g|pdx.

= t1−p‖f‖pp + (1− t)1−p‖g‖pp.

Note that this holds for all t ∈ (0, 1). Hence, we can deduce that

‖f + g‖pp ≤ inf
t∈(0,1)

[t1−p‖f‖pp + (1− t)1−p‖g‖pp] = (‖f‖p + ‖g‖p)p.

Taking the pth root of both sides gives us the triangle inequality we are
after.

Therefore, Lp is a normed vector space.

1.2 Banach Spaces and Completeness

The notions of convergence, continuity and completeness are critically
important ideas in analysis and topology. Using the norm of a normed
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vector space, we will define the convergence of sequences, continuous
functions, Cauchy sequences and completeness. Then, we will investigate an
important subset of normed vector spaces - Banach spaces.

Definition 1.2.1. Let X be a normed vector space and let {xn}n≥1 be a
sequence of points in X. We say that {xn} converges to the point x if for
all ε > 0, there exists a N ∈ R>0 such that for all n > N ,

‖xn − x‖ < ε.

We also write limn→∞‖xn − x‖ = 0.

Closely related to the notion of convergence is the notion of a Cauchy
sequence.

Definition 1.2.2. Let X be a normed vector space and let {xn}n≥1 be a
sequence of points in X. We say that {xn} is a Cauchy sequence if for all
ε > 0, there exists a N ∈ R>0 such that for all m,n > N ,

‖xn − xm‖ < ε.

Theorem 1.2.1. Let X be a normed vector space and let {xn} be a
sequence of points in X, converging to a point x ∈ X. Then, {xn} is a
Cauchy sequence.

Proof. Assume X is a normed vector space and {xn} is a convergent
sequence of points in X, converging to x ∈ X. Then, for all ε > 0, there
exists a N ∈ R>0 such that for all n > N ,

‖xn − x‖ <
ε

2
.

Similarly, for all ε > 0, there exists a M ∈ R>0 such that for all m > M

‖xm − x‖ <
ε

2
.

Hence, we define N2 = min{M,N}. So, for all ε > 0 and m,n > N2,

‖xn − x‖ = ‖xn − x+ x− xm‖
≤ ‖xn − x‖+ ‖xm − x‖ (Triangle Inequality)

≤ ε

2
+
ε

2
= ε.

Therefore, the sequence is Cauchy.
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Note that these definitions also apply to metric spaces. It is natural to ask
whether the converse of the previous theorem is true. In general, Cauchy
sequences are not necessarily convergent. However, satisfying the converse
statement leads to a very special property normed vector spaces/metric
spaces can have.

Definition 1.2.3. Let X be a normed vector space. X is complete if every
Cauchy sequence in X converges (same definition works for metric spaces).

Definition 1.2.4. A Banach space is a normed vector space which is also
complete with respect to the norm.

Each of the normed vector spaces given as examples on page 3 are all
Banach spaces. We will now list some important theorems with proofs
pertaining to completeness.

Theorem 1.2.2. Let X be a metric space and let M be a non-empty subset
of X. Then, x ∈M if and only if there exists a sequence {xn} in M such
that xn → x.

Proof. To show: (a) If x ∈M , then there exists a sequence {xn} in M such
that xn → x.

(b) If we have a sequence {xn} in M such that xn → x, then x ∈M .

(a) Assume X is a metric space with metric d. Assume M is a non-empty
subset of X and that x ∈M . Then, this divides into two cases. Firstly,
consider the case where x ∈M . Then, we can define the sequence
{xn} = (x, x, x, . . . ). Since x ∈M , the sequence {xn} ∈M and it converges
to x.

Next, consider the case where x /∈M . Observe that since x ∈M , x must be
an adherent point of M. Now consider the set of open balls B(x, 1

n
), where

n is a positive integer. We choose the points xn such that for all
n ∈ Z>0, xn ∈ B(x, 1

n
). Define the sequence {xn} = (x1, x2, x3, . . . ). Due to

our construction, this sequence converges to x because d(xn, x) ≤ 1
n
→ 0 as

n→∞.

(b) Assume that we have a sequence {xn} in M such that xn → x. Then,
either x ∈M or x is an adherent point because every neighbourhood of x
contains at least one point xn in the sequence {xn}. In either case,
x ∈M .

10



Furthermore, note that if x ∈M in part (b), then M must be a closed
subset of X.

Theorem 1.2.3. Let (X, d) be a complete metric space and M ⊂ X. Then,
the subspace (M,d) is complete if and only if M is closed.

Proof. To show: (a) If M is a complete subspace with d as the metric, then
M is closed.

(b) If M is closed, then (M,d) is complete.

(a) Assume (X, d) is a complete metric space. Assume (M,d) is a complete
subspace. Then, every Cauchy sequence in M converges. We already know
that M ⊆M .

To show: (aa) M ⊆M .

(aa) Assume that x ∈M . Utilising the previous theorem, we know that
there exists a sequence {xn} in M such that xn → x. Since {xn} is
convergent, {xn} is a Cauchy sequence. Since (M,d) is a complete subspace
by assumption, {xn} converges inside M . Therefore, x ∈M and
consequently, M ⊆M .

(a) Since M ⊆M and M ⊆M , M = M and so M is closed.

(b) For the converse, assume that M is a closed subset of X. Let {xn} be a
Cauchy sequence in M . Due to the completeness of X, {xn} must converge
to (say) x. From the previous theorem, x ∈M . Since M is closed, x ∈M .
Since our choice of Cauchy sequence was arbitrary, we deduce that every
Cauchy sequence in M converges to a point in M . Therefore, (M,d) is a
complete metric subspace.

Example 1.2.1. Consider R as a metric space, equipped with the usual
Euclidean metric d(x, y) = |x− y|. Consider the closed interval [0, 1] ∈ R.
From the theorem above, we know that the subspace ([0, 1], d) must be
complete because (R, d) is a complete metric space. On the other hand, the
subspace ((0, 1), d) is not complete because the Cauchy sequence
(1, 1

2
, 1

3
, . . . ) does not converge in the open interval (0, 1).

Theorem 1.2.4. Let {xn}n∈Z>0 be a Cauchy sequence in a normed vector
space X. Then, {xn}n∈Z>0 is bounded.
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Proof. Assume that X is a normed vector space and {xn}n∈Z>0 is a Cauchy
sequence in X. Then there exists N ∈ Z>0 such that if m,n > N then

‖xn − xm‖ < 1.

Now fix n ∈ Z>N . If m ∈ Z>N then

‖xm‖ ≤ ‖xm − xn‖+ ‖xn‖ < ‖xn‖+ 1.

We conclude that if j ∈ Z>0 then

‖xj‖ < max(‖x1‖, ‖x2‖, . . . , ‖xN‖, ‖xn‖+ 1) <∞.

So the Cauchy sequence {xn}n∈Z>0 is bounded.

Observe that this theorem also works perfectly for metric spaces.

Theorem 1.2.5. Let {xn}n∈Z>0 be a bounded sequence in R. Then,
{xn}n∈Z>0 has a convergent subsequence.

Proof. Assume that {xn}n∈Z>0 is a bounded sequence in R. Without loss of
generality, assume that if n ∈ Z>0 then xn ∈ [0, 1]. We can do this because
{xn}n∈Z>0 is bounded and changing the signs of each xn does not affect the
value of |xn|.

We proceed by using a diagonalisation argument. Divide the interval [0, 1]
into two halves — [0, 1/2] and [1/2, 1]. Either one of these intervals must
contain infinitely many terms of the sequence {xn}n∈Z>0 . Denote the
interval which satisfies this property by I1 = [a1, b1].

Next divide the interval I1 into its two halves. Since I1 contains infinitely
many terms of the sequence {xn}n∈Z>0 then either one of the half-intervals
of I1 must contain infinitely many terms of {xn}n∈Z>0 . We denote the
interval which satisfies this property by I2 = [a2, b2].

Continuing in this fashion, we construct a sequence of nested intervals

· · · ( In ( · · · ( I2 ( I1 ( [0, 1]

such that if j ∈ Z>0 then Ij = [aj, bj] contains infinitely many terms of the
sequence {xn}n∈Z>0 . Note that by construction, if j ∈ Z>0 then
bj − aj = 2−j (this is the Lebesgue measure of the interval Ij). Now pick
xnj from the sequence {xn} such that xnj ∈ Ij and xnj 6∈ Ij+1. This gives us
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a subsequence {xnj}j∈Z>0 of {xn}.

Now observe that the sequence {aj}j∈Z>0 is increasing and bounded above
by 1. So it must converge to some x ∈ [0, 1]. We claim that the
subsequence {xnj}j∈Z>0 converges to x.

By assumption if j ∈ Z>0 then xnj ∈ Ij = [aj, bj]. So

|xnj − aj| ≤ |bj − aj| =
1

2j
.

Assume that ε ∈ R>0. Since {aj}j∈Z>0 converges to x then there exists
N ∈ Z>0 such that if k > N then

|ak − x| <
ε

2
and |xnk − ak| ≤

1

2k
<
ε

2
.

By the triangle inequality, we obtain

|xnk − x| ≤ |xnk − ak|+ |ak − x| <
ε

2
+
ε

2
= ε.

Hence the subsequence {xnj}j∈Z>0 converges to x.

It is not too difficult to use 1.2.5 to show that every bounded sequence in
Rn,C and Cn has a convergent subsequence.

We will now use 1.2.5 to establish a very important result - the
completeness of R.

Theorem 1.2.6 (Completeness of R). Let {xn}n∈Z>0 be a Cauchy sequence
in R. Then, {xn}n∈Z>0 converges. In particular, the pair (R, |−|) is a
Banach space where |−| : R→ R≥0 is the absolute value.

Proof. The fact that (R, |−|) is a normed vector space follows from the
properties of the absolute value |−| : R→ R≥0. Assume that {xn}n∈Z>0 is a
Cauchy sequence in R. Then it is bounded by (REFERENCE).

By the Bolzano-Weierstrass theorem in Theorem 1.2.5 to obtain a
subsequence {xnk}k∈Z>0 which converges to some x ∈ R. Assume that
ε ∈ R>0. Then there exists M ∈ Z>0 such that if k > M then

|xnk − x| <
ε

2
.

There also exists P ∈ Z>0 such that if nk, j > P then
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|xnk − xj| <
ε

2
.

Fix k ∈ Z>M such that nk > P . If j > max(M,P ) then

|xj − x| ≤ |xj − xnk |+ |xnk − x| <
ε

2
+
ε

2
= ε.

Therefore the Cauchy sequence {xn}n∈Z>0 converges to x ∈ R. So the pair
(R, |−|) is a Banach space.

We can use the completeness of R in order to prove the completeness of
other metric spaces/normed vector spaces.

Theorem 1.2.7 (Completeness of Rn). Let Rn be a normed vector space,
equipped with the usual Euclidean norm. Then, (Rn, ‖.‖) is a Banach space.

Proof. Assume {xm} = (y1
(m), y2

(m), . . . , yn
(m)) is a Cauchy sequence in Rn.

To show: (a) {xm} is convergent.

(a) If {xm} is a Cauchy sequence, then for all ε > 0, there exists a N ∈ Z>0

such that for all l,m > N

‖xl − xm‖ = (
n∑
i=1

(yi
(l) − yi(m))2)

1
2 < ε

Utilising a bounding argument, we find that for all j ∈ {1, 2, . . . , n},

(yj
(l) − yj(m))2 ≤

n∑
i=1

(yi
(l) − yi(m))2

≤ ε2

Therefore,

|yj(l) − yj(m)| ≤ ε

This tells us that for all j ∈ {1, 2, . . . , n}, the sequence (yj
(1), yj

(2), . . . ) in R
is a Cauchy sequence. Due to the completeness of R (see 1.2.6), this
sequence converges to (say) yj for all j ∈ {1, 2, . . . , n}. This tells us that for
all j ∈ {1, 2, . . . , n} and ε > 0, there exists a N ∈ Z>0 such that for all
m > N

|yj(m) − yj| ≤
ε√
n
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Returning to Rn, we define x = (y1, y2, . . . , yn). Clearly, x ∈ Rn and for all
i ∈ {1, 2, . . . , n} and l > N ,

n∑
i=1

(yi
(l) − yi)2 ≤ (n× ε2)

n

= ε2

Subsequently,

‖xl − x‖ = (
n∑
i=1

(yi
(l) − yi)2)

1
2 ≤ ε

Therefore, the sequence {xm} converges to x ∈ Rn. This proves the
completeness of Rn

Theorem 1.2.8 (Completeness of l∞). The normed vector space l∞ is a
Banach space.

Proof. Assume {xm} = (x1
(m), x2

(m), . . . , xn
(m), . . . ) is a Cauchy sequence in

l∞.

To show: (a) {xm} is convergent.

(a) If {xm} is a Cauchy sequence, then for all ε > 0, there exists a N ∈ Z>0

such that for all l,m > N

‖xl − xm‖ = sup{|x1
(l) − x1

(m)|, |x2
(l) − x2

(m)|, . . . , |xn(l) − xn(m)|, . . . } < ε

Then, for all j ∈ {1, 2, ..., n},

|xj(l) − xj(m)| < ε.

Once again, this tells us that the real sequence (xj
(1), xj

(2), . . . ) is a Cauchy
sequence. Due to the completeness of R, the sequence converges to (say) xj.
Now, we define

x = (x1, x2, . . . , xn, . . . )

For clarity, x is a sequence of real numbers. To see that x ∈ l∞, we note
that for all j ∈ {1, 2, ..., n} and l > N ,
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|xj| = |xj − xj(l) + xj
(l)|

≤ |xj(l) − xj|+ |xj(l)| (Triangle Inequality)

≤ ε+ |xj(l)|
<∞

Thus, x ∈ l∞. Finally, we note that

‖xl − x‖ = sup{|x1
(l) − x1|, |x2

(l) − x2|, . . . , |xn(l) − xn|, . . . }
< ε.

This is because for all j ∈ {1, 2, ..., n}, the sequence (xj
(1), xj

(2), . . . ) in R
converges to xj as established previously. Hence, the sequence {xm} in l∞ is
convergent. Consequently, l∞ is a Banach space.

Finally, we will end this section with the definition of a continuous function.

Definition 1.2.5. Let (X, ‖.‖x) and (Y, ‖.‖y) be normed vector spaces.
Then, a continuous function f : X → Y has the property that for all
ε > 0, there exists a δ > 0 such that for all a, b ∈ X,

‖a− b‖x < δ ⇒ ‖f(a)− f(b)‖y < ε.

1.3 Linear Operators

When one learns about a new space, it is natural to ask about the
functions/mappings between them. Similarly to how we have linear
transformations between vector spaces, normed vector spaces are connected
via linear operators. We will make this more precise later.

Definition 1.3.1. Let X and Y be normed vector spaces over the same
field F. A linear operator is a mapping Λ : X → Y from Dom(Λ) ⊆ X
(the domain of Λ) to Y such that for all c1, c2 ∈ F and x1, x2 ∈ X,
Λ(c1x1 + c2x2) = c1Λ(x1) + c2Λ(x2).

Note the striking similarity to the definition of a linear transformation
between two vector spaces. Again, the notions of kernel and image remain
the same.
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Definition 1.3.2. The kernel of Λ is the subspace of X defined by

ker(Λ) = {x ∈ X | Λ(x) = 0}

Definition 1.3.3. The image of Λ is the subspace of Y defined by

im(Λ) = {Λ(x) | x ∈ Dom(Λ)}

Definition 1.3.4. The linear operator Λ is said to be one-to-one or
injective if and only if ker(Λ) = {0}.

Definition 1.3.5. The linear operator Λ is said to be onto or surjective if
and only if im(Λ) = Y .

The main difference between linear transformations on vector spaces and
linear operators on normed vector spaces is the fact that due to the extra
structure on normed vector spaces induced by the norm, linear operators
also have a topological structure. The next few definitions represent this.

Definition 1.3.6. The linear operator Λ is said to be densely defined if
and only if Dom(Λ) = X.

Definition 1.3.7. Let X and Y be normed vector spaces. The mapping
φ : X → Y is said to be bounded if the image of a bounded subset of X is
a bounded subset of Y .

We will return to bounded maps/linear operators later. As an aside, we will
shift our focus to the aforementioned similarity between linear
transformations between vector spaces and linear operators between normed
vector spaces. A major aspect of pure maths is to take the properties of
something familiar (such as the integers for instance) and create and study
abstractions with these properties. Consider vector spaces over the same
field and their associated linear transformations. It is clear that the similar
properties between linear transformations and linear operators is something
that can be abstracted. The result is the notion of a category.

Definition 1.3.8. A category C is a triple, consisting of:

1. A class of objects ob(C )

2. A class of morphisms (or arrows) between the objects Hom(C ). We
say that the morphism f : A→ B is an element of Hom(A,B), which
denotes the class of all morphisms from A to B. A is deemed the
source object and B is the target object in this case.
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3. A binary operation called composition of morphisms, defined by
◦ : Hom(B,C)×Hom(A,B)→ Hom(A,C), ◦(g, f) = g ◦ f .

Additionally, the composition of morphisms must satisfy the following two
properties:

1. Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h)

2. Identity: For all objects A ∈ ob(C ), there exists a morphism
1A : A→ A such that for all morphisms f ∈ Hom(A,B), f ◦ 1A = f
and for all morphisms g ∈ Hom(B,A), 1A ◦ g = g.

Theorem 1.3.1. The collection of normed vector spaces over a field K,
together with linear operators, is a category (we will call this category
K-Norm Vect).

Proof. To show: (a) For all linear operators f, g, h, (f ◦ g) ◦ h = f ◦ (g ◦ h)

(b) There exists a linear operator 1A : A→ A such that for all linear
operators f ∈ Hom(A,B), f ◦ 1A = f and for all linear operators
g ∈ Hom(B,A), 1A ◦ g = g

(a) Assume f ∈ Hom(C,D), g ∈ Hom(B,C) and h ∈ Hom(A,B). Assume
ax+ by ∈ A where a, b ∈ K. Then,

(f ◦ g) ◦ h(ax+ by) = (f ◦ g) ◦ (ah(x) + bh(y))

= a(f ◦ g) ◦ h(x) + b(f ◦ g) ◦ h(y)

= f(a(g ◦ h)(x) + b(g ◦ h)(y))

= f ◦ (g ◦ h)(ax+ by).

(b) Define the mapping 1A : A→ A such that 1A(a) = a for all a ∈ A.

To show: (ba) 1A is a linear operator.

(bb) For all linear operators f ∈ Hom(A,B), f ◦ 1A = f .

(bc) For all linear operators g ∈ Hom(B,A), 1A ◦ g = g.

(ba) Again, assume that ax+ by ∈ A where a, b ∈ K. Then, from the
definition of 1A, we have
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1A(ax+ by) = ax+ by

= a1A(x) + b1A(y)

Hence, 1A is a linear operator.

(bb) Assume that f ∈ Hom(A,B) and that ax+ by ∈ A where a, b ∈ K.
Then,

f ◦ 1A(ax+ by) = f(ax+ by)

So, f ◦ 1A = f .

(bc) Assume that g ∈ Hom(B,A) and that ax+ by ∈ A where a, b ∈ K.
Then,

1A ◦ g(ax+ by) = 1A(g(ax+ by)) = g(ax+ by)

So, 1A ◦ g = g. Therefore, K-Norm Vect is a category.

There are a multitude of categories that one might be already familiar with.
Here are some examples:

Example 1.3.1. Grp is the category of groups with groups as objects and
group homomorphisms as the morphisms.

Example 1.3.2. Ab is the category of abelian groups with abelian groups
as objects and group homomorphisms as the morphisms. In fact, Ab is a
subcategory of Grp.

Example 1.3.3. Ring is the category of rings with rings as objects and
ring homomorphisms as the morphisms.

Example 1.3.4. Top is the category of topological spaces with topological
spaces as objects and continuous functions as the morphisms.

Example 1.3.5. R-Mod is the category of R-modules with R-modules as
objects and module homomorphisms as the morphisms. Here, R refers to
an arbitrary ring.

Now we will return to our study of linear operators.
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Definition 1.3.9. Let (V1, ‖−‖1) and (V2, ‖−‖1) be normed vector spaces
and Λ : V1 → V2 be a linear operator. We say that Λ is bounded if there
exists C ∈ R>0 such that if v1 ∈ V1 then

‖Λv1‖2 ≤ C‖v1‖1.

One of the most foundational concepts of functional analysis is that a linear
operator between normed vector spaces is continuous if and only if it is
bounded.

Theorem 1.3.2. Let (V1, ‖−‖1) and (V2, ‖−‖2) be normed vector spaces
and Λ : V1 → V2 be a linear operator. The following are equivalent:

1. Λ is continuous at 0 ∈ V1.

2. Λ is bounded.

3. Λ is continuous.

Proof. Assume that Λ : V1 → V2 is a linear operator.

(a) Assume that Λ is continuous at 0 ∈ V1. This means that for all ε ∈ R>0,
there exists δ ∈ R>0 such that if ‖v − 0‖1 = ‖v‖1 < δ then ‖Λv‖2 < ε.

Take w ∈ V1 − {0} and set

v′ =
δ

2‖w‖1

w.

Then, ‖v′‖1 = δ/2 < δ and

‖Λv′‖2 = ‖Λ(
δ

2‖w‖1

w)‖2

=
δ

2‖w‖1

‖Λw‖2 < ε.

So, if w ∈ V1 then

‖Λw‖2 ≤
2ε

δ
‖w‖1.

Thus, Λ must be bounded.
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(b) Assume that Λ is bounded — there exists C ∈ R>0 such that if v1 ∈ V1

then ‖Λv1‖2 ≤ C‖v1‖1. Assume that ε ∈ R>0 and set δ = ε/C. If
‖v1 − v2‖1 < δ then

‖Λ(v1)− Λ(v2)‖2 = ‖Λ(v1 − v2)‖2

≤ C‖v1 − v2‖1

< C · ε
C

= ε.

So, Λ must be continuous.

(c) If Λ is continuous then it is continuous at all points v ∈ V1. So, it must
be continuous at 0 ∈ V1.

Definition 1.3.10. We will define the norm of a linear operator to be

‖Λ‖ = sup
‖x‖=1

‖Λx‖ = sup
x 6=0

‖Λx‖
‖x‖

.

To understand why we defined the norm of a linear operator in this
manner, consider the following characterisation of a bounded linear
operator below, which states that a linear operator Λ : X → Y is bounded
if there exists c ∈ R>0 such that if x ∈ X then

‖Λx‖ ≤ c‖x‖.

Dividing both sides by ‖x‖, we obtain for x 6= 0

‖Λx‖
‖x‖

≤ c.

Hence, c is an upper bound of the left hand side. The supremum (least
upper bound) of the left hand side over all x ∈ X − {0} is the smallest such
c and this is what we take to be the definition of the norm of a linear
operator. Furthermore,

‖Λ‖ = sup
x 6=0

‖Λx‖
‖x‖

= sup
x 6=0
‖Λ(

x

‖x‖
)‖ = sup

‖x‖=1

‖Λx‖.

A natural question that remains is whether our definition of the norm
satisfies the properties of a norm.

Theorem 1.3.3. The norm of a linear operator as defined above is actually
a norm
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Proof. Assume that Λ : V → W is a linear operator and that V and W are
normed vector spaces over the field K.

To show: (a) ∀α ∈ K, ‖αΛ‖ = |α| ‖Λ‖.

(b) ‖Λ‖ = 0 if and only if Λ = 0.

(c) For all linear operators Λ1,Λ2, ‖Λ1 + Λ2‖ ≤ ‖Λ1‖+ ‖Λ2‖.

(a) Assume that α ∈ K. Then,

‖αΛ‖ = sup
‖x‖=1

‖αΛx‖

= |α| sup
‖x‖=1

‖Λx‖

= |α|‖Λ‖.

(b) First, assume that ‖Λ‖ = 0. Then, it must be the case that

sup
x6=0

‖Λx‖
‖x‖

= 0.

This tells us that whenever x 6= 0, ‖Λx‖ = 0 and consequently, Λ = 0. For
the case where x = 0, we observe that for all linear operators Ω and for all
v ∈ V , Ω(v) = Ω(0 + v) = Ω(0) + Ω(v). So, Ω(0) = 0. Consequently, Λ = 0
for all x ∈ V because Λ(0) = 0.

For the converse, assume that Λ = 0. Then,

‖Λ‖ = sup
‖x‖=1

‖Λx‖ = 0.

(c) Assume that Λ1 and Λ2 are linear operators. Then,

‖Λ1 + Λ2‖ = sup
‖x‖=1

‖(Λ1 + Λ2)x‖

= sup
‖x‖=1

‖Λ1x+ Λ2x‖

≤ sup
‖x‖=1

‖Λ1x‖+ ‖Λ2x‖

≤ sup
‖x‖=1

‖Λ1x‖+ sup
‖x‖=1

‖Λ2x‖

= ‖Λ1‖+ ‖Λ2‖.
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Therefore, the norm of a linear operator does indeed satisfy the required
properties of a norm.

Let us quickly prove that a linear operator Λ : X → Y is bounded if and
only if its norm ‖Λ‖ is finite.

Theorem 1.3.4. Let (X, ‖−‖X) and (Y, ‖−‖Y ) be normed vector spaces
and Λ : X → Y be a linear operator. Then, Λ is bounded if and only if ‖Λ‖
is finite.

Proof. Assume that X and Y are normed vector space and that Λ : X → Y
is a linear operator.

Assume that ‖Λ‖ <∞. If x ∈ X − {0} then

‖Λx‖Y =
‖Λx‖Y
‖x‖X

‖x‖X

≤
(

sup
x 6=0

‖Λx‖Y
‖x‖X

)
‖x‖X = ‖Λ‖‖x‖X .

Hence, if x ∈ X then ‖Λx‖Y ≤ ‖Λ‖‖x‖X . Since ‖Λ‖ ∈ R>0, Λ is bounded in
the sense of Definition 1.3.9.

Next, assume that Λ : X → Y is bounded. Then, there exists C ∈ R>0 such
that if x ∈ X then ‖Λx‖Y ≤ C‖x‖X . Taking the supremum over all x ∈ X
which satisfy ‖x‖X = 1, we find that

‖Λ‖ = sup
‖x‖X=1

‖Λx‖Y ≤ C.

Thus, ‖Λ‖ is finite.

Definition 1.3.11. A bounded linear operator Λ : X → Y is said to be
compact if for all bounded sequences {xn}, there exists a subsequence
{xnk} such that Λxnk converges to some point y ∈ Y .

In order to make the concept of a linear operator more palatable, we will
list some examples of linear operators.

Example 1.3.6. Let C((0, 1),R) be the normed vector space of bounded,
real valued, continuous functions with domain (0, 1), with norm given by

‖f‖ = max
x∈(0,1)

|f(x)|.
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Define the differentiation operator Λ as Λf = f ′. From the properties of
differentiation, we know that this is a linear operator. However, this
operator is unbounded. To see this, consider the sequence of functions
fk = sin(kx) where k ∈ Z>0. Then, Λfk = k cos(kx) and

‖Λ‖ = sup
‖fk‖=1

‖Λfk‖ = k.

Notably, k is unbounded because k ∈ Z>0. Hence, the differentiation
operator is unbounded.

Example 1.3.7. This time, the normed vector space in question is Lp(R),
which has norm

‖f‖ = (

∫
R
|f |p dx)

1
p .

Let a ∈ R. Define the shift operator Λa(f(x)) = f(x− a). A noteworthy
observation about this operator stems from an integral substitution:

‖Λaf‖ = (

∫
R
|f(x− a)|p dx)

1
p

= (

∫
R
|f(y)|p dy)

1
p

= ‖f‖.

Hence, it is clear that

‖Λa‖ = sup
‖f‖=1

‖Λaf‖ = 1.

So, Λa is a bounded linear operator.

Example 1.3.8. The normed vector space we will focus on this time is lp,
which has norm

‖x‖ = (
∞∑
i=1

|xi|p)
1
p .

Define the two shift operators as Λ+(x1, x2, . . . ) = (0, x1, x2, . . . ) and
Λ−(x1, x2, . . . ) = (x2, x3, x4, . . . ). In a similar manner to the previous
example, ‖Λ+‖ = ‖Λ−‖ = 1. So, Λ+ and Λ− are both bounded linear
operators.
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Example 1.3.9. In this example, our normed vector space is C((a, b),R),
which is the normed vector space of bounded, real valued, continuous
functions with domain (a, b). Consider the integral operator, which is
defined by

Λxf =

∫ x

a

f(y) dy.

Here, x ∈ [a, b]. We know from the properties of integrals that this operator
is definitely linear. In order to demonstrate that the integral is bounded, we
proceed as follows

‖Λx‖ = sup
‖f‖=1

‖Λxf‖

= sup
‖f‖=1

max
x∈(a,b)

|
∫ x

a

f(y) dy|

= sup
‖f‖=1

|
∫ b

a

f(y) dy|

≤ sup
‖f‖=1

∫ b

a

|f(y)| dy

≤ (b− a)× sup
‖f‖=1

|f(y)|

= b− a.

So, ‖Λx‖ ≤ b− a <∞, thus demonstrating that the integral operator is
bounded.

Finally, we end this section with an important theorem.

Theorem 1.3.5. Let V and W be normed vector spaces over the field K.
Let B(V ;W ) represent the space of bounded linear operators from V to W .
If W is a Banach space, then B(V ;W ) is also a Banach space, with norm
defined in 1.3.10.

Proof. To show: (a) B(V ;W ) is a normed vector space

(b) A Cauchy sequence in B(V ;W ) converges.

(a) We have already established that the norm of a linear operator satisfies
the axioms required of a norm. This demonstrates that B(V ;W ) is a
normed vector space.
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(b) Assume that {Λn} is a Cauchy sequence of bounded linear operators.
Assume W is a Banach space. Assume f ∈ V . Then, for all ε > 0, there
exists a N ∈ Z>0 such that for all m,n > N ,

‖Λm − Λn‖ < ε.

As a result, ‖(Λm − Λn)(f)‖ < ε where ‖f‖ = 1. So, ‖Λmf − Λnf‖ < ε.
This tells us that the sequence {Λnf} is Cauchy. Since this is a sequence in
W, which is a Banach space, {Λnf} must be convergent. Let {Λnf}
converge to Λf .

To show: (ba) Λ is a bounded operator.

(bb) Λ is a linear operator

(ba) Using the convergence of {Λnf}, we choose N ∈ Z>0 such that for all
n > N ,

‖Λnf − Λf‖ < 1.

Utilising this, we note that

‖Λ‖ = sup
‖f‖=1

‖Λf‖

≤ sup
‖f‖=1

(‖Λf − Λnf‖+ ‖Λnf‖) (Triangle Inequality)

≤ 1 + ‖Λnf‖
<∞

Hence, Λ is a bounded operator from V to W .

(bb) Assume a, b ∈ K and f, g ∈ V .

To show: (bba) For all ε > 0, ‖Λ(af + bg)− aΛ(f)− bΛ(g)‖ < ε.

(bba) Assume that ε > 0. Once again, we utilise the triangle inequality on
the expression ‖Λ(af + bg)− aΛ(f)− bΛ(g)‖. We know that the sequence
{Λnf} converges to Λf and that f is arbitrary. So, we choose N1 ∈ Z>0

such that for all n > N1,

‖Λ(af + bg)− Λn(af + bg)‖ < ε

3
.
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Then, we choose N2 ∈ Z>0 such that for all n > N2,

‖Λn(f)− Λ(f)‖ < ε

3|a|
.

Finally, we choose N3 ∈ Z>0 such that for all n > N3,

‖Λn(g)− Λ(g)‖ < ε

3|b|
.

Now, select M = max{N1, N2, N3}. Then, for all n > M (and using the fact
that Λn is a linear operator),

‖Λ(af + bg)− aΛ(f)− bΛ(g)‖
= ‖Λ(af + bg)− Λn(af + bg) + aΛn(f) + bΛn(g)− aΛ(f)− bΛ(g)‖
≤ ‖Λ(af + bg)− Λn(af + bg)‖+ ‖aΛn(f)− aΛ(f)‖+ ‖bΛn(g)− bΛ(g)‖
<
ε

3
+ (|a| × ε

3|a|
) + (|b| × ε

3|b|
)

= ε.

Therefore, for all ε > 0, ‖Λ(af + bg)− aΛ(f)− bΛ(g)‖ < ε. Consequently,
‖Λ(af + bg)− aΛ(f)− bΛ(g)‖ = 0 and so, Λ(af + bg) = aΛ(f) + bΛ(g).

(bb) Hence, Λ is a linear operator.

(b) Now consider ‖Λn − Λ‖. Using the fact that {Λnf} is a Cauchy
sequence in W and hence convergent, we obtain

‖Λn − Λ‖ = sup
‖f‖=1

‖Λnf − Λf‖ ≤ ε.

Therefore, the Cauchy sequence of operators {Λn} in B(V ;W )
converges.
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Chapter 2

Dual Spaces and the
Hahn-Banach Extension
Theorem

2.1 Dual Spaces

Definition 2.1.1. Let X be a normed vector space over a field K = R or
C. We define the dual space of X as the set of all continuous linear
functionals φ : X → K. The dual space of X is often denoted by X∗.

Theorem 2.1.1. Let X be a normed vector space and X∗ be its associated
dual space. Then, X∗ is a Banach space, with norm given by

‖φ‖ = sup
x 6=0

|φ(x)|
‖x‖

= sup
‖x‖=1

|φ(x)|

Proof. An application of 1.3.5 demonstrates this. Luckily for us, R and C
are both complete with respect to the standard Euclidean norm.

The Hahn-Banach theorem is particularly powerful because it is one of the
main reasons why dual spaces are worth studying. It ensures that there will
always be enough continuous linear functionals for the theory of dual spaces
to remain rich. We will prove three versions of the Hahn-Banach theorem.

Theorem 2.1.2 (Hahn-Banach extension theorem V1). Let X be a
R-vector space and p : X → R be a sub-linear function, which satisfies the
following two properties:

1. If x, y ∈ X then p(x+ y) ≤ p(x) + p(y)
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2. If x ∈ X and t ∈ [0,∞), p(tx) = tp(x)

Let Y be a subspace of X and λ : Y → R be a functional with λ(x) ≤ p(x)
for all x ∈ Y . Then, there exists a functional Λ : X → R such that the
restriction Λ|Y = λ and if x ∈ X then

−p(−x) ≤ Λ(x) ≤ p(x).

Proof. Assume that X is a R-vector space and p, λ are the functions
defined as above. Let z ∈ X\Y . We would like to extend λ first to the
subspace Y + span(z).

Assume that x, y ∈ Y . Then,

f(x) + f(y) = f(x+ y)

≤ p(x+ y) = p(x− z + z + y)

≤ p(x− z) + p(z + y)

where in the last line, we used the triangle inequality. Consequently,
f(x)− p(x− z) ≤ p(z + y)− f(y). Now define

β = sup
x∈V

(f(x)− p(x− z))

so that

f(x)− p(x− z) ≤ β ≤ p(z + y)− f(y).

Now let t ∈ R and define for x ∈ Y , the extension f̃(x+ tz) = f(x) + βt.
Since we have extended f linearly to Y + span(z), f̃ is still a linear
functional on Y + span(z). We will now show that

−p(−x− tz) ≤ f̃(x+ tz) ≤ p(x+ tz).

Notice that when t = 0, the result follows from the assumption that
f(x) ≤ p(x) for all x ∈ X. Without loss of generality, assume that t > 0.
Recalling the inequality f(x)− p(x− z) ≤ β ≤ p(z + y)− f(y), we replace x
with −x/t and y with x/t which yields

f(−x
t

)− p(−x
t
− z) ≤ β ≤ p(z +

x

t
)− f(

x

t
)

Now, we can multiply by t to obtain the inequality
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−f(x)− p(−x− tz) ≤ βt ≤ p(x+ tz)− f(x)

Adding f(x), we deduce that

−p(−x− tz) ≤ f(x) + βt = f̃(x+ tz) ≤ p(x+ tz).

as required.

We have successfully extended f to Y + span(z). Let C be the family of
pairs (W,φ) such that W ⊆ X is a subspace of X and φ : W → R is a linear
functional such that φ(w) ≤ p(w).

We define a partial ordering on C by saying that (W,φ) < (W ′, φ′) if and
only if W ⊂ W ′ and φ is the restriction of φ′ to W . The pair (C,<) is now
a poset.

With this partial ordering, we can invoke Zorn’s lemma to deduce that C
has a maximal element, which we will denote by (Ŵ , F ).

To show: (a) Ŵ = X.

(a) Suppose for the sake of contradiction that Ŵ 6= X. Then, take some

v ∈ X\Ŵ . By the previous argument, we can extend the functional

F : Ŵ → R to another linear functional F ′ : Ŵ + span(v)→ R such that
F ′|Ŵ = F . However, this means that in C,

(Ŵ , F ) < (Ŵ + span(v), F ′)

which contradicts the maximality of (Ŵ , F ) in C. Therefore, Ŵ = X.

Hence, F : X → R is a linear functional such that if x ∈ X then
F (x) ≤ p(x). By the linearity of F , we finally have

−p(−x) ≤ −F (−x) = F (x) ≤ p(x).

The second version of the Hahn-Banach theorem applies to a situation
where the linear functional is bounded above by a convex function.

Definition 2.1.2. Let X be a Banach space. A function p : X → R is
convex if for all t ∈ (0, 1) and x, y ∈ X,
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p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y).

Theorem 2.1.3 (Hahn-Banach extension theorem V2). Let X be a
R-vector space and p : X → R be a convex function. Let Y be a subspace
of X and f : Y → R be a functional with f(x) ≤ p(x) for all x ∈ Y . Then,
there exists a functional f̃ : X → R such that the restriction f̃ |Y = f and if
x ∈ X then f̃(x) ≤ p(x).

Proof. Assume that X is a R-vector space and p, λ are the functions
defined as above. The idea is to use the Hahn-Banach extension theorem
for sub-linear functions (see Theorem 2.1.2) and extend it to account for
convex functions.

Define the function

Q : X → R
x 7→ inft>0

1
t
p(tx).

We claim that Q is a sub-linear function.

To show: (a) If x, y ∈ X then Q(x+ y) ≤ Q(x) +Q(y).

(b) If x ∈ X and λ ∈ R≥0, Q(λx) = λQ(x).

(a) Assume that x, y ∈ X. Pick u, v ∈ R>0 so that the fraction

uv

u+ v
> 0.

By using the convexity of p, we have

Q(x+ y) = inf
t>0

1

t
p(t(x+ y))

≤ u+ v

uv
p(

uv

u+ v
(x+ y))

=
u+ v

uv
p(

u

u+ v
(vx) +

v

u+ v
(uy))

≤ u+ v

uv

( u

u+ v
p(vx) +

v

u+ v
p(uy)

)
(p is convex)

=
1

v
p(vx) +

1

u
p(uy).

Now, we can take the infimum over all v, u ∈ R>0 to obtain
Q(x+ y) ≤ Q(x) +Q(y).
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(b) Assume that λ ∈ R≥0. Then,

Q(λx) = inf
t>0

1

t
p(tλx)

= inf
t>0

λ

tλ
p(tλx)

= inf
s>0

λ

s
p(sx) = λQ(x).

Combining parts (a) and (b), we deduce that Q is sub-linear.

We will now prove two critical properties of Q.

To show: (c) If f ≤ p on Y then f ≤ Q on Y .

(d) If x ∈ X then Q(x) ≤ p(x).

(c) Assume that f(v) ≤ p(v) for v ∈ Y . Using the linearity of f , we have
for t > 0

f(v) = tf(
1

t
v) ≤ p(v)

So, f(1
t
v) ≤ 1

t
p(v). By replacing v with tv, we deduce that f(v) ≤ 1

t
p(tv)

and by taking the infimum over all t > 0, we obtain f(v) ≤ Q(v).

(d) Assume that x ∈ X. Then,

Q(x) = inf
t>0

1

t
p(tx) ≤ p(x)

where the last inequality follows from setting t = 1.

Part (c) tells us that if v ∈ Y then f(v) ≤ Q(v) ≤ p(v). Since Q is
sub-linear, we can use Theorem 2.1.2 to obtain an extension f̃ : X → R
such that f̃ |Y = f and if x ∈ X then f̃(x) = Q(x) and

−Q(−x) ≤ f̃(x) ≤ Q(x).

But, by part (d), Q(x) ≤ p(x). So, if x ∈ X then f̃(x) ≤ p(x). So, f̃ is the
desired extension of f .

The final version of the Hahn-Banach theorem deals with the extension of
complex linear functionals.
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Theorem 2.1.4 (Hahn-Banach extension theorem V3). Let X be a C
vector space and p : X → R be a function which satisfies

p(αx+ βy) ≤ |α|p(x) + |β|p(y)

for x, y ∈ X and α, β ∈ C with |α|+ |β| = 1. Let Y ⊆ X be a subspace of X
and f : Y → C be a complex linear functional such that if y ∈ Y then
|f(y)| ≤ p(y). Then, there exists a complex linear functional F : X → C
such that the restriction F |Y = f and if x ∈ X then |F (x)| ≤ p(x).

Proof. Assume that X is a C-vector space and f : Y → C and p : X → R
are defined as above. Let

`(y) = Re(f(y)).

Then, ` defines a real-valued linear functional on Y . Observe also that

`(iy) = Re(f(iy)) = Re(if(y)) = −Im(f(y))

and consequently, λ(y) = `(y)− i`(iy). Now, if y ∈ Y then

|`(y)| = |Re(f(y))| ≤ |f(y)| ≤ p(y).

So, we can apply Theorem 2.1.3 to extend ` to a real-valued R-linear
functional L : X → R such that L(x) ≤ p(x) for all x ∈ X. Now define for
x ∈ X

F (x) = L(x)− iL(ix).

Then, the restriction F |Y = f and F is R-linear. Also,

F (ix) = L(ix)− iL(−x) = iF (x).

So, F must be a C-linear functional.

To see that |F (x)| ≤ p(x) for x ∈ X, observe that by the condition on p, if
α ∈ C with |α| = 1 then p(αx) = |α|p(x) = p(x). If we set θ = arg(F (x))
then F (x) = |F (x)|eiθ and if x ∈ X then

|F (x)| = e−iθF (x)

= F (e−iθx) = Re(F (e−iθx))

= L(e−iθx) ≤ p(e−iθx) = p(x).
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An immediate application of the Hahn-Banach theorem is to the case where
p(x) = ‖x‖ (the norm function).

Theorem 2.1.5 (Extension with constant norm). Let X be a Banach space
and Y ⊆ X be a subspace of X. Let λ : Y → C be a linear functional. Then,
there exists a linear functional Λ : X → C extending λ such that ‖Λ‖ = ‖λ‖.

Proof. Assume that X is a Banach space (over C). Assume that Y ⊆ X is
a subspace and λ ∈ Y ∗. Define the map p : X → R by

p : X → R
x 7→ ‖λ‖‖x‖.

If y ∈ Y then |λ(y)| ≤ ‖λ‖‖y‖ = p(y). If α, β ∈ C and x1, x2 ∈ X then

p(αx1 + βx2) = ‖λ‖‖αx1 + βx2‖ ≤ ‖λ‖(|α|‖x1‖+ |β|‖x2‖).

So, p(αx1 + βx2) ≤ |α|p(x1) + |β|p(x2).

Now we can apply Theorem 2.1.4 to find a complex linear functional
Λ : X → C such that Λ|Y = λ and if x ∈ X then |Λ(x)| ≤ ‖λ‖‖x‖.

Taking the supremum over all x ∈ X with ‖x‖ = 1, we find that
‖Λ‖ ≤ ‖λ‖. But, ‖λ‖ ≤ ‖Λ‖ because the norm cannot decrease when we
extend λ from Y to X. Therefore, ‖Λ‖ = ‖λ‖ as required.

Theorem 2.1.5 tells us that if we have a bounded, linear, real-valued
functional on a subspace of X, then we can extend it to the whole of X,
while keeping the norm intact.

We will now discuss two consequences of Theorem 2.1.5 that reinforce the
notion that there are enough continuous linear functionals in order to make
the study of dual spaces worthwhile.

Theorem 2.1.6. Let X be a Banach space and x ∈ X. Then, there exists a
continuous linear functional φ ∈ X∗ such that φ(x) = ‖x‖ and ‖φ‖ = 1.

Proof. Assume that X is a Banach space and x ∈ X. Let X ′ = span(x)
and define the map

ψ : X ′ → C
w = kx 7→ |k|‖x‖.

Then, ψ is a C-linear functional on X ′. By Theorem 2.1.5, there exists an
extension φ : X → C of ψ such that
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‖φ‖ = ‖ψ‖ = sup
‖y‖=1,y∈X′

|ψ(y)| = |ψ(
x

‖x‖
)| = 1.

Since φ|X′ = ψ, φ(x) = ‖x‖.

Theorem 2.1.7 (Separating points with functionals). Let X be a Banach
space and x, y ∈ X with x 6= y. Then, there exists a continuous linear
functional φ ∈ X∗ such that φ(x) 6= φ(y).

Proof. Assume that X is a Banach space and x, y ∈ X with x 6= y. From
Theorem 2.1.6, there exists a continuous linear functional φ ∈ X∗ such that
‖φ‖ = 1 and φ(x− y) = ‖x− y‖ 6= 0. By linearity of φ, we deduce that
since φ(x− y) 6= 0, φ(x) 6= φ(y) as required.

Theorem 2.1.7 tells us that there are enough continuous linear functionals
defined on the dual space X∗ in order to distinguish the vectors in X.

Our next goal is to look at some examples of dual spaces. Before this, we
will briefly discuss the idea of an isomorphism.

Definition 2.1.3. Let C be a category. Let a, b ∈ ob(C ) and
f ∈ Hom(a, b). Then, f is said to be an isomorphism if there exists
another morphism f−1 ∈ Hom(b, a) such that f−1 ◦ f = 1a and f ◦ f−1 = 1b.

From the perspective of category theory, we can see why the notion of an
isomorphism is ubiquitous in many areas of mathematics.

Example 2.1.1. Consider the category of groups Grp. From the definition
of an isomorphism, a group isomorphism is a bijective group
homomorphism.

Example 2.1.2. Consider the category of rings Ring. From the definition
of an isomorphism, a ring isomorphism is a bijective ring homomorphism.

Example 2.1.3. Consider the category of vector spaces over a field K
K-Vect. From the definition of an isomorphism, a vector space
isomorphism is a bijective linear transformation.

Now consider the category K-Norm Vect of normed vector spaces. It
makes sense for an isomorphism in K-Norm Vect to be similar to an
isomorphism in K-Vect because the objects in both categories are vector
spaces on the most basic level. However, we have the extra structure of a
norm to deal with in K-Norm Vect. If we want two normed vector spaces
to be isomorphic, then their norms have to behave in exactly the same
manner as each other. This motivates the following definition.
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Definition 2.1.4. Let X and Y be normed vector spaces. Let Λ : X → Y
be a linear operator. Then, Λ is said to be an isomorphism if Λ is bijective
and ‖Λx‖Y = ‖x‖X . Additionally, if there exists an isomorphism between
X and Y , they are said to be isomorphic.

In the following examples of dual spaces, we will be proving that the dual
spaces of certain Banach spaces are isomorphic to other familiar Banach
spaces. For our first example, we will need Hölder’s inequality, which we
will prove below.

Theorem 2.1.8 (Young’s inequality). Let q, p ∈ (1,∞). Assume p and q
are related by the following identity:

1

p
+

1

q
= 1

Let a, b ∈ R>0. Then, the following inequality holds

a
1
p b

1
q ≤ a

p
+
b

q
.

Proof. Assume that q, p ∈ (1,∞) satisfy 1
p

+ 1
q

= 1. Assume that a, b ∈ R>0.

Assume that f(x) is the function defined as above. By differentiating f(x),
we obtain

f ′(x) = αxα−1 − α = α(
1

x1−α − 1).

By solving f ′(x) = 0, we deduce that f(x) has a maximum at x = 1. So, for
x ∈ R>0,

xα − αx ≤ f(1) = 1− α.

If we substitute α = 1/p and x = a/b, we deduce that

(
a

b
)

1
p − a

bp
≤= 1− 1

p
=

1

q
.

Multiplying both sides by b, we deduce that

a
1
p b1− 1

p − a

p
= a

1
p b

1
q − a

p
≤ b

q
.
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Theorem 2.1.9 (Hölder’s inequality). Let p, q ∈ (1,∞),
x = (x1, x2, . . . ) ∈ lp, y = (y1, y2, . . . ) ∈ lq and 〈x, y〉 = x1y1 + x2y2 + . . . .
Assume p and q are related by the following identity:

1

p
+

1

q
= 1

Then,

|〈x, y〉| ≤ ‖x‖p‖y‖q.

Proof. Assume x = (x1, x2, . . . ) ∈ lp and y = (y1, y2, . . . ) ∈ lq. Assume
q ∈ R≥1, p ∈ R>1 ∪ {∞} and 1

p
+ 1

q
= 1. Using Young’s inequality with

a = (|xi|/‖x‖p)p and b = (|yi|/‖y‖q)q (i ∈ Z>0),

|xi|
‖x‖p

|yi|
‖y‖q

≤ 1

p
(
|xi|
‖x‖p

)p +
1

q
(
|yi|
‖y‖q

)q.

Summing over both sides from i = 1 to ∞, we obtain

∞∑
i=1

|xiyi|
‖x‖p‖y‖q

≤
∞∑
i=1

1

p
(
|xi|
‖x‖p

)p +
1

q
(
|yi|
‖y‖q

)q.

Working on the RHS, we find that

∞∑
i=1

1

p
(
|xi|
‖x‖p

)p +
1

q
(
|yi|
‖y‖q

)q =
1

p(‖x‖p)p
∞∑
i=1

|xi|p +
1

q(‖y‖q)q
∞∑
i=1

|yi|q.

=
1

p(‖x‖p)p
(‖x‖p)p +

1

q(‖y‖q)q
(‖y‖q)q.

=
1

p
+

1

q
= 1.

So,

∞∑
i=1

|xiyi|
‖x‖p‖y‖q

≤ 1.

As a result,

∞∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q.

Now consider |〈x, y〉|. We argue as follows
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|〈x, y〉| = |
∞∑
i=1

xiyi|

≤
∞∑
i=1

|xiyi|

≤ ‖x‖p‖y‖q.

Thus, we have proved Hölder’s inequality.

Now, we can analyse our first example of a dual space.

Example 2.1.4. Assume p, q ∈ R>1 and 1
p

+ 1
q

= 1. Consider the Banach
space lp. Then, the dual space of lp is lq. In other words,
(lp)∗ = lq = B(lp,R).

Proof. Define the map φ : lq → (lp)∗ by

φ(y) = ψy

In turn, the functional ψy : lp → R is defined by

ψy(x) = 〈y, x〉 =
∞∑
i=1

yixi.

Our aim is to show that the map φ is an isomorphism between (lp)∗ and lq.

To show: (a) φ is a linear operator.

(b) φ is invertible.

(c) If y ∈ lq then ‖φ(y)‖ = ‖y‖q.

(a) Assume k ∈ R, x ∈ lp and a, b ∈ lq. Assume a = (a1, a2, . . . ),
b = (b1, b2, . . . ) and x = (x1, x2, . . . ).

To show: (aa) φ(a+ b) = φ(a) + φ(b).

(ab) φ(ka) = kφ(a).

(aa) Using the definition of φ, we compute directly
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φ(a+ b)(x) = ψa+b(x) = 〈a+ b, x〉

=
∞∑
i=1

(ai + bi)xi =
∞∑
i=1

aixi +
∞∑
i=1

bixi

= 〈a, x〉+ 〈b, x〉 = ψa(x) + ψb(x) = φ(a)(x) + φ(b)(x).

Hence, φ(a+ b) = φ(a) + φ(b).

(ab) Once again, we compute directly

φ(ka)(x) = ψka(x) = 〈ka, x〉

=
∞∑
i=1

kaixi = k
∞∑
i=1

aixi

= k〈a, x〉 = kψa(x) = kφ(a)(x).

Hence, φ(ka) = kφ(a).

(b) Define the map α : (lp)∗ → lq by

α(γ) = (γ(e1), γ(e2), . . . )

Here, ei ∈ lp denotes the sequence with a 1 in the ith position and zeros
elsewhere.

To show: (ba) If γ ∈ (lp)∗ then α(γ) ∈ lq.

(bb) φ(α(γ))(x) = γ(x).

(bc) α(φ(y)) = y.

(ba) For n ∈ Z>0, let xn = (ξ
(n)
k ), where

ξ
(n)
k =

{
|γ(ek)|q/γ(ek), if k ≤ n and γ(ek) 6= 0,

0, if k > n or γ(ek) = 0.
∈ C

We can write xn =
∑∞

k=1 ξ
(n)
k ek so that γ(xn) =

∑∞
k=1 ξ

(n)
k γ(ek). From the

definition of ξ
(n)
k ,

∞∑
k=1

ξ
(n)
k γ(ek) =

n∑
k=1

|γ(ek)|q.
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We bound γ(xn) above by

γ(xn) ≤ ‖γ‖‖xn‖

= ‖γ‖(
∞∑
k=1

|ξ(n)
k |

p)
1
p

= ‖γ‖(
n∑
k=1

|γ(ek)|(q−1)p)
1
p

= ‖γ‖(
n∑
k=1

|γ(ek)|q)
1
p .

In the above working, we used the fact that 1
p

+ 1
q

= 1 and (q − 1)p = q.
Thus,

n∑
k=1

|γ(ek)|q ≤ ‖γ‖(
n∑
k=1

|γ(ek)|q)
1
p .

Consequently,

(
n∑
k=1

|γ(ek)|q)
1
q ≤ ‖γ‖.

Since this holds for arbitrary n ∈ Z>0, we can take the limit as n→∞ to
obtain

‖α(γ)‖q = ‖(γ(e1), γ(e2), . . . )‖q

= (
∞∑
i=1

|γ(ei)|q)
1
q

= lim
n→∞

(
n∑
i=1

|γ(ei)|q)
1
q ≤ ‖γ‖ <∞.

Hence, α(γ) ∈ lq. This means that the map α : (lp)∗ → lq is well-defined.

(bb) Assume that x = (x1, x2, . . . ) ∈ lp and y = (y1, y2, . . . ) ∈ lq. Expanding
the LHS yields
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φ(α(γ))(x) = φ((γ(e1), γ(e2), . . . ))(x)

= ψ(γ(e1),γ(e2),... )(x)

= 〈(γ(e1), γ(e2), . . . ), (x1, x2, . . . )〉

=
∞∑
i=1

γ(ei)xi =
∞∑
i=1

γ(xiei)

= γ(
∞∑
i=1

xiei) = γ(x).

Hence, φ ◦ α = 1(lp)∗ .

(bc) Once again, we compute directly

α(φ(y)) = α(ψy)

= (ψy(e1), ψy(e2), . . . ) = (〈y, e1〉, 〈y, e2〉, . . . )

= (
∞∑
i=1

yi(e1)i,
∞∑
i=1

yi(e2)i, . . . )

= (y1, y2, . . . ) = y.

Subsequently, α ◦ φ = 1lq .

(b) From parts (bb) and (bc), φ is invertible.

(c) Assume y ∈ lq.

To show: (ca) ‖φ(y)‖ ≥ ‖y‖q.

(cb) ‖φ(y)‖ ≤ ‖y‖q.

(ca) We will show that there exists x ∈ lp such that |ψy(x)| ≥ ‖x‖p‖y‖q

Assume y = (y1, y2, . . . ). Define x ∈ lp by

x = (sgn(y1)|y1|q−1, sgn(y2)|y2|q−1, . . . ).

Calculating ‖x‖p yields
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‖x‖p = (
∞∑
i=1

|xi|p)
1
p

= (
∞∑
i=1

|sgn(yi)|yi|q−1|p)
1
p

= (
∞∑
i=1

|yi|p(q−1))
1
p = (

∞∑
i=1

|yi|pq(1−1/q))
1
p

= (
∞∑
i=1

|yi|q)
1
p = (

∞∑
i=1

|yi|q)
1
q
× q
p

= (‖y‖q)
q
p = (‖y‖q)q(1−1/q) = (‖y‖q)q−1.

Using the above, we now find |ψy(x)| to be

|ψy(x)| = |
∞∑
i=1

yixi|

= |
∞∑
i=1

sgn(yi)yi × |yi|q−1|

= |
∞∑
i=1

|yi|q| = (‖y‖q)q

= (‖y‖q)q−1 × ‖y‖q = ‖x‖p‖y‖q.

So, |ψy(x)|
‖x‖p = ‖y‖q, assuming x 6= 0. Taking the supremum of the LHS gives

the following inequality

‖y‖q =
|ψy(x)|
‖x‖p

≤ sup
x 6=0

|ψy(x)|
‖x‖p

= ‖φ(y)‖.

Hence in this case, ‖y‖q ≤ ‖φ(y)‖.

(cb) Using the norm of a functional and the definition of φ, we obtain

‖φ(y)‖ = ‖ψy‖ = sup
x 6=0

|ψy(x)|
‖x‖p

.

Assume x 6= 0. From Hölder’s inequality, we obtain
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|〈y, x〉| ≤ ‖x‖p‖y‖q
|ψy(x)| ≤ ‖x‖p‖y‖q
|ψy(x)|
‖x‖p

≤ ‖y‖q

Taking the supremum of both sides gives ‖φ(y)‖ ≤ ‖y‖q.

(c) Combining (ca) and (cb), we can conclude that ‖φ(y)‖ = ‖y‖q.

So, φ is an isomorphism and (lp)∗ = lq.

Example 2.1.5. Consider Rn with the standard Euclidean norm. The dual
space of Rn is Rn itself. In other words, (Rn)∗ = Rn.

Proof. Assume that x = (x1, x2, . . . , xn) ∈ Rn. In a similar fashion to the
previous example, define the map β : Rn → (Rn)∗ by

β(x) = ψx.

In turn, the functional ψx : Rn → R is defined by

ψx((y1, y2, . . . , yn)) =
n∑
i=1

xiyi.

Let y = (y1, . . . , yn). We will also use the notation ψx(y) = 〈x, y〉.

To show: (a) β is a linear functional.

(b) β is invertible.

(c) If x ∈ Rn, then ‖β(x)‖ = ‖x‖.

(a) Assume k ∈ R and a, b, x ∈ Rn. Assume a = (a1, a2, . . . ), b = (b1, b2, . . . )
and x = (x1, x2, . . . ).

To show: (aa) β(a+ b) = β(a) + β(b).

(ab) β(ka) = kβ(a).

(aa) Using the definition of β, we compute directly
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β(a+ b)(x) = ψa+b(x)

= 〈a+ b, x〉

=
n∑
i=1

(ai + bi)xi

=
n∑
i=1

aixi +
n∑
i=1

bixi

= 〈a, x〉+ 〈b, x〉
= ψa(x) + ψb(x)

= β(a)(x) + β(b)(x).

Hence, β(a+ b) = β(a) + β(b).

(ab) Once again, we compute directly

β(ka)(x) = ψka(x)

= 〈ka, x〉

=
n∑
i=1

kaixi

= k
n∑
i=1

aixi

= k〈a, x〉
= kψa(x)

= kβ(a)(x).

Therefore, β(ka) = kβ(a).

(b) Define the map ζ : (Rn)∗ → Rn by

ζ(γ) = (γ(e1), γ(e2), . . . , γ(en))

Here, {e1, e2, . . . , en} denotes the standard basis for Rn.

To show: (ba) β(ζ(γ))(x) = γ(x).

(bb) ζ(β(y)) = y.
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(ba) Assume that x = (x1, x2, . . . ) ∈ Rn and y = (y1, y2, . . . ) ∈ Rn.
Expanding the LHS yields

β(ζ(γ))(x) = β((γ(e1), γ(e2), . . . , γ(en)))(x)

= ψ(γ(e1),...,γ(en))(x)

= 〈(γ(e1), . . . , γ(en)), (x1, x2, . . . , xn)〉

=
n∑
i=1

γ(ei)xi

=
n∑
i=1

γ(xiei)

= γ(
n∑
i=1

xiei)

= γ(x).

Hence, β ◦ ζ = 1(Rn)∗ .

(bb) Once again, we compute directly

ζ(β(y)) = ζ(ψy)

= (ψy(e1), ψy(e2), . . . , ψy(en))

= (〈y, e1〉, . . . , 〈y, en〉)

= (
n∑
i=1

yi(e1)i, . . . ,
n∑
i=1

yi(en)i)

= (y1, y2, . . . , yn)

= y.

Subsequently, ζ ◦ β = 1Rn .

(b) Therefore, β is invertible.

(c) Assume y ∈ Rn.

To show: (ca) ‖β(y)‖ ≤ ‖y‖.

(cb) ‖β(y)‖ ≥ ‖y‖.
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(ca) Using the norm of a functional and the definition of β, we obtain

‖β(y)‖ = ‖ψy‖ = sup
x 6=0

|ψy(x)|
‖x‖

.

Assume x 6= 0. From Hölder’s inequality with p = q = 2 (Cauchy-Schwarz
Inequality), we obtain

|〈y, x〉| ≤ ‖x‖‖y‖
|ψy(x)| ≤ ‖x‖‖y‖
|ψy(x)|
‖x‖

≤ ‖y‖

Taking the supremum of both sides gives us the desired inequality. Hence,
‖β(y)‖ ≤ ‖y‖.

(cb) To show: There exists x ∈ Rn such that |ψy(x)| ≥ ‖x‖‖y‖

Assume y = (y1, y2, . . . , yn). Set x = y. A calculation similar to part (ca) in
the previous theorem shows that

‖y‖ =
|ψy(x)|
‖x‖

≤ sup
x 6=0

|ψy(x)|
‖x‖

= ‖β(y)‖.

Therefore, in this particular case, ‖β(y)‖ ≥ ‖y‖.

(c) Consequently, ‖β(y)‖ = ‖y‖.

So, β is an isomorphism and (Rn)∗ = Rn.

The above example is particularly important and will reoccur in the
context of the Riesz representation theorem for Hilbert spaces. Due to
Theorem 1.2.7, Rn with the Euclidean inner product is the archetypal
example of a Hilbert space and every Hilbert space (over R or C) satisfies
the Riesz representation theorem — they are self-dual with respect to a
isomorphism similar in definition to β in the above example.

2.2 Embedding into the double dual

A particularly powerful application of the Hahn-Banach theorem is the fact
that a Banach space X embeds into its double dual (X∗)∗. The precise
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statement is given below.

Theorem 2.2.1 (Embedding into the double dual). Let X be a Banach
space. Define the map

E : X → (X∗)∗

x 7→ E(x)

where E(x) is the map λ 7→ λ(x). Then, E is an injective isometry.

Proof. Assume that X is a Banach space and E is the map defined as
above.

To show: (a) If x ∈ X then E(x) ∈ (X∗)∗.

(b) E is injective.

(c) E is an isometry.

(a) Assume that x ∈ X. Then, the norm of E(x) is bounded above by

‖E(x)‖ = sup
‖λ‖=1

|λ(x)| ≤ sup
‖λ‖=1

‖λ‖‖x‖ = ‖x‖.

Therefore, E(x) is bounded. It is easy to check that E(x) is a linear
functional on X∗. So, E(x) ∈ (X∗)∗.

(b) Assume that x ∈ kerE. Then, E(x) = 0 in X∗. This means that if
λ ∈ X∗ then λ(x) = 0. Hence, x = 0 and E must be injective as a result.

(c) We already know from part (a) that if x ∈ X then ‖E(x)‖ ≤ ‖x‖.

To show: (ca) ‖x‖ ≤ ‖E(x)‖.

(ca) By Theorem 2.1.6, there exists a functional φ ∈ X∗ such that if x ∈ X
then φ(x) = ‖x‖ and ‖φ‖ = 1. Therefore,

‖E(x)‖ = sup
‖λ‖=1

|λ(x)| ≥ |φ(x)| = ‖x‖.

From part (ca), we deduce that ‖E(x)‖ = ‖x‖. This shows that E is an
injective isometry from X to the double dual (X∗)∗.

Theorem 2.2.1 leads to an important definition.
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Definition 2.2.1. Let X be a Banach space. We say that X is reflexive if
the injective isometry X ↪→ (X∗)∗ is surjective and hence, bijective.

As we will see later, the Riesz representation theorem (see Theorem 3.3.1)
provides us with examples of reflexive Banach spaces. We claim that the
sequence space `1 is not reflexive. The argument we will make is based on
the notion of separability.

Definition 2.2.2. Let X be a Banach space. We say that X is separable
if there exists a countable dense subset D of X.

First, we will show that the dual of `1 is (`1)∗ = `∞. We know that the set
{ei | i ∈ Z>0} forms a basis for `1, where ei is the sequence with a 1 in the
ith position and zeros elsewhere.

Define the map

φ : `∞ → (`1)∗

v = (v1, v2, . . . ) 7→ φ(v)

In turn, φ(v) is defined by

φ(v) : `1 → C
(x1, x2, . . . ) 7→

∑∞
i=1 vixi.

To show: (a) If v = (v1, v2, . . . ) ∈ `∞ then φ(v) ∈ (`1)∗.

(b) φ is a linear map.

(a) Assume that v = (v1, v2, . . . ) ∈ `∞ and x = (x1, x2, . . . ) ∈ `1. We will
first show that φ(v) is linear. Assume that y = (y1, y2, . . . ) ∈ `1 and λ ∈ C.
Then,

φ(v)(x+ y) =
∞∑
i=1

vi(xi + yi)

=
∞∑
i=1

vixi +
∞∑
i=1

viyi = φ(v)(x) + φ(v)(y)

and
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φ(v)(λx) =
∞∑
i=1

vi(λxi)

= λ

∞∑
i=1

vixi = λφ(v)(x).

Hence, φ(v) is a linear functional on `1. To see that φ(v) is bounded, we
compute its operator norm directly as

‖φ(v)‖ = sup
‖x‖1=1

|φ(v)(x)|

= sup
‖x‖1=1

|
∞∑
i=1

vixi|

≤ sup
‖x‖1=1

∞∑
i=1

|vixi|

≤ sup
‖x‖1=1

sup
j∈Z>0

|vj|
∞∑
i=1

|xi|

= sup
‖x‖1=1

‖v‖∞‖x‖1 = ‖v‖∞.

Since v ∈ `∞, ‖v‖∞ is finite. Hence, ‖φ(v)‖ ≤ ‖v‖∞ <∞ and so, φ(v) is
bounded. Therefore, we have proven that if v ∈ `∞ then φ(v) ∈ (`1)∗.

(b) Assume that w = (w1, w2, . . . ) ∈ `∞ and µ ∈ C. We compute directly
that if x = (x1, x2, . . . ) ∈ `1 then

φ(v + w)(x) =
∞∑
i=1

(vi + wi)xi

=
∞∑
i=1

vixi +
∞∑
i=1

wixi = φ(v)(x) + φ(w)(x)

and

φ(µv)(x) =
∞∑
i=1

(µvi)xi

= µ

∞∑
i=1

vixi = µφ(v)(x).

49



Therefore, φ must be a linear map.

In order to see that φ is invertible, we will define an explicit inverse for φ.
Define

ψ : (`1)∗ → `∞

F 7→ (F (e1), F (e2), . . . )

To show: (c) If F ∈ (`1)∗ then ψ(F ) ∈ `∞.

(d) F is linear.

(e) ψ ◦ φ = id`∞ , where id`∞ is the identity operator on `∞.

(f) φ ◦ ψ = id(`1)∗ , where id(`1)∗ is the identity operator on (`1)∗.

(c) Assume that F ∈ (`1)∗. By direct computation, we have

‖ψ(F )‖∞ = sup
i∈Z>0

|F (ei)|

≤ sup
i∈Z>0

‖F‖‖ei‖1

= ‖F‖ sup
i∈Z>0

‖ei‖1 = ‖F‖.

Since ‖F‖ <∞ because F is a bounded linear functional on `1, we deduce
that ‖ψ(F )‖∞ <∞. So, ψ(F ) ∈ `∞.

(d) Assume that G ∈ (`1)∗ and λ ∈ C. We compute directly that

ψ(F +G) = (F (e1), F (e2), . . . ) + (G(e1), G(e2), . . . ) = ψ(F ) + ψ(G).

and

ψ(λF ) = (λF (e1), λF (e2), . . . ) = λψ(F ).

Consequently, ψ is linear.

(e) If v = (v1, v2, . . . ) ∈ `∞ then

ψ(φ(v)) = (φ(v)(e1), φ(v)(e2), . . . ) = (v1, v2, . . . ) = v.
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Hence, ψ ◦ φ = id`∞ .

(f) Assume that F ∈ (`1)∗. If x = (x1, x2, . . . ) ∈ `1 then

φ(ψ(F ))(x) = φ((F (e1), F (e2), . . . ))(x)

=
∞∑
i=1

F (ei)xi = F (
∞∑
i=1

xiei) = F (x).

Therefore, φ ◦ ψ = id(`1)∗ .

By combining parts (c), (d), (e) and (f), we deduce that ψ is the inverse of
φ. Finally, we will show that if v = (v1, v2, . . . ) ∈ `∞ then |φ(v)| = ‖v‖∞.
We already know from part (a) that ‖φ(v)‖ ≤ ‖v‖∞.

To show: (g) ‖v‖∞ ≤ ‖φ(v)‖.

(g) We know from part (c) that if F ∈ (`1)∗ then ‖ψ(F )‖∞ ≤ ‖F‖. Since
φ(v) ∈ (`1)∗, we have from part (e)

‖v‖∞ = ‖ψ(φ(v))‖∞ ≤ ‖φ(v)‖.

Consequently, we have ‖φ(v)‖ = ‖v‖∞. So, φ is an isometric isomorphism
between (`1)∗ and `∞, establishing that the dual space of `1 is (`1)∗ = `∞.

In order to show that `1 is not reflexive, it suffices to prove that (`∞)∗ 6= `1.
We require two more results for this purpose.

Theorem 2.2.2 (Mapping to the distance). Let X be a normed vector
space and Z ⊆ X be a non-zero subspace of X. Let y ∈ X and

d = inf
z∈Z
‖y − z‖.

Then, there exists a functional Λ ∈ X∗ such that ‖Λ‖ ≤ 1, Λ(y) = d and
Λ(z) = 0 for z ∈ Z.

Proof. Assume that X is a normed vector space and Z ⊆ X be a non-zero
subspace of X. Assume that y ∈ X\Z is non-zero and d ∈ R≥0 is defined as
above.

We will first define a linear functional Λ′ on the subspace span(y) + Z.
Define
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Λ′ : span(y) + Z → C
λy + z 7→ |λ|‖y‖.

Then, Λ′ is a linear functional which satisfies Λ′(z) = 0 for all z ∈ Z and
Λ′(y) = ‖y‖. It is bounded because if λy + z ∈ span(y) + Z for λ ∈ C− {0}
then

Λ′(
λy + z

‖λy + z‖
) =

|λ|‖y‖
‖λy + z‖

=
|λ|‖y‖

|λ|‖y + 1
λ
z‖

=
‖y‖

‖y − (−1
λ
z)‖
≤ ‖y‖

d
.

Therefore, ‖Λ′‖ ≤ ‖y‖
d

. Now we can apply Theorem 2.1.5 to obtain a

functional Λ̃ ∈ X∗ such that Λ̃|span(y)+Z = Λ′ and ‖Λ̃‖ = ‖Λ′‖.

Now define the linear functional Λ ∈ X∗ by Λ(x) = d
‖y‖Λ̃(x). By the

construction of Λ̃, we have

‖Λ‖ =
d

‖y‖
‖Λ̃‖ ≤ d

‖y‖
‖y‖
d

= 1.

On the subspace span(y) + Z, we have

Λ(y) =
d

‖y‖
Λ̃(y) =

d

‖y‖
Λ′(y) = d

and if z ∈ Z then

Λ(z) =
d

‖y‖
Λ̃(z) =

d

‖y‖
Λ′(z) = 0.

Recall that our proof that `∗∞ 6= `1 is based on the notion of separability.
Specifically, we have the following theorem:

Theorem 2.2.3 (Separable dual space). Let X be a Banach space. If the
dual space X∗ is separable then X is separable.
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Proof. Assume that X is a Banach space and that X∗ is separable. Then,
there exists a countable dense subset {λn}n∈Z>0 of X∗.

Define a sequence {xn}n∈Z>0 such that ‖xn‖ = 1 for all n ∈ Z>0 and

|λn(xn)| ≥ ‖λn‖
2

.

We can do this due to the definition of the operator norm.

Now define the set

D = {
k∑
i=1

µixi | µi ∈ Q, k ∈ Z>0}.

Since D is countable, it suffices to show that D is dense in X.

Suppose for the sake of contradiction that D is not dense in X. Then, there
exists y ∈ X −D and a linear functional λ ∈ X∗ such that λ(y) 6= 0, but
λ(x) = 0 for all x ∈ D. The existence of λ uses Theorem 2.2.2.

Since {λn} is a dense subset of X∗, there exists a subsequence {λnk} such
that λnk → λ as k →∞. By construction of the sequence {xn} in X, we
have

‖λ− λnk‖ = sup
‖x‖=1

|(λ− λnk)(x)|

≥ |(λ− λnk)(xnk)| = |λnk(xnk)| ≥
‖λnk‖

2
.

where the second last equality follows from the fact that xnk ∈ D. By taking
the limit as k →∞, we deduce that since λnk → λ, ‖λnk‖ → 0 as k →∞.
Therefore, λ = 0, which contradicts the fact that λ(y) 6= 0. Hence, D is a
countable dense subset of X and X must be separable as required.

Using Theorem 2.2.3, we will now prove that (`∞)∗ 6= `1. Suppose for the
sake of contradiction that `1 = (`∞)∗.

To show: (a) `1 is separable.

(b) `∞ is not separable.
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(a) Define the set

D = {x = (x1, x2, . . . ) | xi ∈ Q, there exists j ∈ Z>0 such that if i > j then xi = 0}.

Observe that the set D must also be countable. To see why this is the case,
write

D =
⋃

j∈Z>0

Dj

where

Dj = {(x1, x2, . . . , xj, 0, 0, . . . ) | xi ∈ Q for i ∈ {1, 2, . . . , j}}.

Since Q is countable, Dj must be countable for j ∈ Z>0. Since D is a
countable union of countable sets, it must be countable as a result.

We will show that D is a dense subset of

`1(R) = {x = (x1, x2, . . . ) ∈ `1 | xi ∈ R} ⊆ `1.

Assume that x = (x1, x2, . . . ) ∈ `1(R). For i ∈ Z>0, xi ∈ R. Since Q is dense
in R, there exists a sequence {qi,j}j∈Z>0 in Q such that qi,j → xi as j →∞.

This propels us to define the sequences

Qi = (q1,i, q2,i, . . . , qi−1,i, qi,i, 0, 0, . . . )

for i ∈ Z>0. Then, {Qi}i∈Z>0 is a sequence in the set D. To see that it
converges to x, assume that ε ∈ R>0. Since the sequence of partial sums
{
∑k

j=1|xj|}k∈Z>0 converges to ‖x‖1 <∞, there exists N ′ ∈ Z>0 such that if
i > N ′ then

∞∑
j=i+1

|xj| <
ε

2
.

Now fix α ∈ Z>0. For each j ∈ {1, 2, . . . , α} there exists Nj ∈ Z>0 such that
if i′ > Nj then

|xj − qj,i′ | <
ε

2α
.

Now let N = max(N1, . . . , Nα). If i′ > N then we have from the previous
inequality that
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|xj − qj,i′ | <
ε

2α
for all j ∈ {1, 2, . . . , α}.

Let M = max(N,N ′). If i′ > M then we choose α > i′ so that

‖x−Qi′‖1 =
∞∑
j=1

|xj − qj,i′|

=
i′∑
j=1

|xj − qj,i′|+
∞∑

j=i′+1

|xj|

<

i′∑
j=1

ε

2α
+
ε

2
=
εi′

2α
+
ε

2
<
ε

2
+
ε

2
= ε.

Therefore, the sequence {Qi}i∈Z>0 in D converges to x ∈ `1(R). This shows
that D is a countable dense subset of `1(R).

Notice that we can write

`1 = `1(R) + i`1(R).

where the sequences in i`1(R) are of the form (iy1, iy2, . . . ), where yj ∈ R
for j ∈ Z>0. Since D is dense in `1(R), iD is a countable dense subset of
i`1(R). So, the set

D + iD

is a countable dense subset of `1. Therefore, `1 is separable.

(b) Let I ⊆ Z>0. Define the sequence eI by

(eI)i =

{
1, if i ∈ I
0, if i 6∈ I.

The sequence eI ∈ `∞ because

‖eI‖∞ = sup
i∈Z>0

|(eI)i| = 1.

If I and J are distinct subsets of Z>0 then

‖eI − eJ‖∞ = sup
i∈Z>0

|(eI)i − (eJ)i| = 1.
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This means that the open balls B(eI ,
1
2
) and B(eJ ,

1
2
) are disjoint whenever

I 6= J . Here,

B(eI ,
1

2
) = {x ∈ `∞ | ‖x− eI‖ <

1

2
}.

Now define B = {B(eI ,
1
2
) | I ⊆ Z>0}.

To show: (ba) B is uncountable.

(ba) For every I ⊆ Z>0, eI is a sequence of zeros and ones. Each sequence
of zeros and ones corresponds to the binary representation of some real
number in (0, 1]. For instance, the sequence (1, 0, 0, . . . ) corresponds to
1
2
∈ (0, 1] because the binary representation of 1

2
is 0.1. The bijection is

given explicitly by

φ : (0, 1] → B
r 7→ B(eI ,

1
2
)

where eI is the sequence of zeros and ones corresponding to the binary
representation of r. Since φ defines a bijection between the sets (0, 1] and B
and (0, 1] is uncountable, we deduce that B is also an uncountable set.

(b) Now suppose that S is a dense subset of `∞. If λ ∈ S then there exists
I ⊆ Z>0 such that λ ∈ B(eI ,

1
2
) because S is dense in `∞. Since the

elements of B are all disjoint, every element of S must be contained in
exactly one of the open balls in B. Since B is uncountable, S must also be
uncountable and hence, `∞ is not separable.

Since `1 = (`∞)∗ by assumption and `1 is separable by part (a), we can
apply Theorem 2.2.3 to deduce that `∞ is separable. However, this
contradicts the finding that `∞ is not separable in part (b). Therefore,
`1 6= (`∞)∗ and `1 is not a reflexive Banach space as required.

2.3 Weak Convergence

Let X be a normed vector space. In this section, we will introduce the
notion of weak convergence. This concept of convergence utilises bounded
linear functionals on X, reinforcing the need to study dual spaces alongside
normed vector spaces.
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In order to distinguish weak convergence from our usual definition of
convergence, we will call the latter strong convergence.

Definition 2.3.1. Let X be a normed vector space and let {xn}n≥1 be a
sequence of points in X. We say that {xn} is strongly convergent if
there exists a x ∈ X such that

lim
n→∞
‖xn − x‖ = 0.

Now, contrast this definition with weak convergence below:

Definition 2.3.2. Let X be a normed vector space and let {xn}n≥1 be a
sequence of points in X. We say that {xn} is weakly convergent if there
exists a x ∈ X such that for all f ∈ X∗,

lim
n→∞

f(xn) = f(x).

For weak convergence, we write xn ⇀ x. We call x the weak limit of {xn}
and that {xn} converges weakly to x.

Upon seeing both of these definitions, a sensible inquiry would be about the
relationship between strong convergence and weak convergence. Our first
step towards analysing this question is the following theorem:

Theorem 2.3.1. Let X be a normed vector space and let {xn} be a
sequence of points in X. If {xn} is strongly convergent, then it is weakly
convergent.

Proof. Assume that {xn} is a sequence in X which is strongly convergent.
Then, there exists a x ∈ X such that

lim
n→∞
‖xn − x‖ = 0.

To show: (a) For all f ∈ X∗, limn→∞ f(xn) = f(x).

(a) Assume that f ∈ X∗. Then,

lim
n→∞
|f(xn)− f(x)| ≤ lim

n→∞
sup
xn 6=x
|f(xn)− f(x)|

= lim
n→∞

sup
xn 6=x

|f(xn)− f(x)|
‖xn − x‖

× ‖xn − x‖

= lim
n→∞
‖f‖‖xn − x‖

= 0.
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Hence, for all f ∈ X∗, limn→∞|f(xn)− f(x)| = 0 since the LHS is greater
than or equal to zero. As a result, limn→∞ f(xn) = f(x). Therefore, {xn} is
weakly convergent.

In general, weak convergence does not imply strong convergence. However,
there is one particularly important case where weak convergence and strong
convergence are equivalent. The next theorem also explains why the
concept of weak convergence does not appear in real-valued calculus.

Theorem 2.3.2. Let X be a finite dimensional normed vector space
and let {xn} be a sequence of points in X. Then, if {xn} is weakly
convergent, then {xn} is also strongly convergent.

Proof. Assume that X is a finite dimensional normed vector space,
dimX = n and {xn} is a sequence in X which is weakly convergent. Then,
there exists a x ∈ X such that for all f ∈ X∗,

lim
n→∞

f(xn) = f(x).

To show: (a) limn→∞‖xn − x‖ = 0.

(a) Let {e1, . . . , en} be a basis for X. Then, xn and x can be expressed as a

linear combination of these basis vectors. We write xn =
∑n

i=1 a
(n)
i ei and

x =
∑n

i=1 aiei. Assume i ∈ {1, . . . , n}. Define gi ∈ X∗ by

gi(ej) =

{
1 if i = j,

0 if i 6= j.

Then, for j ≤ n, gj(xn) = a
(n)
j and gj(x) = aj. Since, {xn} is weakly

convergent, limn→∞ gj(xn) = gj(x). So, limn→∞ a
(n)
j = aj. Using this piece

of information, we now calculate ‖xn − x‖.

‖xn − x‖ = ‖
n∑
i=1

(a
(n)
i − ai)ei‖

≤
n∑
i=1

|a(n)
i − ai|‖ei‖ (Triangle Inequality)

→ 0 as n→∞.

So, limn→∞‖xn − x‖ = 0. Hence, {xn} is strongly convergent.
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These two results demonstrate that weak convergence is a more general
form of strong convergence; the idea of convergence that we are most used
to. Note that in the Banach space l1, strong convergence and weak
convergence are equivalent, despite the fact that l1 is infinite dimensional
(see [EK78, Page 260]).

Theorem 2.3.3. Let X be a normed vector space and let {xn} be a
sequence of points in X. Assume xn ⇀ x. Then, the weak limit x is unique.

Proof. Assume X is a normed vector space and {xn} is a sequence of points
in X. Suppose for the sake of contradiction that the weak limit x of the
sequence {xn} is not unique. Then, there exists x, y ∈ X such that x 6= y,
xn ⇀ x and xn ⇀ y. So, for all f ∈ X∗, limn→∞ f(xn) = f(x) and
limn→∞ f(xn) = f(y). Therefore, f(x) = f(y) for all f ∈ X∗ because limits
are unique in R.

However, we also know that there exists a linear functional φ ∈ X∗ such
that φ(x) 6= φ(y) because x 6= y (see Theorem 2.1.7). This contradicts the
fact that f(x) = f(y) for all f ∈ X∗. So, the weak limit x must be
unique.

Theorem 2.3.4. Let X be a normed vector space and let {xn} be a
sequence of points in X. Assume xn ⇀ x. Then, every subsequence {xnk}
of {xn} converges weakly to x.

Proof. Assume that {xn} is a sequence of points in the normed vector space
X. Assume that {xn} converges weakly to x ∈ X. Then, for all f ∈ X∗,
limn→∞ f(xn) = f(x). This means that the real-valued sequence {f(xn)} is
convergent. Since it is convergent, it must also be a Cauchy sequence and
hence, bounded. In turn, since {f(xn)} was established to be bounded, it
must have a subsequence {f(xnk)}, which converges to f(x), by the
Bolzano-Weierstrass theorem. Hence, for all f ∈ X∗,

lim
n→∞

f(xnk) = f(x).

So, every subsequence {xnk} of {xn} converges weakly to x.

Theorem 2.3.5. Let X be a normed vector space and let {xn} be a
sequence of points in X. Assume xn ⇀ x. Then, the sequence {‖xn‖} is
bounded.

Proof. Assume that {xn} is a sequence of points in the normed vector space
X. Assume that {xn} converges weakly to x ∈ X. Due to the completeness
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of R, it suffices to show that the real-valued sequence {‖xn‖} is convergent
because a convergent sequence in R is necessarily Cauchy and as a
consequence of this, a Cauchy sequence must be bounded.

To show: (a) {‖xn‖} is convergent.

(a) Since {xn} converges weakly to x ∈ X, we know that for all f ∈ X∗,
limn→∞ f(xn) = f(x). However, we also know that there exists a linear
functional φ ∈ X∗ such that ‖φ‖ = 1 and φ(x) = ‖x‖. So,
limn→∞ φ(xn) = φ(x), which simply means that

lim
n→∞
‖xn‖ = ‖x‖.

Therefore from the above, the real-valued sequence {‖xn‖} is
convergent.

It turns out that the concept of weak convergence has important
applications to the calculus of variations and the theory of partial
differential equations. In this section, we have covered some of the basic
properties of weak convergence. However, we will have to develop some
more theory before we are able to learn deeper results about weak
convergence and dual spaces. The main purpose of this chapter is to
accentuate why it is important for one to study dual spaces alongside
normed vector spaces. Weak convergence will reappear in the context of
Hilbert spaces, the main subject of the next chapter.
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Chapter 3

Hilbert Spaces

3.1 Definition and Examples

An appropriate analogy pertaining to Hilbert spaces is: ”Banach space is to
normed vector space as Hilbert space is to inner product space”. Hilbert
spaces are extremely important to certain areas of study, such as quantum
physics and Fourier analysis. This is partly due to the numerous deep
theorems associated with Hilbert spaces, some of which we shall explore in
this chapter. Of course, we will first begin with the definition of a Hilbert
space.

Definition 3.1.1. An inner product space H is a vector space over a
field K = R or C, equipped with a bilinear map 〈·, ·〉 : H ×H → K which
satisfies the following properties:

1. For all x, y ∈ H, 〈x, y〉 = 〈y, x〉 (Skew Symmetry)

2. For all x, y ∈ H and a ∈ K, 〈ax, y〉 = a〈x, y〉 (Scalar Multiplication)

3. For all x, y, z ∈ H, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (Linearity)

4. For all x ∈ H, 〈x, x〉 ≥ 0, with equality holding if and only if x = 0.
(Positive Definiteness)

A short application of these axioms reveal these two particular properties of
the inner product. For all x, y, z ∈ H and a ∈ K, 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
and 〈x, ay〉 = a〈x, y〉.

Definition 3.1.2. Assume that H is an inner product space and that
x ∈ H. We define the norm of an inner product space H to be

‖x‖ =
√
〈x, x〉.
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Definition 3.1.3. Assume that H is an inner product space. Then, H is
called a Hilbert space if it is complete with respect to the norm induced
by the inner product.

Before we launch into some examples of Hilbert spaces, we will prove some
important results relating to the norm of a Hilbert space.

Theorem 3.1.1 (Cauchy-Schwarz Inequality). Assume H is an inner
product space and x, y ∈ H. Then,

|〈x, y〉| ≤ ‖x‖‖y‖.

Proof. Assume H is an inner product space and that x, y ∈ H.

To show: (a) ‖x‖2‖y‖2 − |〈x, y〉|2 ≥ 0.

(a) Consider 〈x+ αy, x+ αy〉 for some scalar α ∈ K. Expanding this
expression yields

〈x+ αy, x+ αy〉 = ‖x‖2 + α〈x, y〉+ α〈y, x〉+ |α|2‖y‖2 ≥ 0.

Select α = − 〈x,y〉‖y‖2 . Substituting this into the above, one obtains the
inequality

‖x‖2 − 2|〈x, y〉|2/‖y‖2 + |〈x, y〉|2/‖y‖2 ≥ 0.

So, ‖x‖2 − |〈x, y〉|2/‖y‖2 ≥ 0. Finally, multiplying both sides of the
inequality by ‖y‖2 gives us the desired inequality.

Theorem 3.1.2 (Minkowski Inequality). Assume H is an inner product
space and x, y ∈ H. Then,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. Assume H is an inner product space and that x, y ∈ H.

To show: (a) ‖x+ y‖2 ≤ (‖x‖+ ‖y‖)2.

(a) Starting with the LHS, we compute
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‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2 + (〈x, y〉+ 〈y, x〉)
= ‖x‖2 + ‖y‖2 + (〈x, y〉+ 〈x, y〉)
= ‖x‖2 + ‖y‖2 + 2Re(〈x, y〉)
≤ ‖x‖2 + ‖y‖2 + 2|〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ (Cauchy-Schwarz Inequality)

= (‖x‖+ ‖y‖)2.

Theorem 3.1.3 (Parallelogram Identity). Assume H is an inner product
space and x, y ∈ H. Then,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proof. Assume H is an inner product space and x, y ∈ H. Expanding the
LHS yields

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 2(‖x‖2 + ‖y‖2) + 〈x, y〉+ 〈y, x〉 − 〈x, y〉 − 〈y, x〉
= 2(‖x‖2 + ‖y‖2).

Definition 3.1.4. Assume H is an inner product space and x, y ∈ H.
Then, x and y are said to be orthogonal if 〈x, y〉 = 0.

Theorem 3.1.4 (Pythagoras Theorem). Assume H is an inner product
space and x, y ∈ H. Assume x and y are orthogonal. Then,

‖x‖2 + ‖y‖2 = ‖x+ y‖2.

Proof. Assume H is an inner product space and x, y ∈ H. Assume x and y
are orthogonal. Once again, we expand the LHS to get

‖x‖2 + ‖y‖2 = 〈x, x〉+ 〈y, y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= 〈x+ y, x+ y〉
= ‖x+ y‖2.
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Here are some examples of Hilbert spaces.

Example 3.1.1. Let H = Rn. Equip H with the standard dot product

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.

Then, Rn is a Hilbert space.

Example 3.1.2. Let H = Cn. Equip H with the standard complex dot
product

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.

Then, Cn is a Hilbert space.

Example 3.1.3. Let H = l2. We equip H with the inner product

〈(x1, x2, . . . ), (y1, y2, . . . )〉 =
∞∑
i=1

xiyi.

Then, l2 is a Hilbert space.

Example 3.1.4. Let H = L2(Ω), where Ω is an open subset of R. We
equip H with the inner product

〈f(x), g(x)〉 =

∫
Ω

f(x)g(x) dx

Then, L2(Ω) is a Hilbert space.

For the last two examples, it is reasonable for one to ask whether lp and
Lp(Ω) are Hilbert spaces when p 6= 2. We do know that lp and Lp(Ω) are
Banach spaces where 1 ≤ p ≤ ∞. Does this necessarily mean that they are
all Hilbert spaces? This will be addressed in the next two theorems.

Theorem 3.1.5. If p 6= 2, then lp is not a Hilbert space.

Proof. Suppose for the sake of contradiction that lp is a Hilbert space when
p 6= 2. Then, lp must satisfy the parallelogram identity (3.1.3).
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To show: (a) There exists a x, y ∈ lp such that
‖x+ y‖2 + ‖x− y‖2 6= 2(‖x‖2 + ‖y‖2).

(a) Define x = (1, 1, 0, 0, 0, . . . ) and y = (−1, 1, 0, 0, 0, . . . ). Clearly,
x, y ∈ lp. Utilising the norm of lp, we calculate ‖x+ y‖ = ‖x− y‖ = 2 and
‖x‖ = ‖y‖ = 21/p. Substituting all of this into the parallelogram identity,
one obtains

4 + 4 = 2(21/p + 21/p).

This simplifies to 2 = 22/p. This can only be true if p = 2. However, we
have assumed that p 6= 2. This is a contradiction. Therefore, the
parallelogram identity (3.1.3) does not holds for p 6= 2.

Hence, lp is not a Hilbert space when p 6= 2.

Theorem 3.1.6. Assume that Ω is an open subset of R. If p 6= 2, then
Lp(Ω) is not a Hilbert space.

Proof. Assume that Ω is an open subset of R. Suppose for the sake of
contradiction that Lp(Ω) is a Hilbert space when p 6= 2. Then, Lp(Ω) must
satisfy the parallelogram identity.

To show: (a) There exists a f, g ∈ Lp(Ω) such that
‖f + g‖2 + ‖f − g‖2 6= 2(‖f‖2 + ‖g‖2).

(a) Assume Ω = (a, b). Define the simple function f(x) on (a, b) by

f(x) =

{
( 3
b−a)1/p if x ∈ (a, a+ 2(b−a)

3
),

0 otherwise.

Similarly, we define the simple function g(x) on (a, b) by

g(x) =


−( 3

b−a)1/p if x ∈ (a, a+ (b−a)
3

),

( 3
b−a)1/p if x ∈ (a+ (b−a)

3
, a+ 2(b−a)

3
),

0 otherwise.

Now, we compute the norms of f, g, f + g and f − g below.
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‖f‖ = (

∫ b

a

|f |p dx)1/p

= (

∫ a+2(b−a)/3

a

|( 3

b− a
)1/p|p dx)1/p

= (

∫ a+2(b−a)/3

a

3

b− a
dx)1/p

= 21/p.

‖g‖ = (

∫ b

a

|g|p dx)1/p

= (

∫ a+(b−a)/3

a

|−(
3

b− a
)1/p|p dx+

∫ a+2(b−a)/3

a+(b−a)/3

|( 3

b− a
)1/p|p dx)1/p

= (

∫ a+2(b−a)/3

a

3

b− a
dx)1/p

= 21/p.

‖f + g‖ = (

∫ b

a

|f + g|p dx)1/p

= (

∫ a+2(b−a)/3

a+(b−a)/3

|2(
3

b− a
)1/p|p dx)1/p

= (

∫ a+2(b−a)/3

a+(b−a)/3

2p
3

b− a
dx)1/p

= 2.

‖f − g‖ = (

∫ b

a

|f − g|p dx)1/p

= (

∫ a+(b−a)/3

a

|2(
3

b− a
)1/p|p dx)1/p

= (

∫ a+(b−a)/3

a

2p
3

b− a
dx)1/p

= 2.

In a similar vein to the previous theorem, we find that the parallelogram
identity is only satisfied if p = 2. However, we have assumed that p 6= 2.
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This is a contradiction.

Hence, Lp(Ω) is not a Hilbert space for p 6= 2.

3.2 Orthogonality

Let V be a finite dimensional inner product space and W ⊂ V be a
subspace. We know that V is a direct sum of W and W⊥, where W⊥ is the
orthogonal complement of W . The question that we will explore in this
section is whether this decomposition holds more generally for infinite
dimensional Hilbert spaces. First, we require some definitions.

Definition 3.2.1. Let X be a set of vectors from a Hilbert space H.
Consider the subspace span(X) ⊂ H. The space generated by X, which
we denote by V , is defined by V = span(X).

Definition 3.2.2. Let X be a set of vectors from a Hilbert space H. The
set X is called total if for all h ∈ H, there exists a sequence {xn} with
xn ∈ span(X) for all n ∈ Z>0, such that

‖xn − h‖ → 0 as n→∞.

Definition 3.2.3. Assume that X is a subset of the Hilbert space H. Then,
the subset X⊥ is called the orthogonal subspace of X and is defined by

X⊥ = {h ∈ H such that 〈h, x〉 = 0 for all x ∈ X}.

This definition is no different to that of the orthogonal complement of a
subspace of a finite dimensional inner product space.

Theorem 3.2.1. Assume that X is a subset of the Hilbert space H. Then,
the subspace X⊥ is closed.

Proof. Assume that X is a subset of the Hilbert space H.

To show: (a) X⊥ ⊆ X⊥.

(b) X⊥ ⊆ X⊥.

(a) Assume w ∈ X⊥. Consider the constant sequence {wn} = (w,w,w, . . . ).
This is a sequence in X⊥ which converges to w. As a consequence of 1.2.2,
w ∈ X⊥. So, X⊥ ⊆ X⊥.
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(b) Assume w ∈ X⊥. Then, from 1.2.2, there exists a sequence {wn} with
wn ∈ X⊥ for all n ∈ Z>0 such that wn → w as n→∞.

To show: (ba) For all x ∈ X, 〈w, x〉 = 0

(ba) Starting with the expression 〈w, x〉 for all x ∈ X, we argue as follows

〈w, x〉 = 〈w − wn + wn, x〉
= 〈w − wn, x〉+ 〈wn, x〉
= 〈w − wn, x〉 since wn ∈ X⊥.

As n→∞, 〈w, x〉 = 〈0, x〉 = 0. Therefore, w ∈ X⊥ and so, X⊥ ⊆ X⊥.

Subsequently, X⊥ = X⊥. Hence, X⊥ is closed.

Now, we will investigate orthogonal projections onto closed subspaces of H.

Theorem 3.2.2. Let H be a Hilbert space and V be a closed subspace of H.
Then, H = V ⊕ V ⊥. In other words, for all x ∈ H, x = y + z, where y ∈ V
is the unique point in V which has minimal distance from x. Similarly,
z ∈ V ⊥ is the unique point in V ⊥ which has minimal distance from x.

Proof. Assume that H is a Hilbert space and V is a closed subspace of H.

To show: (a) There exists a point y ∈ V such that y has minimal distance
from x.

(b) The point y is unique.

(c) There exists a point z ∈ V ⊥ such that z has minimal distance from x.

(d) The point z is unique.

(e) x = y + z.

(a) Assume that x ∈ H. Define

α = d(x, V ) = inf{‖x− v‖ | v ∈ V }.
Observe that there exists a sequence {yn} in V such that
limn→∞‖x− yn‖ = α.
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To show: (aa) The sequence {yn} is Cauchy.

(aa) We will utilise the parallelogram identity (3.1.3) for this. For all
u, v ∈ H,

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Select u = x− yn and v = x− ym in order to obtain

‖2x− yn − ym‖2 + ‖ym − yn‖2 = 2(‖x− yn‖2 + ‖x− ym‖2).

This can be rearranged in order to get

‖ym − yn‖2 = 2(‖x− yn‖2 + ‖x− ym‖2)− 4‖x− (
ym + yn

2
)‖2.

From the definition of infimum and the fact that (ym + yn)/2 ∈ V , we know
that

‖x− (
ym + yn

2
)‖2 ≥ α2.

Using supremums, we have

sup ‖ym − yn‖2 = 2(sup ‖x− yn‖2 + sup ‖x− ym‖2)− 4 sup ‖x− (
ym + yn

2
)‖2

≤ 2(sup ‖x− yn‖2 + sup ‖x− ym‖2)− 4 inf ‖x− (
ym + yn

2
)‖2

≤ 2(α2 + α2)− 4α2

= 0.

Taking limits of both sides as m→∞ and n→∞, we obtain
limm,n→∞‖ym − yn‖ = 0. Hence, the sequence {yn} is Cauchy.

(a) Since V is a closed subspace of H, it is complete. Furthermore, the
sequence {yn} is Cauchy. So, {yn} must converge to (say) y ∈ V . Hence,
there exists a y ∈ V such that ‖x− y‖ = α.

(b) Assume that there exists y′ ∈ V such that ‖x− y′‖ = α.

To show: (ba) ‖y − y′‖ = 0.

(ba) In the parallelogram identity, select u = x− y and v = x− y′ in order
to obtain
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‖y − y′‖2 = 2(‖x− y‖2 + ‖x− y′‖2)− 4‖x− (
y + y′

2
)‖2.

Once again, since (y + y′)/2 ∈ V ,

‖x− (
y + y′

2
)‖2 ≥ α2.

So,

‖y − y′‖2 = 2(‖x− y‖2 + ‖x− y′‖2)− 4‖x− (
y + y′

2
)‖2

= 2(α2 + α2)− 4‖x− (
y + y′

2
)‖2

≤ 4α2 − 4α2

= 0.

Therefore, ‖y − y′‖ = 0 and so, y = y′.

(b) This demonstrates that y is unique.

(c) Define z = x− y.

To show: (ca) z ∈ V ⊥.

(cb) z has minimal distance from x.

(ca) Assume v ∈ V . Consider the expression ‖x− (y + λv)‖2, where λ ∈ R.
Expanding this using the inner product, we get

‖x− (y + λv)‖2 = ‖x− y‖2 + |λ|2‖v‖2 + 2Re〈x− y, λv〉.

Due to the definition of y, the LHS attains a unique minimum when λ = 0.
So, differentiating the RHS with respect to the variable λ yields

2|λ|‖v‖2 + 2Re〈x− y, v〉.

This is equal to zero when λ = 0. As a result, Re〈x− y, v〉 = 0 for all v ∈ V .

If H is a complex Hilbert space, then we observe that

Im〈x− y, v〉 = Re〈x− y, iv〉.
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Thus, Im〈x− y, v〉 = 0 because Re〈x− y, v〉 = 0 for all v ∈ V . So, in either
case where K = R or K = C, we have 〈x− y, v〉 = 0 for all v ∈ V . So,
z = x− y ∈ V ⊥.

(cb) This follows from the fact that y is the point of minimal distance from
x in V .

(d) Define z′ = x− y′ ∈ V ⊥.

To show: (da) y = y′.

(da) Similarly to before, we proceed as follows

‖y − y′‖2 = 〈y − y′, y − y′〉
= 〈y − y′, x− y′〉 − 〈y − y′, x− y〉
= 〈y − y′, z′〉 − 〈y − y′, z〉
= 0 since y, y′ ∈ V.

Hence, ‖y − y′‖ = 0 and so, y = y′. Therefore, the point z is unique.

(e) y + z = y + x− y = x. Note that x is arbitrary. So, this decomposition
works for all x ∈ H.

We will use Theorem 3.2.2 to prove various properties about the orthogonal
complement.

Theorem 3.2.3. Let H be a Hilbert space.

(a) If S is a subspace of H then S ⊆ (S⊥)⊥.

(b) If S1, S2 are subspaces of H and S1 ⊆ S2 then S⊥2 ⊆ S⊥1 .

(c) If S is a closed subspace of H then S = (S⊥)⊥.

(d) If S is a subspace of H, then S = (S⊥)⊥.

Proof. Assume that H is a Hilbert space.

(a) Assume that S is a subspace of H and that s ∈ S. If t ∈ S⊥ then
〈s, t〉 = 0. So, s ∈ (S⊥)⊥ and S ⊆ (S⊥)⊥.
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(b) Assume that S1, S2 are subspaces of H such that S1 ⊆ S2. Then,

S⊥2 = {x ∈ H | 〈x, v〉 = 0 for v ∈ S2}
⊆ {x ∈ H | 〈x, v〉 = 0 for v ∈ S1}
= S⊥1 .

(c) Assume that S is a closed subspace of H. Then, by Theorem 3.2.2,
H = S ⊕ S⊥. We already have S ⊆ (S⊥)⊥ by part (a). It suffices to prove
the reverse inclusion. Assume that x ∈ (S⊥)⊥. Then, x = y + z where
y ∈ S and z ∈ S⊥.

To show: (ca) z = 0.

(ca) Since x ∈ (S⊥)⊥ and z ∈ S⊥, 〈x, z〉 = 0. But,

〈x, z〉 = 〈y, z〉+ ‖z‖2 = ‖z‖2 = 0.

Thus, z = 0 and x = y ∈ S. Hence, (S⊥)⊥ ⊆ S and S = (S⊥)⊥.

(d) Assume that S is a subspace of H. Then, S ⊆ S. Applying part (b)

twice, we deduce that (S⊥)⊥ ⊆ (S
⊥

)⊥. Since S is a closed subspace of H,

(S
⊥

)⊥ = S from part (c). Thus, (S⊥)⊥ ⊆ S.

Now observe that from part (a), S ⊆ (S⊥)⊥ = (S⊥)⊥. The last equality
follows from the fact that (S⊥)⊥ is a closed subspace of H. So, S = (S⊥)⊥

as required.

In the context of Theorem 3.2.2, we define the projection operators
PV : H → V and PV ⊥ : H → V ⊥ by

PV (x) = y and PV ⊥(x) = z.

Theorem 3.2.4. The projection operators are linear, continuous operators
with norm less than or equal to 1.

Proof. Assume x, x′ ∈ H and a, b ∈ K.

To show: (a) PV (ax+ bx′) = aPV (x) + bPV (x′).

(b) PV ⊥(ax+ bx′) = aPV ⊥(x) + bPV ⊥(x′).
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(c) ‖PV ‖ ≤ 1.

(d) ‖PV ⊥‖ ≤ 1.

(a) Assume PV (x) = y and PV (x′) = y′. Then,

PV (ax+ bx′) = ay + by′ = aPV (x) + bPV (x′).

Hence, PV is linear.

(b) Assume PV ⊥(x) = z and PV ⊥(x′) = z′. Then,

PV ⊥(ax+ bx′) = az + bz′ = aPV ⊥(x) + bPV ⊥(x′).

Hence, PV ⊥ is linear.

(c) We know that

‖PV ‖ = sup
‖x‖=1

‖PV (x)‖ = sup
‖x‖=1

‖y‖.

However, we also know from Pythagoras’s theorem that

‖PV (x)‖2 + ‖PV ⊥(x)‖2 = ‖x‖2.

Setting ‖x‖ = 1, we obtain the inequality ‖PV ‖ ≤ 1.

(d) Setting ‖x‖ = 1, we also obtain the inequality ‖PV ⊥‖ ≤ 1.

Parts (c) and (d) prove that the projection operators are bounded. Hence,
they are also continuous.

We are able to characterise projection operators on a Hilbert space by its
specific properties. The first property integral to this goal is that if H is a
Hilbert space and S is a closed subspace of H, then the projection operator
PS onto S must satisfy P 2

S = PS. This is a consequence of 3.2.2.

The second defining property of projection operators is that they are
self-dual with respect to the inner product on H.

Lemma 3.2.5. Let H be a Hilbert space and S be a closed subspace of H.
Let PS : H → S be the projection operator onto S. Then, PS is equal to its
adjoint P ∗S . That is, for all x, y ∈ H, 〈PS(x), y〉 = 〈x, PS(y)〉.
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Proof. Assume that H is a Hilbert space and S is a closed subspace of S.
Assume that PS is the projection operator from H onto S. Applying 3.3.1,
the adjoint operator P ∗S admits the following definition:

P ∗S : S∗ → H∗

〈−, s〉 7→ 〈PS(−), s〉
By definition of the adjoint and the decomposition H = S ⊕ S⊥ (see 3.2.2),
we have for all s ∈ S,

〈x, s〉 = 〈PS(x) + PS⊥(x), s〉 = 〈PS(x), s〉 = 〈x, P ∗S(s)〉.
Therefore, P ∗S(s) = s for all s ∈ S since the above holds for all x ∈ H.
Another useful observation one makes about the adjoint operator P ∗S is that
its kernel is

ker(P ∗S) = [im(PS)]⊥ = S⊥.

One can check this directly from the definitions:

ker(P ∗S) = {x ∈ H | P ∗S(x) = 0}
= {x ∈ H | 〈P ∗S(x), y〉 = 0 for all y ∈ H}
= {x ∈ H | 〈x, PS(y)〉 = 0 for all y ∈ H}
= S⊥.

Using the above fact, we must have for all x ∈ H,

P ∗S(x) = P ∗S(s+ s′) = P ∗S(s) + P ∗S(s′) = s

where x = s+ s′ with s ∈ S and s′ ∈ S⊥. This reveals that the projection
operator is self-adjoint.

Here is the promised characterisation of projection operators.

Theorem 3.2.6. Let H be a Hilbert space and P : H → H be a bounded,
linear operator which satisfies P 2 = P and P ∗ = P . Then, P is the
projection operator onto the closed subspace im(P ).

Proof. Assume that H is a Hilbert space and P : H → H is a bounded
linear operator which satisfies P 2 = P and P ∗ = P . The first part of the
proof is to show that the image im(P ) is a closed subspace of H.
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To show: (a) The image im(P ) is closed.

(a) Let I : H → H denote the identity operator on H. Consider the
operator I − P : H → H. We observe that I − P satisfies the same
properties as P . This is because

(I − P )2 = I2 − P − P + P 2 = I − P − P + P = I − P

and for all x, y ∈ H,

〈(I − P )x, y〉 = 〈x, y〉 − 〈P (x), y〉
= 〈x, y〉 − 〈x, P (y)〉
= 〈x, (I − P )y〉.

Furthermore, im(P ) = ker(I − P ). To see why this is the case, suppose that
P (x) ∈ im(P ). Then, (I − P )(Px) = Px− P 2x = 0. So, P (x) ∈ ker(I − P )
for all x ∈ H and therefore, im(P ) ⊆ ker(I − P ).

Conversely, suppose that y ∈ ker(I − P ). Then, (I − P )y = 0 and
consequently, P (y) = y. Hence, y ∈ im(P ) and as a result,
ker(I − P ) ⊆ im(P ). Therefore, ker(I − P ) = im(P ). Since ker(I − P ) is a
closed subspace of H, im(P ) must also be closed as required.

We showed in part (a) that I − P satisfies the same properties as P . Hence,
we can apply the result of part (a), but to the operator I − P . So,
im(I − P ) = kerP = [im(P )]⊥. Now assume that x ∈ H. Then,

x = P (x) + (x− P (x))

where P (x) ∈ im(P ) and x− P (x) ∈ im(I − P ) = [im(P )]⊥. Thus, P is the
projection operator onto the closed subspace im(P ), which completes the
proof.

3.3 Riesz Representation of Linear

Functionals

The Riesz representation theorem establishes an important result about
Hilbert spaces and their corresponding dual spaces. It roughly states that
there is a type of isomorphism between Hilbert spaces and their duals.
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Theorem 3.3.1. (Riesz Representation Theorem): Let H be a Hilbert space
and H∗ be the corresponding dual space. Define the map ψ : H → H∗ by

ψ(x) = φx.

In turn, the map φx : H → K is defined by

φx(y) = 〈y, x〉.
Then, for all x ∈ H, the map φx is a continuous linear functional.

Additionally, let the map y 7→ Ay be a continuous linear functional. Then,
there exists a unique element c ∈ H such that Ay = 〈y, c〉 for all y ∈ H.

Proof. Assume that H is a Hilbert space and x, y, z ∈ H. Assume that
a, b ∈ K. Assume that H∗ is the dual space of H. Assume that the map
y 7→ Ay is a continuous linear functional.

To show: (a) The functional φx is linear.

(b) The functional φx is bounded.

(c) There exists a unique element c ∈ H such that Ay = 〈y, a〉 for all y ∈ H.

(a) This is a straightforward application of the linearity of the inner
product.

φx(ay + bz) = 〈ay + bz, x〉
= a〈y, x〉+ b〈z, x〉
= aφx(y) + bφx(z).

Hence, φx is linear.

(b) We argue as follows

‖φx‖ = sup
‖y‖=1

|φx(y)|

= sup
‖y‖=1

|〈y, x〉|

≤ sup
‖y‖=1

‖x‖‖y‖ (Cauchy-Schwarz Inequality)

= ‖x‖
<∞.
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Hence, φx is bounded. By 1.3.2, it is continuous. Consequently, φx is a
linear, continuous functional.

(c) Observe that if A = 0, then we can set c = 0 and the assertion follows.
So, assume A 6= 0. Then, consider the closed subspace ker(A) 6= H and its
orthogonal complement

(ker(A))⊥ = {h ∈ H such that 〈h, x〉 = 0 for all x ∈ ker(A)}.
Assume that v1, v2 ∈ (ker(A))⊥.

To show: (ca) There exists a λ ∈ K such that λv1 = v2.

(ca) Consider the scalars Av1, Av2 ∈ K. Then, there exists a non-zero
λ ∈ K such that λAv1 = Av2. Using the linearity of the functional A, we
obtain A(λv1 − v2) = 0. So, λv1 − v2 ∈ ker(A). However, we also know that
λv1 − v2 ∈ (ker(A))⊥. Therefore, λv1 − v2 ∈ ker(A) ∩ (ker(A))⊥.

To show: (caa) If V and V ⊥ are subspaces of H, then V ∩ V ⊥ = {0}.

(caa) Assume that x ∈ V and x ∈ V ⊥. Then, from the definition of V ⊥, we
have

〈x, x〉 = 0

From positive definiteness, x = 0. Hence, V ∩ V ⊥ = {0}.

(ca) Since, ker(A) ∩ (ker(A))⊥ = {0}, λv1 − v2 = 0, which proves the
assertion.

Part (ca) establishes that (ker(A))⊥ is a one-dimensional closed subspace of
H. Now we choose any non-zero h ∈ (ker(A))⊥. Define c = κh, where

κ =
Ah

〈h, h〉
.

Then, we have

Ah = κ〈h, h〉 = 〈h, κh〉 = 〈h, c〉 6= 0.

We know from the previous theorem that H = ker(A)⊕ (ker(A))⊥. Using
this, we write y as

y = Pker(A)(y) + αh where α ∈ K.
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Finally, we consider Ay.

Ay = A(Pker(A)(y) + αh)

= A(Pker(A)(y)) + A(αh)

= A(Pker(A)(y)) + αAh

= A(Pker(A)(y)) + α〈h, c〉
= 0 + α〈h, c〉
= 〈Pker(A)(y), c〉+ α〈h, c〉 since c ∈ (ker(A))⊥

= 〈y, c〉.

Therefore, there exists a unique element c ∈ H such that Ay = 〈y, a〉 for all
y ∈ H.

What else can we say about the map ψ? During the proof of the Riesz
representation theorem, we showed that ‖ψ(x)‖ = ‖φx‖ = ‖x‖. In other
words, the map ψ is an isometry (distance preserving). As a consequence of
this, we also know that ‖ψ‖ = 1 because

‖ψ‖ = sup
‖x‖=1

‖ψ(x)‖ = sup
‖x‖=1

‖φx‖ = sup
‖x‖=1

‖x‖ = 1.

Theorem 3.3.2. The map ψ is a bijection.

Proof. To show: (a) ψ is injective.

(b) ψ is surjective.

(a) Assume that ψ(x) = ψ(y). Assume that z 6= 0. Then, φx(z) = φy(z).
So, 〈z, x〉 = 〈z, y〉. Using linearity, we obtain

〈z, x− y〉 = 0.

Since z was assumed to not be zero, x− y = 0. Hence, ψ is injective.

(b) Assume that β ∈ H∗.

To show: (ba) There exists a x ∈ H such that ψ(x) = β.

(ba) From the Riesz representation theorem, we know that there exists a
c ∈ H such that
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βy = 〈y, c〉.
However, 〈y, c〉 = φc(y) = ψ(c)(y). Hence, ψ(c)(y) = βy. Subsequently,
β = ψ(c). So, there exists a x ∈ H such that ψ(x) = β.

(b) Therefore, ψ is surjective.

Finally, since ψ is both injective and surjective, it must be bijective.

Definition 3.3.1. Let X and Y be normed vector spaces over a field K.
Let Λ : X → Y be an operator. We say that Λ is skew-linear if for all
x1, x2 ∈ X and a, b ∈ K,

Λ(ax1 + bx2) = aΛ(x1) + bΛ(x2).

Theorem 3.3.3. The map ψ is skew-linear.

Proof. Assume that a, b ∈ K and x, y, z ∈ H.

To show: (a) ψ(ax+ by) = aψ(x) + bψ(y).

(a) Using the definition of ψ, we proceed as follows

ψ(ax+ by)(z) = φax+by(z)

= 〈z, ax+ by〉
= a〈z, x〉+ b〈z, y〉
= aφx(z) + bφy(z)

= aψ(x)(z) + bψ(y)(z).

= (aψ(x) + bψ(y))(z)

Hence, ψ(ax+ by) = aψ(x) + bψ(y). So, ψ is skew-linear.

Due to the skew-linearity of ψ, it links H and H∗ in two different ways,
depending on whether K = R or K = C. First, we will consider the case
when K = R.

When K = R, ψ is a bijective, linear map between H and H∗ with
‖ψ(x)‖ = ‖x‖. In this case, ψ defines an isometric isomorphism between
the spaces H and H∗.

79



When K = C, ψ is a bijective, skew-linear map between H and H∗ with
‖ψ(x)‖ = ‖x‖. In this case, ψ is an isometry, but it is not an isomorphism.
Instead, ψ is an anti-isomorphism, an isomorphism which also doubles as a
skew-linear map, rather than a linear map.

Finally, we will end this section with one of the most important, if not the
most important application of the Riesz representation theorem.

Example 3.3.1. Consider the vector space of continuous, complex-valued
(and square-integrable) wavefunctions. We endow this space with the inner
product defined below:

〈ψa, ψb〉 =

∫
(ψa(~r))

∗ · ψb(~r) d3r.

With this inner product, our vector space of wavefunctions becomes a
Hilbert space. As we will see in the next section, there are many possible
orthonormal bases for the vector space of wavefunctions. This motivates
the need for a ket, a basis independent vector of the Hilbert space. With
the wavefunction ψa, we write this as |a〉. A ket is usually thought of as a
state vector, in a Hilbert space of state vectors with the same
aforementioned inner product.

In turn, a bra is a linear functional fa from the Hilbert space of state
vectors to the complex numbers, defined by

fa(|b〉) = 〈a|b〉 = 〈ψa, ψb〉.

It is customary to write fa as 〈a|. The Riesz representation theorem tells us
that the map ω : {state vectors} → {dual space of state vectors}, which is
defined by

ω(|a〉) = 〈a|

is an isometric anti-isomorphism between the two spaces. This means that
for a ket, there is always a bra and vice versa.

Finally, linear operators Â map state vectors to other state vectors. This is
written as Â|a〉.

Bra-ket notation (note the pun) was introduced by Paul Dirac in 1939 and
enjoys universal usage in quantum physics ever since.
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3.4 Gram-Schmidt Orthogonalization

This procedure should be very familiar from the theory of linear algebra
and finite dimensional vector spaces. Nonetheless, it is worth discussing in
this context because it works for Hilbert spaces as well. We will start off
with some familiar definitions.

Definition 3.4.1. Let H be a Hilbert space and let x ∈ H. We say that x
is normalised, if ‖x‖ = 1.

Definition 3.4.2. Let H be a Hilbert space and let S = {s1, s2, . . . } ⊂ H
be a subset of H. We say that S is an orthonormal set, if for all
i, j ∈ Z>0,

〈si, sj〉 = δij

where δij denotes the Kronecker delta.

Assume that S = {s1, s2, . . . , sn} is a finite, linearly independent set of
vectors. Assume that x ∈ span(S), so

x =
n∑
i=1

αisi.

The question here is: how do we determine the coefficients αi? We first
note that for a fixed j ∈ {1, 2, . . . , n},

〈x, sj〉 =
n∑
i=1

αi〈si, sj〉.

This can be rewritten as the matrix equation
〈s1, s1〉 〈s2, s1〉 . . . 〈sn, s1〉
〈s1, s2〉 〈s2, s2〉 . . . 〈sn, s2〉

...
...

. . .
...

〈s1, sn〉 〈s2, sn〉 . . . 〈sn, sn〉



α1

α2
...
αn

 =


〈x, s1〉
〈x, s2〉

...
〈x, sn〉

 .

Before we continue on with the calculation, we will make an important
definition.

Definition 3.4.3. Let V = {v1, . . . , vn} be a set of vectors. The Gram
matrix of these vectors is the n× n matrix with entries given by
Gij = 〈vi, vj〉. The Gram determinant, denoted by G(v1, v2, . . . , vn), is
the determinant of the Gram matrix.
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There is one important theorem about the Gram determinant.

Theorem 3.4.1. Let V = {v1, . . . , vn} be a set of vectors where vi 6= 0 for
all i ∈ {1, . . . , n}. These vectors are linearly independent if and only if
G(v1, v2, . . . , vn) 6= 0.

Proof. To show: (a) If G(v1, v2, . . . , vn) = 0, then the vectors in V are
linearly dependent.

(b) If the vectors in V are linearly dependent, then G(v1, v2, . . . , vn) = 0.

(a) Assume that G(v1, v2, . . . , vn) = 0. Using cofactor expansion along the
first row, we find that there exists non-zero βi ∈ K such that

n∑
i=1

βi〈v1, vi〉 = 0.

Using the properties of the inner product, we simplify this to

〈v1,
n∑
i=1

βivi〉 = 0.

Since v1 6= 0,
∑n

i=1 βivi = 0. Hence, there exists a non-trivial linear
combination of vectors in V which sum to zero. Therefore, the vectors in V
are linearly dependent.

(b) Assume that the vectors in V are linearly dependent. Then, there exists
a non-trivial linear combination such that

n∑
i=1

γivi = 0.

Here, γi ∈ K\{0}. We then write v1 =
∑n−1

i=1 −
γi+1

γ1
· vi+1. Now consider the

Gram determinant G(v1, v2, . . . , vn) below:

∣∣∣∣∣∣∣∣∣
∑n−1

i=1 −
γi+1

γ1
· 〈vi+1, v1〉

∑n−1
i=1 −

γi+1

γ1
· 〈vi+1, v2〉 . . .

∑n−1
i=1 −

γi+1

γ1
· 〈vi+1, vn〉

〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉
...

...
. . .

...
〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉

∣∣∣∣∣∣∣∣∣
Define the matrix A as follows:
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A =


1 γ2

γ1
. . . γn

γ1

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


We also define G to be the Gram matrix corresponding to the Gram
determinant G(v1, v2, . . . , vn). Computing the product AG yields:

AG =


1 γ2

γ1
. . . γn

γ1

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

×G

=


0 0 . . . 0

〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉
...

...
. . .

...
〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉

 .

Since det(AG) = det(A) det(G) = det(A) G(v1, v2, . . . , vn), we have
0 = 1×G(v1, v2, . . . , vn). Therefore, G(v1, v2, . . . , vn) = 0. This proves the
assertion.

Returning to the calculation we are working on, we observe that
(G(s1, s2, . . . , sn))T 6= 0 because all the vectors in S are orthogonal to each
other, since they are linearly independent. In fact, the corresponding Gram
matrix is diagonal due to this. This results in the matrix equation

〈s1, s1〉 0 . . . 0
0 〈s2, s2〉 . . . 0
...

...
. . .

...
0 0 . . . 〈sn, sn〉



α1

α2
...
αn

 =


〈x, s1〉
〈x, s2〉

...
〈x, sn〉

 .

So, we can solve this matrix equation in order to obtain

αi =
〈x, si〉
〈si, si〉

.

Note that if S is an orthonormal set, then αi = 〈x, si〉. Using this, we will
now describe Gram-Schmidt orthogonalization, which takes any linearly
independent set of vectors {v1, . . . , vn} and provides an orthonormal set of
vectors {e1, . . . , en} such that span{v1, . . . , vn} = span{e1, . . . , en} for all
n ≥ 1.
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Example 3.4.1. (Gram-Schmidt Orthogonalization)

Step 1: Set e1 = v1

‖v1‖ .

Step 2: If we have already defined e1, e2, . . . , en−1, we then define en to be

en =
vn −

∑n−1
i=1 〈vn, ei〉ei

‖vn −
∑n−1

i=1 〈vn, ei〉ei‖
We definitely have en 6= 0 because vn /∈ span{e1, . . . , en−1}. We also have
‖en‖ = 1. We can also prove that en is perpendicular to all of
e1, e2, . . . , en−1 via induction.

3.5 Orthonormal sets in Hilbert spaces

In this section, we shall deal with results involving orthonormal sets in
infinite-dimensional Hilbert spaces.

Theorem 3.5.1. Let H be a Hilbert space and let S be a subset of H.
Then, the set S is total if and only if S⊥ = {0}.

Proof. Assume that H is a Hilbert space and S ⊂ H.

To show: (a) If S is total, then S⊥ = {0}.

(b) If S⊥ = {0}, then S is total.

(a) Assume that S = {s1, s2, . . . } is total. Then, span(S) = H. For all
h ∈ H, there exists a sequence {xn} with xn ∈ span(S) such that

lim
n→∞
‖xn − h‖ = 0.

Assume x ∈ S⊥. Since S⊥ is a closed subspace of H, there exists a sequence
{yn} with yn ∈ span(S) such that yn → x as n→∞. Since yn ∈ span(S),

we write yn =
∑∞

i=1 α
(n)
i si. Now consider 〈x, x〉.
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〈x, x〉 = lim
n→∞
〈yn, x〉

= lim
n→∞
〈
∞∑
i=1

α
(n)
i si, x〉

= lim
n→∞

∞∑
i=1

α
(n)
i 〈si, x〉

= 0 since x ∈ S⊥.

Therefore, x = 0 and so, S⊥ = {0}.

(b) Assume that S⊥ = {0}. Suppose for the sake of contradiction that
span(S) 6= H. Then, there exists a vector v ∈ H such that v /∈ span(S).
Consider the vector v′, defined by the relation

v′ = v − Pspan(S)(v).

From Theorem 3.2.2, 〈v, v′〉 = 0 with v′ ∈ (span(S))⊥ because
v′ = P(span(S))⊥(v). So, for all s ∈ S, 〈v′, s〉 = 0 because S ⊂ span(S).
Hence, v′ is a non-zero vector in S⊥, contradicting the assumption that
S⊥ = {0}.

Therefore, span(S) = H and consequently, S is total.

Example 3.5.1. In this example, let H be the Hilbert space of real
numbers, equipped with the standard dot product (which is basically
multiplication)

〈x, y〉 = xy.

Let S = Q. We note that Q⊥ = {0} because 0 is the unique element in the
ring Q such that 0x = 0 for all x ∈ Q. Therefore, from the previous
theorem, Q must be a total set in R. In other words, span(Q) = R, which
makes sense because Q = R (Q is a dense set in R).

Theorem 3.5.2. Assume S = {e1, e2, . . . } is an orthonormal subset of the
Hilbert space H. Let V be the closed subspace generated by S. Define
PV : H → V , the perpendicular projection onto V , by

PV (x) =
∞∑
i=1

〈x, ei〉ei.
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Then, for all x ∈ H, Bessel’s inequality holds

∞∑
i=1

|〈x, ei〉|2 = ‖PV (x)‖2 ≤ ‖x‖2.

Proof. Assume that H is a Hilbert space, x ∈ H and that S = {e1, e2, . . . }
is an orthonormal subset of H. Assume V is the closed subspace generated
by S. Define Vn = span{e1, . . . , en} for all n ∈ Z>0. Then, we consider the
perpendicular projection of x onto Vn, given by

PVn(x) =
n∑
i=1

〈x, ei〉ei.

Computing ‖PVn(x)‖2 with the definition of a norm, we obtain

‖PVn(x)‖2 = 〈PVn(x), PVn(x)〉

= 〈
n∑
i=1

〈x, ei〉ei,
n∑
i=1

〈x, ei〉ei〉

=
n∑
i=1

n∑
j=1

〈x, ei〉〈x, ej〉〈ei, ej〉.

=
n∑
i=1

|〈x, ei〉|2‖ei‖2

=
n∑
i=1

|〈x, ei〉|2.

Define the sequence {an} by

an =
n∑
i=1

〈x, ei〉ei.

To show: (a) The sequence {an} is Cauchy.

(a) Assume m < n. Consider the expression ‖am − an‖2.
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‖an − am‖2 = ‖
n∑
k=1

〈x, ek〉ek −
m∑
k=1

〈x, ek〉ek‖2

= ‖
n∑

k=m+1

〈x, ek〉ek‖2

= 〈
n∑

k=m+1

〈x, ek〉ek,
n∑

k=m+1

〈x, ek〉ek〉

=
n∑

k=m+1

|〈x, ek〉|2 ({ei}ni=1 is orthonormal)

→ 0 as m,n→∞.

Therefore, the sequence {an} is Cauchy. Since H is complete, {an} must be
a convergent sequence. Assume that {an} converges to (say) a. Then,

a = lim
n→∞

an = lim
n→∞

n∑
i=1

〈x, ei〉ei =
∞∑
i=1

〈x, ei〉ei.

To show: (b) PV (x) = a =
∑∞

i=1〈x, ei〉ei.

(b) First, we observe that for all n ≥ 1, Vn ⊂ V . So, an ∈ V . Since an → a,
a ∈ V . For a fixed k ≥ 1,

〈x− a, ek〉 = lim
n→∞
〈x− an, ek〉

= lim
n→∞
〈x−

n∑
i=1

〈x, ei〉ei, ek〉

= lim
n→∞
〈x, ek〉 − 〈

n∑
i=1

〈x, ei〉ei, ek〉

= lim
n→∞
〈x, ek〉 −

n∑
i=1

〈x, ei〉〈ei, ek〉.

= lim
n→∞
〈x, ek〉 − 〈x, ek〉

= 0.

So, the vector x− a is perpendicular to every vector in S. Consequently,
x− a is perpendicular to every linear combination of vectors in S. So,
x− a ∈ V ⊥. Defining PV ⊥(x) = x− a, we then obtain PV (x) = a by 3.2.2.

87



Finally, the inequality ‖PV (x)‖2 ≤ ‖x‖2 follows from a swift application of
Pythagoras’ theorem. Namely,

‖x‖2 = ‖PV (x)‖2 + ‖PV ⊥(x)‖2 ≥ ‖PV (x)‖2.

So, ‖PV (x)‖ ≤ ‖x‖, which gives us the required inequality because

∞∑
i=1

|〈x, ei〉|2 = ‖a‖2 = ‖PV (x)‖2 ≤ ‖x‖2.

For the special case where span(S) = H, PV (x) = x and

x =
∞∑
i=1

〈x, ei〉ei.

This holds for all x ∈ H.

3.6 Positive Definite Operators

Many of the foundational concepts of functional analysis stems from linear
algebra and the analysis of finite dimensional vector spaces. For now, we
will foray back into the world of linear algebra in order to discuss positive
definite matrices and their significance in one of the fundamental questions
of linear algebra - when does a linear system Ax = b have a unique solution?

Definition 3.6.1. Let A be a n× n matrix with elements in R and let x be
a n× 1 column matrix with elements in R. We say that A is positive
definite if for all x 6= 0,

xTAx > 0.

Recall from linear algebra that if rank(A) = n, then null(A) = 0 by the
rank-nullity theorem, indicating that the linear system Ax = b has a unique
solution. The next theorem establishes an important relation between
positive definiteness and the existence of a unique solution.

Theorem 3.6.1. Consider the linear system Ax = b, where A is a n× n
matrix and x and b are n× 1 column matrices, all with entries in R. If A is
positive definite, then rank(A) = n.
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Proof. Assume that Ax = b, where A is a n× n matrix and x and b are
n× 1 column matrices, all with entries in R. Assume that A is positive
definite. Suppose for the sake of contradiction that rank(A) < n. Then,
there exists a column in A which is a linear combination of all other
columns in A.

To show: (a) There exists a column matrix y such that yTAy = 0.

(a) Suppose that A is the matrix given by

A =


a

(1)
1 a

(2)
1 . . . a

(j−1)
1

∑n
i=1,i 6=j kia

(i)
1 a

(j+1)
1 . . . a

(n)
1

a
(1)
2 a

(2)
2 . . . a

(j−1)
2

∑n
i=1,i 6=j kia

(i)
2 a

(j+1)
2 . . . a

(n)
2

...
...

. . .
...

...
...

. . .
...

a
(1)
n a

(2)
n . . . a

(j−1)
n

∑n
i=1,i 6=j kia

(i)
n a

(j+1)
n . . . a

(n)
n

 .

where ki ∈ R and not all ki = 0. Define the column matrix y by

y =



−k1

−k2
...

−kj−1

1
−kj+1

...
−kn


.

Then, we observe that Ay = 0. So, yTAy = 0. However, this contradicts the
fact that A is a positive definite matrix. Therefore, rank(A) ≥ n. Since
rank(A) ≤ n by the definition of rank, we conclude that rank(A) = n.

Hence, we have just shown that positive definite matrices are the ones that
guarantee the existence of a unique solution. Analogously to this, we will
now return to functional analysis in order to discuss the importance of
positive definite operators on Hilbert spaces.

Definition 3.6.2. Let H be a Hilbert space over the field R. Let
A : H → H be a bounded, linear operator. A is said to be positive
definite if there exists a β > 0 such that for all h ∈ H,

〈Ah, h〉 ≥ β‖h‖2.
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Theorem 3.6.2. Let H be a Hilbert space over the reals. Let A : H → H
be a bounded, linear, positive definite operator. Then, for all f ∈ H, there
exists a unique u = A−1f ∈ H such that Au = f and

‖A−1‖ ≤ 1

β
.

Proof. Assume H is a Hilbert space over the reals. Assume A is a bounded,
linear, positive definite operator.

To show: (a) A is injective.

(b) A is surjective.

(c) ‖A−1‖ ≤ 1
β
.

(a) Assume that x ∈ H and Ax = 0. Assume that β ∈ R>0. From the
positive definiteness of A and the Cauchy Schwarz inequality, we have

β‖x‖2 ≤ 〈Ax, x〉 ≤ ‖Ax‖‖x‖.

This results in the inequality β‖x‖ ≤ ‖Ax‖. Since Ax = 0, ‖Ax‖ = 0.
Hence from the inequality, ‖x‖ = 0 and consequently x = 0. This
demonstrates that ker(A) = {0}. So, A is injective.

(b) To show: (ba) im(A) is closed.

(bb) im(A) = H.

(ba) Assume that f ∈ im(A). Then, there exists a sequence {fn} in im(A)
such that fn → f .

To show: (baa) f ∈ im(A).

(baa) Since fn ∈ im(A) for all n ∈ Z>0, there exists un ∈ H such that
Aun = fn. Fix N ∈ Z>0. Then, for all m,n > N , we use the inequality
β‖x‖ ≤ ‖Ax‖ to obtain

‖un − um‖ ≤
1

β
‖Aun − Aum‖ =

1

β
‖fn − fm‖.

Since the sequence {fn} is convergent, it is Cauchy. Therefore, the sequence
{un} is Cauchy and thus, converges to (say) u ∈ H, by the completeness of
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H. Observe that since A is a bounded operator, it is continuous. Utilising
this, we find that Au = f . So, f ∈ im(A).

(ba) Since f ∈ im(A), im(A) ⊂ im(A). We already know that
im(A) ⊂ im(A). Subsequently, im(A) = im(A) and so, im(A) must be
closed.

(bb) Suppose for the sake of contradiction that im(A) 6= H. Since im(A) is
a closed subspace of H, we can decompose H as the direct sum
H = im(A)⊕ (im(A))⊥. So, there exists a non-zero y ∈ (im(A))⊥ such that

〈Ay, y〉 = 0.

Since y 6= 0, Ay = 0. However, this contradicts the injectivity of A.
Therefore, im(A) = H and consequently, A is surjective.

Furthermore, since A is both injective and surjective, it must be bijective.
So, we now know that there exists an inverse operator A−1 : H → H such
that A ◦ A−1 = 1H .

(c) From part (a), we have the inequality β‖x‖ ≤ ‖Ax‖. With the inverse
operator, we can rewrite this as

β‖A−1f‖ ≤ ‖f‖.

for some arbitrary f ∈ H. Using this, we find that

‖A−1‖ = sup
‖f‖=1

‖A−1f‖

≤ sup
‖f‖=1

‖f‖
β

=
1

β
.

It turns out that this result can also be expressed with bilinear forms. This
is an important theorem known as the Lax-Milgram Theorem. Of course,
before proving the theorem, we will need to make important definitions
involving bilinear forms.
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Definition 3.6.3. Let H be a Hilbert space over the reals. A bilinear
functional is a mapping B : H ×H → R which satisfies the following
properties

1. For all a, b ∈ R and x, y, z ∈ H, B[ax+ by, z] = aB[x, z] + bB[y, z].

2. For all a, b ∈ R and x, y, z ∈ H, B[x, ay + bz] = aB[x, y] + bB[x, z].

Definition 3.6.4. Again, let H be a Hilbert space over the reals. Let
B : H ×H → R be a bilinear functional. B is said to be continuous if for
all u, v ∈ H, there exists a constant C ∈ R such that

|B[u, v]| ≤ C‖u‖‖v‖.

Definition 3.6.5. Let H be a Hilbert space over the reals. Let
B : H ×H → R be a bilinear functional. We say that B is positive
definite if there exists a constant β ∈ R>0 such that for all u ∈ H,

B[u, u] ≥ β‖u‖2.

Theorem 3.6.3. (Lax-Milgram Theorem): Let H be a Hilbert space over
the reals and B be a continuous and positive definite bilinear functional.
Then, for all h ∈ H, there exists a unique x ∈ H such that for all y ∈ H

B[x, y] = 〈h, y〉.

Moreover,

‖x‖ ≤ β−1‖h‖.

Proof. Assume that H is a Hilbert space over the reals. Assume that B is a
continuous and positive definite bilinear functional. Consider the map
y 7→ B[x, y]. From the definition of B, this is a continuous, linear
functional. So, we can utilise the Riesz representation theorem to show that
there exists a unique Ax ∈ H such that for all y ∈ H

B[x, y] = 〈Ax, y〉.

To show: (a) The operator A : H → H is linear.

(b) The operator A : H → H is bounded.

(c) The operator A : H → H is positive definite.
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(a) Assume x, y ∈ H and a, b ∈ R. We proceed as follows

〈A(ax+ by), z〉 = B[ax+ by, z]

= aB[x, z] + bB[y, z]

= a〈Ax, z〉+ b〈Ay, z〉
= 〈aAx+ bAy, z〉.

Therefore, A(ax+ by) = aAx+ bAy. Hence, A is a linear operator.

(b) Using the continuity of B, we argue as follows

‖A‖ = sup
‖x‖=1

‖Ax‖

= sup
‖x‖=1

sup
‖y‖=1

|〈Ax, y〉| (Cauchy-Schwarz Inequality)

= sup
‖x‖=1

sup
‖y‖=1

|B[x, y]|

≤ sup
‖x‖=1

sup
‖y‖=1

C‖x‖‖y‖

= C.

Hence, ‖A‖ ≤ C. The result on the second line is found via the
Cauchy-Schwarz inequality. We know that

|〈Ax, y〉| ≤ ‖Ax‖‖y‖.

Taking the supremum of both sides with ‖y‖ = 1 yields the result we are
after.

This establishes the conclusion that A is bounded.

(c) Assume that h ∈ H. Then, we have

〈Ah, h〉 = B[h, h] ≥ β‖h‖2.

So, A is a positive definite operator.

Since A is a bounded, linear positive definite operator, we can apply the
previous theorem to show that for all f ∈ H, there exists a unique
u = A−1f ∈ H such that Au = f and
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‖A−1‖ ≤ 1

β

for some constant β > 0. Applying this to the fact that B[x, y] = 〈Ax, y〉,
we find that for all h ∈ H, there exists a unique x ∈ H such that for all
y ∈ H, B[x, y] = 〈h, y〉. Finally, we observe that

‖x‖ = ‖A−1h‖

≤ ‖h‖
β
.

This follows from the inequality β‖A−1f‖ ≤ ‖f‖, which we proved in the
previous theorem.

The Lax-Milgram theorem is a powerful tool in the study of PDEs. It
provides sufficient conditions required to invert a bilinear form and thus,
deduce the existence and uniqueness of weak solutions to a boundary value
problem. Interestingly, the Lax-Milgram theorem generalises even further
to a result involving two Hilbert spaces rather than one. This was first
proved by Babuška in [Bab71].

Definition 3.6.6. Let H1 and H2 be Hilbert spaces over C. A bilinear
functional is a mapping B : H1 ×H2 → C which satisfies the following
properties

1. For all a, b ∈ C, B[ax+ by, z] = aB[x, z] + bB[y, z].

2. For all a, b ∈ C, B[x, ay + bz] = aB[x, y] + bB[x, z].

The above definition is from Kreyszig [EK78]. Note that the previous
definition of a continuous bilinear functional still remains the same for
complex-valued bilinear functionals.

Theorem 3.6.4 (Babuška Lax Milgram theorem). Let H1 and H2 be two
Hilbert spaces over C. Let B : H1 ×H2 → C be a continuous bilinear
form/functional, which is weakly coercive. That is, for all u ∈ H1 and
v ∈ H2, there exists constants C2, C3 ∈ R>0 such that

sup
‖u‖H1

=1

|B(u, v)| ≥ C2‖v‖H2 and sup
‖v‖H2

=1

|B(u, v)| ≥ C3‖u‖H1 .

Furthermore, let f : H2 → C be a continuous linear functional on H2.
Then, there exists a unique element u1 ∈ H1 such that B(u1, v) = f(v) for
all v ∈ H2. Moreover,
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‖u1‖H1 ≤
‖f‖
C3

.

Proof. Assume that H1, H2 are Hilbert spaces over C and that
B : H1 ×H2 → C is a continuous bilinear functional/form. Explicitly,
continuous means that for all u ∈ H1 and v ∈ H2, there exists a constant
C1 ∈ R>0 such that

|B(u, v)| ≤ C1‖u‖H1‖v‖H2 .

Assume also that B is weakly coercive, as described in the statement of the
theorem. We begin by defining for all u ∈ H1,

φu : H2 → C

v 7→ B(u, v)

This is a linear functional on H2 (remember that B is conjugate linear in
the second input). It is also bounded because

‖φu‖ = sup
‖v‖H2

=1

|φu(v)|

= sup
‖v‖H2

=1

|B(u, v)|

= sup
‖v‖H2

=1

|B(u, v)|

≤ sup
‖v‖H2

=1

C1‖u‖H1‖v‖H2

= C1‖u‖H1 .

Here, we have used the fact that B is continuous. Thus, by the Riesz
representation theorem (see 3.3.1), there exists z ∈ H2 such that for all
v ∈ H2,

B(u, v) = 〈z, v〉H2 .

So, there exists a linear map R : H1 → H2 such that B(u, v) = 〈R(u), v〉H2 .
Furthermore, we have the bound
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‖R‖ = sup
‖u‖H1

=1,‖v‖H2
=1

|〈R(u), v〉H2|

= sup
‖u‖H1

=1,‖v‖H2
=1

|B(u, v)|

≤ sup
‖u‖H1

=1,‖v‖H2
=1

C1‖u‖H1‖v‖H2

= C1.

So, R is also a bounded and hence, a continuous linear operator.

Next, consider the image R(H1).

To show: (a) The image R(H1) is closed in H2.

(a) We already have R(H1) ⊆ R(H1). To obtain the reverse inclusion, let
{un} be a sequence in R(H1) which converges to u. So, for all n ∈ Z>0,
there exists fn ∈ H1 such that Rfn = un.

To see that u ∈ R(H1), we note that for all m,n > N for some N ∈ Z>0,

‖Rfn −Rfm‖H2 = ‖R(fn − fm)‖H2

= sup
‖v‖H2

=1

|〈R(fn − fm), v〉|

= sup
‖v‖H2

=1

|B(fn − fm, v)|

≥ C3‖fn − fm‖H1 .

Thus, the sequence {fn} is a Cauchy sequence in H1 since {Rfn} is a
Cauchy sequence in R(H1). Since H1 is complete, {fn} must converge to
some element f ∈ H1. To see that Rf = u, we argue with the continuity of
R that

Rf = R( lim
n→∞

fn)

= lim
n→∞

Rfn

= lim
n→∞

un = u.

So, u ∈ R(H1) and thus, R(H1) is a closed subspace of H2.
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Now, we will argue that R(H1) = H2. Suppose that R(H1) 6= H2. Then, we
can decompose H2 as

H2 = R(H1)⊕ (R(H1))⊥.

Hence, there exists a non-zero v0 ∈ H2 such that for all u ∈ H1,

0 = 〈R(u), v0〉H2 = B(u, v0).

However, recall that B is weakly coercive. In particular,

sup
‖u‖H1

=1

|B(u, v)| ≥ C2‖v‖H2 .

So, there exists u′ ∈ H1 such that |B(u′, v0)| ≥ 1
2
C2‖v0‖H2 . This contradicts

the finding that B(u, v0) = 0 for all u ∈ H1.

Hence, R(H1) = H2, which demonstrates that R is surjective. To see that R
is injective, assume that Rx = 0 for some x ∈ H1. Then,

0 = sup
‖y‖H2

=1

|〈Rx, y〉H2|

= sup
‖y‖H2

=1

|B(x, y)|

≥ C3‖x‖H1 .

Therefore, x = 0 and so, R is injective.

Thus, we find that R is bijective. Therefore, R−1 : H2 → H1 is a
well-defined linear operator. It is continuous because

‖R−1‖ ≤ 1

C3

.

Finally, let f : H2 → C be a linear functional on H2. The Riesz
representation theorem tells us that there exists v1 ∈ H2 such that

f(v) = 〈v1, v〉H2

with ‖v1‖H2 = ‖f‖. Using the fact that R is bijective, set u1 = R−1v1.
Then,

f(v) = 〈Ru1, v〉H2 = B(u1, v)

for all v ∈ H2. Note that u1 ∈ H1 is unique because R−1 is bijective.
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Chapter 4

More on Linear Operators

4.1 Open Mapping Theorem

In this section of the notes, we will provide a more in-depth analysis on
bounded linear operators on normed vector spaces. The first two results in
this chapter rely on an important theorem pertaining to completeness - the
Baire category theorem.

Theorem 4.1.1 (Baire Category Theorem). Let (X, d) be a complete
metric space. Let {Vk} be a collection of open, dense subsets of X, with
k ∈ Z>0. Then, the intersection V =

⋂∞
k=1 Vk is a non-empty, dense subset

of X.

Proof. Assume that (X, d) is a complete metric space. Assume that {Vk} is
a collection of open, dense subsets of X.

To show: (a) For every open ball B(x, r), there exists a point y such that
y ∈ B(x, r) ∩

⋂∞
k=1 Vk.

(a) We know that V1 is an open and dense subset of X. Consider the set
B(x, r) ∩ V1.

To show: (aa) If U and V are both open subsets of X with non-empty
intersection, then U ∩ V is also open.

(ab) B(x, r) ∩ V1 is non-empty.

(aa) Assume that U and V are open subsets of X with non-empty
intersection. Assume that a ∈ U ∩ V . Since U is open, there exists a
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constant r1 ∈ R>0 such that B(a, r1) ⊂ U . Since V is open, there exists a
constant r2 ∈ R>0 such that B(a, r2) ⊂ V . Define r = min{r1, r2}. Then,
B(a, r) ⊆ B(a, r1) ⊂ U and B(a, r) ⊆ B(a, r2) ⊂ V . So, B(a, r) ∈ U ∩ V .
Hence, U ∩ V is open.

(ab) Suppose for the sake of contradiction that B(x, r) ∩ V1 = ∅. Since V1 is
dense, V1 = X. So, for all points p ∈ X, there exists a sequence {vi} with
vi ∈ V1 for all i ∈ {1, 2, . . . } such that vi → p as i→∞.

In particular, there exists a sequence {ζi} with ζi ∈ V1 for all i ∈ {1, 2, . . . }
such that ζi → x as i→∞. Choose N ∈ Z>0 such that for all i > N ,

d(x, ζi) < r.

However, this means that for all i > N , ζi ∈ B(x, r). So, ζi ∈ B(x, r) ∩ V1,
which is a blatant contradiction of the assumption that B(x, r) ∩ V1 = ∅.
So, B(x, r) ∩ V1 is non-empty.

(a) Combining parts (aa) and (ab), we conclude that the set B(x, r) ∩ V1 is
open and non-empty. So, there exists a closed ball B(x1, r1) with r1 < 1
such that B(x1, r1) ⊂ B(x, r) ∩ V1. Since V2 is also an open, dense subset of
X, we can repeat this process to conclude that there exists a closed ball
B(x2, r2) with r2 <

1
2

such that B(x2, r2) ⊂ B(x1, r1) ∩ V2.

Continuing this construction, we obtain a sequence of balls B(xn, rn) such
that B(xn+1, rn+1) ⊂ B(xn, rn) ∩ Vn+1 and rn <

1
n
.

To show: (ac) The sequence {xn} is Cauchy.

(ac) From our construction, we note that for all m ≥ k,
B(xm, rm) ⊂ B(xk, rk). Choose ε > 0 such that 1/k < ε/2. So, for all
m,n ≥ k,

d(xm, xn) ≤ d(xm, xk) + d(xn, xk) ≤ rk + rk <
2

k
< ε.

Therefore, the sequence {xn} is Cauchy.

(a) Since {xn} is a Cauchy sequence and X is complete, {xn} must
converge to (say) y. Taking the limit as n→∞, we find that y ∈ B(xk, rk)
for all k ∈ Z>0. Since B(x1, r1) ⊂ B(x, r) ∩ V1 ⊂ B(x, r), y ∈ B(x, r).
Moreover, since B(xn, rn) ⊂ B(xn−1, rn−1) ∩ Vn ⊂ Vn, y ∈ Vn for all
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n ∈ Z>0. So, y ∈
⋂∞
n=1 Vn.

Hence, y ∈ B(x, r) ∩
⋂∞
n=1 Vn. Consequently,

⋂∞
n=1 Vn is non-empty. It is

also dense because for all x ∈ X and r ∈ R>0, B(x, r) ∩
⋂∞
n=1 Vn 6= ∅.

Here is one consequence of the Baire category theorem:

Theorem 4.1.2. Let (X, d) be a complete metric space. Let {Fn} be a
sequence of nowhere dense sets. That is, (Fn)◦ = ∅ for all n ∈ {1, 2, . . . }.
Then,

⋃∞
n=1 Fn has empty interior.

Proof. Assume that (X, d) is a complete metric space and that {Fn} is a
sequence of nowhere dense sets. Suppose for the sake of contradiction that
the set

⋃∞
n=1 Fn has non-empty interior. Then, for some x ∈

⋃∞
n=1 Fn, there

exists a r ∈ R>0 such that B(x, r) ⊂
⋃∞
n=1 Fn.

Define Un = X\Fn.

To show: (a) Un is open for all n ∈ {1, 2, . . . }.

(b) Un is dense for all n ∈ {1, 2, . . . }.

(a) Suppose for the sake of contradiction that Un is not open. Then, there
exists a point u ∈ Un such that for all r ∈ R>0, B(u, r) ∩X\Un 6= ∅. From
the construction of Un, B(u, r)∩ Fn 6= ∅ for all r ∈ R>0. Hence, u ∈ Fn; u is
an adherent point of Fn. However, we assumed that u ∈ Un = X\Fn. From
this assumption, we conclude that u /∈ Fn, which is a contradiction.

Therefore, Un is open for all n ∈ {1, 2, . . . }.

(b) Suppose for the sake of contradiction that Un 6= X for all n ∈ {1, 2, . . . }.
Then, for some point x ∈ X, there exists a s ∈ R>0 such that
B(x, s) ∩ Un = ∅. Then, it must be the case that B(x, s) ⊂ X\Un = Fn. So,
x is an interior point of Fn. However, this contradicts the fact that the
collection of sets {Fn} are nowhere dense ((Fn)◦ = ∅ for all n ∈ {1, 2, . . . }).

Consequently, Un is dense for all n ∈ {1, 2, . . . }.

Since we now have a sequence {Un} of non-empty dense subsets of X, we
can apply the Baire category theorem to deduce that the set

⋂∞
n=1 Un is

non-empty and dense in X. In particular, since
⋂∞
n=1 Un is dense in X, for
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all x ∈ X and for all r ∈ R>0, B(x, r) ∩
⋂∞
n=1 Un 6= ∅. However from our

assumption, B(x, r) ⊂
⋃∞
n=1 Fn ⊂

⋃∞
n=1 Fn. So,

∅ = B(x, r) ∩X\
∞⋃
n=1

Fn

= B(x, r) ∩
∞⋂
n=1

X\Fn

= B(x, r) ∩
∞⋂
n=1

Un.

But, this contradicts the fact that Un is dense in X. Therefore,
⋃∞
n=1 Fn

must have empty interior.

Roughly speaking, this theorem tells us that we cannot write X as the
countable union of nowhere dense subsets of X, provided that the metric
space (X, d) is complete.

Now we are ready to tackle the uniform boundedness principle.

Theorem 4.1.3 (Uniform Boundedness Principle). Let X and Y be
Banach spaces. Let F ⊂ B(X;Y ) be an arbitrary family of bounded, linear
operators. Then, it is either the case that F is uniformly bounded

sup
T∈F
‖T‖ <∞

or there exists a dense subset S ⊂ X such that for all x ∈ S,

sup
T∈F
‖Tx‖ =∞.

Proof. Assume that X and Y are Banach spaces. Assume that F is a family
of bounded, linear operators. Define the collection of sets Sn given by

Sn = {x ∈ X such that ‖Tx‖ > n for some T ∈ F}.

Suppose that for a fixed m, the set Sm is not dense in X. Then, there exists
a x ∈ X and a constant r ∈ R>0 such that B(x, r) ∩ Sm = ∅. Moreover, for
all s ∈ B(x, r) and for all T ∈ F ,

‖Ts‖ ≤ m.
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If v ∈ B(0, r) (that is, ‖t‖ < r) then an application of the triangle
inequality tells us that for all T ∈ F ,

‖Tv‖ = ‖T (v + x− x)‖ ≤ ‖T (v + x)‖+ ‖Tx‖ ≤ m+m = 2m

since v + x ∈ B(x, r) and ‖T (v + x)‖ ≤ m.

Now suppose that z ∈ X − {0}. By scaling z, we find that

r

2‖z‖
z ∈ B(0, r)

and if T ∈ F then

‖T (
r

2‖z‖
z)‖ ≤ 2m.

Since T is linear, we can rearrange the above inequality to obtain

‖Tz‖ ≤ 4m

r
‖z‖

Since z ∈ X − {0} was arbitrary, an upper bound for ‖T‖ is

‖T‖ = sup
‖z‖=1

‖Tz‖ ≤ sup
‖z‖=1

4m

r
‖z‖ =

4m

r
.

Hence, ‖T‖ ≤ 4m
r

for all T ∈ F . Therefore, the set of bounded linear
operators F is uniformly bounded in this case.

Now, suppose that all of the sets Sn are dense. Observe that they are all
open as well. So, we can apply the Baire category theorem (4.1.1) in order
to conclude that the set S =

⋂∞
n=1 Sn is also dense in X. From the

construction of the set S, we find that for all x ∈ S, there exists an
operator T ∈ F such that ‖Tx‖ > n for all n ∈ R>0.

Here is an important consequence of the uniform boundedness principle.

Theorem 4.1.4. Let X and Y be Banach spaces. Let {Tn} be a sequence
of bounded, linear operators. Define the operator T by the relation
limn→∞ Tnx = Tx which holds for all x ∈ X. Then, T itself is a bounded
linear operator.

Proof. Assume that X and Y are Banach sequences and that {Tn} is a
sequence of bounded, linear operators. Assume that T is an operator,
which is defined as specified above.
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To show: (a) The operator T is linear.

(b) The operator T is bounded.

(a) Assume that a, b ∈ K and that x, y ∈ X. Then,

T (ax+ by) = lim
n→∞

Tn(ax+ by)

= lim
n→∞

aTnx+ bTny

= a lim
n→∞

Tnx+ b lim
n→∞

Tny

= aTx+ bTy.

Therefore, the operator T is linear.

(b) Observe that for all n ∈ R>0, each operator Tn is bounded for all
x ∈ X. In particular, this rules out the possibility of finding a dense subset
S ⊂ X such that for all s ∈ S

sup
n∈Z>0

‖Tns‖ =∞.

So, from the previous theorem, the sequence {Tn} must be uniformly
bounded. Knowing this, we calculate ‖T‖ to be

‖T‖ = sup
‖x‖=1

‖Tx‖

= sup
‖x‖=1

lim
n→∞
‖Tnx‖

= lim
n→∞
‖Tn‖

<∞.

Therefore, the operator T is bounded.

Combining parts (a) and (b), we conclude that T ∈ B(X;Y ).

Before we progress to the open mapping theorem, we will introduce some
more general definitions of a continuous function

Definition 4.1.1. Let X and Y be metric spaces and f : X → Y be a
function. We say that f is a continuous function if for all ε > 0, there
exists a δ > 0 such that for all x ∈ X

f(B(x, δ)) ⊂ B(f(x), ε).
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In other words, for any ε > 0, we can choose a suitable δ > 0 such that the
image of the open ball B(x, δ) is contained within the open ball B(f(x), ε).
This is very similar to the usual epsilon-delta definition of continuity.

Our next definition of continuity is even more general and is frequently
discussed in the context of topological spaces. Luckily, metric spaces can be
turned into topological spaces. Consequently, the definition of continuity
remains relevant for metric spaces.

Definition 4.1.2. Let X and Y be metric spaces and f : X → Y be a
function. Let U ⊂ Y be a subset of Y . Then, the preimage of U , denoted
by f−1(U) is the set given by

f−1(U) = {x ∈ X such that f(x) ∈ U}.

Definition 4.1.3. Let X and Y be metric spaces and f : X → Y be a
function. Then, f is a continuous function if for all open subsets U ⊂ Y ,
the preimage f−1(U) is open in X.

We will now show that these two definitions of continuity are equivalent.

Theorem 4.1.5. The two definitions 4.1.1 and 4.1.3 of a continuous
function are equivalent.

Proof. Assume that X and Y are metric spaces. Assume that f : X → Y is
a function. Assume that U ⊂ Y is an open subset of Y.

To show: (a) If f is continuous in the sense of 4.1.1, then it is continuous in
the sense of 4.1.3.

(b) If f is continuous in the sense of 4.1.3, then it is continuous in the sense
of 4.1.1.

(a) Assume that f is continuous in the “open ball” sense (4.1.1). Then, for
all ε > 0, there exists a δ > 0 such that for all x ∈ X,
f(B(x, δ)) ⊂ B(f(x), ε). Suppose that the point u ∈ f−1(U). Then,
f(u) ∈ U from the definition of preimage. Since U is open, there exists a
ε ∈ R>0 such that B(f(u), ε) ∈ U . However, we also know that f is
continuous in the “open ball” sense (4.1.1). So, there exists a δ > 0 such
that f(B(u, δ)) ⊂ B(f(u), ε). Taking preimages yields the following
inclusions:

B(u, δ) ⊂ f−1(B(f(u), ε)) ⊂ f−1(U).
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Hence, for all u ∈ f−1(U), there exists a δ > 0 such that B(u, δ) ⊂ f−1(U).
Therefore, the preimage f−1(U) is an open subset of X. So, f must be
continuous in the “open set” sense (4.1.3).

(b) Assume that f is continuous in the “open set” sense (4.1.3). Then, for
all open subsets W ⊂ Y , the preimage f−1(W ) is open in X. Once again,
assume that u ∈ f−1(U), so that f(u) ∈ U . Observe that the open ball
B(f(u), ε) is an open subset of Y for all ε > 0. Since f is continuous in the
”open set” sense of 4.1.3, the preimage of the open ball f−1(B(f(u), ε))
must also be open. Moreover, since f(u) ∈ B(f(u), ε), u ∈ f−1(B(f(u), ε)).
Since f−1(B(f(u), ε)) is open, there exists a δ > 0 such that
B(u, δ) ⊂ f−1(B(f(u), ε)). When mapped onto Y via f , we find that for all
ε > 0, there exists a δ > 0 such that

f(B(u, δ)) ⊂ B(f(u), ε).

Therefore, f is continuous in the “open ball” sense of 4.1.1. Consequently,
the two definitions are equivalent.

Another interesting point to note is that the continuity of f in the “open
set” sense can also be adapted for closed sets.

Definition 4.1.4. Let X and Y be metric spaces and f : X → Y be a
function. Then, f is a continuous function if for all closed subsets U ⊂ Y ,
the preimage f−1(U) is closed in X.

Theorem 4.1.6. The definition of a continuous function given in 4.1.4 is
equivalent to the other definitions of continuity in 4.1.1 and 4.1.3.

Proof. Assume that X and Y are metric spaces and that f : X → Y is a
function.

To show: (a) If f is continuous in the sense of 4.1.3, then f is continuous in
the sense of 4.1.4.

(b) If f is continuous in the sense of 4.1.4, then f is continuous in the sense
of 4.1.3.

(a) Assume that f is continuous in the “open set” sense of 4.1.3. That is,
for all open sets U ⊂ Y , the preimage f−1(U) is open in X. Assume that
W ⊂ Y is closed.
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To show: (aa) The preimage f−1(W ) is closed.

(aa) Since W is closed, its complement Y \W is open. As a result, the
preimage f−1(Y \W ) is open in X. Observe that

f−1(Y \W ) ∪ f−1(W ) = {x ∈ X such that f(x) ∈ Y \W ∪W}.

Since Y \W ∪W = Y , f−1(Y \W ) ∪ f−1(W ) = X. Subsequently,
f−1(Y \W ) = X\f−1(W ).

Now suppose for the sake of contradiction that f−1(W ) is not closed. Then,
there exists a point w ∈ f−1(W ) and a constant r ∈ R>0 such that
B(w, r) ∩ f−1(W ) = ∅. So, B(w, r) ⊂ X\f−1(W ) = f−1(Y \W ). Therefore,
w ∈ f−1(Y \W ). Consequently, we conclude that w is an element of both
f−1(W ) and X\f−1(W ), leading to a contradiction.

Hence, the preimage f−1(W ) is closed.

(b) Assume that f is continuous in the “closed set” sense of 4.1.4. Then,
for all closed sets U ⊂ Y , the preimage f−1(U) is closed in X. Assume
Z ⊂ Y is an open set.

To show: (ba) The preimage f−1(Z) is open.

(ba) Since Z is an open set, its complement Y \Z must be a closed set.
Subsequently, the preimage f−1(Y \Z) is a closed subset of X by
assumption. Similarly to part (aa), we note that f−1(Y \Z) ∪ f−1(Z) = X.
So, f−1(Z) = X\f−1(Y \Z) is an open set.

Therefore, the definition of a continuous function in the sense of 4.1.4 is
equivalent to the other definitions of continuity purported in 4.1.1 and
4.1.3.

One preliminary definition required for the open mapping theorem is the
concept of an open map.

Definition 4.1.5. Let X and Y be topological spaces and f : X → Y be a
map between them. f is said to be open if for all open subsets U ⊆ X, the
image f(U) is open in Y .

Here is a nice proof for the purpose of getting acquainted with an open map.
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Theorem 4.1.7. Let X and Y be topological spaces. Let f : X → Y be a
continuous map. Then, f is a homeomorphism if and only if f is bijective
and open.

Proof. Assume that X and Y are topological spaces. Assume that
f : X → Y is a continuous function.

To show: (a) If f is a homeomorphism, then f is bijective and open.

(b) If f is bijective and open, then f is a homeomorphism.

(a) Assume that f is a homeomorphism. Then, by definition f is bijective.
It remains to demonstrate that f is open. Assume that U ⊆ X is an open
subset of X. Since f−1 : Y → X is a continuous function, due to the
assumption that f is a homeomorphism, we find that the preimage
(f−1)−1(U) must be an open subset of Y . However, this simplifies as
follows:

(f−1)−1(U) = {y ∈ Y | f−1(y) ∈ U}
= {y ∈ Y | y ∈ f(U)}
= f(U).

Hence, f(U) is an open subset of Y . This proves the second property.

(b) Assume that f is bijective and the image f(U) ⊆ Y is open in Y
whenever U ⊆ X is open in X. We already know that the map f is
continuous by assumption. So, it suffices to show that f−1 is continuous.

To show: (ba) f−1 is continuous.

(ba) Assume that V ⊆ X is an open subset of X. Then, the preimage
(f−1)−1(V ) = f(V ). However, f(V ) is an open subset of Y because V is
open in X. Therefore, (f−1)−1(V ) is open and as a result, f−1 is continuous.

(b) Consequently, f must be a homeomorphism.

Now we finally proceed to the open mapping theorem.
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Theorem 4.1.8 (Open Mapping Theorem). Let X and Y be Banach
spaces. Let T : X → Y be a bounded and surjective linear operator. Then,
T is open.

Proof. Assume that X and Y are Banach spaces. Assume that T : X → Y
is a bounded and surjective linear operator. Note that by linearity of T , the
image of an open ball BX(x, r) can be expressed as

T (BX(x, r)) = T (x) + rT (BX(0, 1))

where x ∈ X and r ∈ R>0. So, it suffices to show that T (BX(0, 1)) is open
in Y .

To show: (a) T is open.

(a) To show: (aa) The image T (BX(0, 1)) is open in Y .

(aa) Firstly, we note that X =
⋃
n∈Z>0

BX(0, n). From this, we use the
surjectivity of T to express Y as

Y =
⋃

n∈Z>0

T (BX(0, n)).

Due to this, we can use 4.1.2 in order to deduce that there exists a m ∈ Z>0

such that T (BX(0,m)) has non-empty interior. However, we note that
BX(0,m) and BX(0, 1) are homeomorphic to each other. Therefore, it must
be the case that T (BX(0, 1)) has non-empty interior. So, there exists
y0 ∈ Y and s ∈ R>0 such that

BY (y0, s) ⊆ T (BX(0, 1)).

For the next part, we note that the unit ball is convex and symmetric. This
also holds for T (BX(0, 1)) and its closure. By symmetry,
BY (−y0, s) ⊆ T (BX(0, 1)) and by convexity,

BY (0, s) =
1

2
BY (y0, s) +

1

2
BY (−y0, s) ⊆ T (BX(0, 1)).

By linearity of T , we can rescale this equation by a factor of 2−n. In turn,
we find that for all n ∈ Z>0,

BY (0, 2−ns) ⊆ T (BX(0, 2−n)).

To show: (aaa) BY (0, s/2) ⊆ T (BX(0, 1)).
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(aaa) Assume that y ∈ BY (0, s/2). Since BY (0, s/2) ⊆ T (BX(0, 1/2)) we
can construct a sequence {ym,1}m∈Z>0 in T (BX(0, 1/2)) such that ym,1 → y
as m→∞. So, there exists x1 ∈ BX(0, 1/2) such that T (x1) ∈ Y is a point
in the sequence {ym,1}m∈Z>0 satisfying ‖y − Tx1‖ < 2−2s.

Now, y − Tx1 ∈ BY (0, 2−2s). Since BY (0, 2−2s) ⊆ T (BX(0, 1/4)), we can
construct a sequence {ym,2} in T (BX(0, 1/4)) such that ym,2 → y − Tx1 as
m→∞. Similarly, there exists x2 ∈ BX(0, 2−2) ⊆ X such that Tx2 is a
point in the sequence {ym,2} which satisfies ‖y − Tx1 − Tx2‖ < 2−3s.

Inductively, we construct a sequence {xn}n∈Z>0 such that if n ∈ Z>0,

‖y −
n−1∑
i=1

Txi‖ < 2−ns.

Since xn ∈ BX(0, 2−n) for all n ∈ Z>0, the sequence {xn}n∈Z>0 is Cauchy
and hence, convergent to (say) x ∈ X. Observe that

‖x‖ = lim
n→∞
‖xn‖ ≤

∞∑
n=1

‖xn‖ <
∞∑
n=1

2−n = 1.

We also have

‖y − Tx‖ = ‖y − lim
n→∞

n∑
j=1

Txj‖

= lim
n→∞
‖y −

n∑
j=1

Txj‖

< lim
n→∞

2−n−1s = 0.

So, y = Tx. Since x ∈ BX(0, 1), we deduce that y ∈ T (BX(0, 1)) so that
BY (0, s/2) ⊆ T (BX(0, 1)).

(aa) This means that the image T (BX(0, 1)) is open.

(a) Hence, T must be an open map.

One corollary of the open mapping theorem is the inverse mapping
theorem, which ensures that the inverse of an invertible bounded linear
operator is again bounded.
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Corollary 4.1.9 (Inverse Mapping Theorem). Let X and Y be Banach
spaces. Let T : X → Y be a continuous and bijective linear operator. Then,
T−1 must be continuous as well.

Proof. Assume that X and Y are Banach spaces. Assume that T : X → Y
is a continuous and bijective linear operator. Since T is continuous, it is
bounded. By the open mapping theorem (4.1.8), T must be open because T
is also surjective. So, T is continuous and open. Therefore, T is a
homeomorphism between X and Y , when viewed as topological spaces. So,
T−1 must be continuous as a result.

4.2 Closed Graph Theorem

The next theorem draws parallels with analogous results in the study of
topological spaces. As it is instructive to study and peruse, we will compile
these analogous results below:

Theorem 4.2.1 (Graph is closed). Let f : X → Y be a function between
two topological spaces X and Y . Then, if Y is Hausdorff and f is
continuous, then the graph of f , denoted by Γf ⊆ X × Y , is a closed subset
of X × Y .

Proof. Assume that X and Y are topological spaces. Assume that
f : X → Y is a continuous map. Assume that Y is Hausdorff.

To show: (a) Γf is a closed subset of X × Y .

(a) To show: (aa) (X × Y )\Γf is an open subset of X × Y .

(aa) The set (X × Y )\Γf is defined as follows:

(X × Y )\Γf = {(x, y) ∈ X × Y | y 6= f(x)}.

Assume that (x, y) ∈ (X × Y )\Γf . Then, y 6= f(x) by definition. Since Y is
Hausdorff, there exist open subsets of Y , U and V , such that y ∈ U and
f(x) ∈ V . Also, U ∩ V = ∅. This means that (x, y) ∈ X × U , which is an
open subset of X × Y , disjoint from X × V ⊆ Γf . Therefore, (X × Y )\Γf is
an open set.

(a) So, Γf is a closed subset of X × Y .
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Theorem 4.2.2 (Continuous functions and graphs). Let f : X → Y be a
map between two topological spaces. Then, if Y is compact and Γf is closed,
then f is a continuous function.

Proof. Assume that Y is compact and Γf is closed.

To show: (a) f is continuous.

(a) First, we consider the projection map πX : X × Y → X.

To show: (aa) If V is a closed subset of X × Y , then πX(V ) is a closed
subset of X.

(aa) Assume that V is a closed subset of X × Y . Then, (X × Y )\V is open
in X × Y . Assume that x0 ∈ X\πX(V ). Then, x0 × Y 6⊆ V . So,
(x0 × Y ) ∩ V = ∅. But, x0 × Y is homeomorphic to Y . So, x0 × Y is
compact because Y is compact. Now note for all y ∈ Y , there exists an
open set Uy × Vy ∈ X × Y such that x0 ∈ Uy, y ∈ Vy and (Uy × Vy) ∩ V = ∅
because (x0 × Y ) ∩ V = ∅. In this way, we have an open cover of x0 × Y .
So, there exists a finite subcover {Uij × Vij}nj=1 of x0 × Y , which is disjoint
from V . Finally, consider the set U = Ui1 ∩ · · · ∩ Uin . Note that U is an
open subset of X\πX(V ), since it is the finite intersection of open sets.
Furthermore, x0 ∈ U . Hence, X\πX(V ) is open and as a result, πX(V ) is a
closed subset of X.

(a) Assume that x0 ∈ X and that f(x0) ∈ W , which is an open subset of Y .
Then, Y \W is a closed subset of Y . Due to this, X × (Y \W ) is a closed
subset of X × Y . Hence, the set C = (X × (Y \W )) ∩ Γf is closed.
Therefore, πX(C) is a closed subset of X and X\πX(C) is an open subset of
X. However,

X\πX(C) = {x ∈ X | (x, f(x)) 6∈ X × (Y \W )}.

But, this set is just f−1(W ). Hence, f−1(W ) is open and so, f must be a
continuous function.

In particular, 4.2.2 is very similar to the closed graph theorem. First, we
will make the required definitions.

Definition 4.2.1. Let X and Y be Banach spaces. Let Λ : X → Y be a
linear operator. Λ is said to be closed if its graph
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ΓΛ = {(x,Λx) | x ∈ X} ⊆ X × Y

is a closed subset of X × Y . Alternatively, Λ is closed if the following holds:
If {xn} and {yn} are sequences in X and Y respectively such that
yn = Λxn, xn → x and yn → y, then Λx = y.

Every continuous linear operator is closed because linear operators commute
with limits. The closed graph theorem states that the converse is also true.

Theorem 4.2.3 (Closed Graph Theorem). Let X and Y be Banach spaces.
Let Λ : X → Y be a closed linear operator. Then, Λ must be continuous.

Proof. Assume that X and Y are Banach spaces. Assume that Λ : X → Y
is a closed linear operator. Let ΓΛ denote the graph of Λ. Then, ΓΛ is a
closed subset of X × Y .

To show: (a) Λ is continuous.

(a) Consider the projection maps π1 : ΓΛ → X and π2 : ΓΛ → Y , defined by
π1(x,Λx) = x and π2(x,Λx) = Λx. Observe that they are continuous.
Furthermore, since ΓΛ is a closed subspace of a Banach space X × Y , ΓΛ

must also be a Banach space. As a result of this, π1 is a continuous
bijection between two Banach spaces. Hence, π−1

1 must be continuous.
Finally, we note that Λ = π2 ◦ π−1

1 . Since Λ is the composite of two
continuous maps, Λ must also be a continuous.

4.3 Adjoint and compact operators

The concept behind an adjoint operator is very similar to that of an adjoint
linear transformation in linear algebra. Let X and Y be Banach spaces over
a field K and let X∗ and Y ∗ be their associated dual spaces. Let
Λ : X → Y denote a bounded linear operator and y∗ ∈ Y ∗. Then, there
exists a continuous linear functional x∗ ∈ X∗ such that for all x ∈ X,

x∗(x) = y∗(Λx)

The functional x∗ is the composite y∗ ◦ Λ. Define Λ∗ : Y ∗ → X∗ which
sends y∗ to y∗ ◦Λ. Then, Λ∗ is a bounded continuous linear operator as well
and is referred to as the dual of Λ. Λ∗ is also called an adjoint operator.
The defining characteristic of Λ∗ is that for all x ∈ X, Λ∗(y∗)(x) = y∗(Λx).
This can also be written as the natural pairing
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〈Λ∗y∗, x〉 = 〈y∗,Λx〉.

where 〈−,−〉 : X∗ ×X → C sends (f, v) to f(v). The natural pairing
written above emphasises the connection of the adjoint operator to adjoint
linear transformations on finite dimensional vector spaces. We will now
prove a few properties adjoint operators satisfy.

Theorem 4.3.1. Let X and Y be Banach spaces. Let Λ : X → Y be a
bounded linear operator and Λ∗ : Y ∗ → X∗ be its associated dual. Then,
‖Λ‖ = ‖Λ∗‖.

Proof. Assume that X and Y are Banach spaces. Assume that Λ : X → Y
is a bounded linear operator and Λ∗ is its associated dual. We argue as
follows:

‖Λ∗‖ = sup
‖y∗‖=1

‖Λ∗y∗‖

= sup
‖y∗‖=1

sup
‖x‖=1

‖〈Λ∗y∗, x〉‖

= sup
‖y∗‖=1

sup
‖x‖=1

‖〈y∗,Λx〉‖

= sup
‖x‖=1

‖Λx‖

= ‖Λ‖.

Hence, ‖Λ‖ = ‖Λ∗‖. In particular, this shows that Λ∗ is a bounded
operator. A direct calculation establishes linearity.

Theorem 4.3.2. Let X and Y be Banach spaces. Let Λ : X → Y be a
bounded linear operator and Λ∗ : Y ∗ → X∗ be its associated dual. Then,
ker(Λ) = [im(Λ∗)]⊥ and ker(Λ∗) = [im(Λ)]⊥.

Proof. Assume that X and Y are Banach spaces. Assume that Λ : X → Y
is a bounded linear operator and Λ∗ is its associated dual. For the first
equality, we use the definition of Λ∗ to obtain for all y∗ ∈ Y ∗,

ker(Λ) = {x ∈ X | Λx = 0}
= {x ∈ X | 〈y∗,Λx〉 = 0}
= {x ∈ X | 〈Λ∗y∗, x〉 = 0}
= [im(Λ∗)]⊥.

113



In a similar vein, for all x ∈ X, we have

ker(Λ∗) = {y∗ ∈ Y ∗ | Λ∗y∗ = 0}
= {y∗ ∈ Y ∗ | 〈Λ∗y∗, x〉 = 0}
= {y∗ ∈ Y ∗ | 〈y∗,Λx〉 = 0}
= [im(Λ)]⊥.

We have already encountered the definition of a compact operator briefly.
To summarise, a bounded linear operator Λ : X → Y is compact if for all
bounded sequences {xn}, there exists a subsequence {xnk} such that
{Λxnk} converges in Y . We will now prove some characteristic properties of
compact operators.

Theorem 4.3.3. Let X and Y be Banach spaces. Let Λ : X → Y be a
bounded linear operator. Then, Λ is compact if and only if for any bounded
set U ⊂ X, Λ(U) is a compact subset of Y .

Proof. Assume that X and Y are Banach spaces. Assume that Λ : X → Y
is a bounded linear operator.

To show: (a) If Λ is compact, then for any bounded set U ⊂ X, Λ(U) is a
compact subset of Y .

(b) If Λ(U) is a compact subset of Y for any bounded set U ⊂ X, then Λ is
a compact operator.

(a) Assume that Λ is a compact operator. Assume that U is a bounded
subset of X. Assume that {vn} is a sequence in Λ(U). Then, there exists a
sequence {un} such that Λun = vn. Since un ∈ U , {un} must be bounded.
So, there exists a subsequence {unk} such that {vnk} converges in Λ(U).

Since this is a subsequence of {vn}, we deduce that Λ(U) is compact.

(b) Assume that Λ(U) is a compact subset of Y for any bounded set
U ⊂ X. Let {un} be a sequence in U . Since U is bounded, {un} must also
be bounded. Then, {Λun} is a sequence in Λ(U). Since Λ(U) is compact,
there exists a convergent subsequence {Λunk} in Λ(U). So, Λ is a compact
operator.
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Theorem 4.3.4. Let X and Y be Banach spaces. Let Λ : X → Y be a
bounded linear operator. If the range/image of Λ is finite dimensional, then
Λ must be compact.

Proof. Assume that X and Y are Banach spaces. Assume that Λ is a
bounded linear operator. Assume that Λ has finite dimensional range.
Observe that Λ(U) ⊆ Im(Λ) for all bounded subsets U ⊆ X. Since Λ(U) is
a closed and bounded subset of a finite dimensional space, it must be
compact. So, Λ must be a compact operator.

Theorem 4.3.5. Let X and Y be Banach spaces. Let Λn : X → Y be
compact operators for all n ∈ Z>0. If limn→∞‖Λn − Λ‖ = 0, then Λ must be
compact as well.

Proof. To prove this, we will use the following fact: since Y is complete,
Λ(BX(0, 1)) is compact if and only if Λ(BX(0, 1)) is precompact, which
means that for all ε ∈ R>0, the set Λ(BX(0, 1)) can be covered by finitely
many balls of radius ε. Motivated by this, assume ε ∈ R>0. Assume that
limn→∞‖Λn − Λ‖ = 0. Then, we can choose k ∈ Z>0 such that
‖Λ− Λk‖ < ε/2. Since Λk(BX(0, 1)) is a compact subset of Y , there exists
points yi ∈ Y for all i ∈ {1, . . . ,m} such that

Λ(BX(0, 1)) ⊆
m⋃
i=1

BY (yi,
ε

2
).

Now, assume x ∈ X such that ‖x‖ ≤ 1. Then, from the definition of the
operator norm, ‖Λkx− Λx‖ < ε/2. Furthermore, since x ∈ BX(0, 1), there
exists yj ∈ Y for j ∈ {1, . . . ,m} such that ‖Λkx− yj‖ < ε/2. By the
triangle inequality,

‖Λx− yj‖ ≤ ‖Λx− Λkx‖+ ‖Λkx− yj‖
≤ ε

2
+
ε

2
< ε.

This means that {BY (yi, ε)}mi=1 is a finite open cover of Λ(BX(0, 1)). Hence,
from the result we stated at the beginning, Λ(BX(0, 1)) must be compact,
which in turn finally reveals that Λ is a compact operator.

Another useful property of compact operators is that Λ is compact if and
only if its adjoint Λ∗ is compact. The proof requires the Arzela-Ascoli
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theorem, which is important and requires a proof of its own. First, we will
make the appropriate definitions.

Definition 4.3.1. Let X be a topological space and (Y, d) be a metric
space. Let F be a family of functions from X to Y . F is said to be
equicontinuous at x ∈ X if for all ε ∈ R>0 there exists a neighbourhood
Uε of x such that

d(f(z), f(x)) < ε

for all z ∈ Uε and all f ∈ F . F is called equicontinuous if it is
equicontinuous at all points x ∈ X.

Theorem 4.3.6 (Arzela-Ascoli). Let X be a compact topological space and
(M,d) be a complete metric space. These conditions ensure that Cts(X,M)
is a complete metric space itself, equipped with the usual d∞ norm. Let
F ⊆ Cts(X,M). Then, F is compact in Cts(X,M) if and only if the two
conditions below hold:

1. F is equicontinuous.

2. For all x ∈ X, the set F(x) = {f(x) | f ∈ F} has compact closure in
M .

Proof. Assume that X is compact and (M,d) is a complete metric space.
Assume that F ⊆ Cts(X,M). Since Cts(X,M) is a complete metric space,
F has compact closure if and only if it is precompact (alternatively, totally
bounded). This means that the set F can be covered by finitely many balls
of radius ε, where ε ∈ R>0.

To show: (a) If the two conditions are satisfied, then F must be
precompact.

(a) Assume that the two conditions are satisfied. Assume that ε ∈ R>0.
Then, since F is equicontinuous, for each x ∈ X, there exists a
neighbourhood V (x) of x such that if y ∈ V (x), then d(f(x), f(y)) < ε for
all f ∈ F . This renders {V (x)}x∈X an open cover of X. Since X is
compact, there exists a finite subcover V (x1), . . . , V (xn) of X, where
xi ∈ X for all i ∈ {1, . . . , n}.

By the second condition, the sets F(xj) ⊆M are precompact in M . Hence,
the union F(x1) ∪ · · · ∪ F(xn) is also precompact in M . Hence, we can
cover this subset with balls of radius ε centred at the points a1, a2, . . . , am.
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This means that the set {a1, . . . , am} is an ε-net for F(x1) ∪ · · · ∪ F(xn).
For every map ϕ between the sets {1, . . . , n} and {1, . . . ,m} and for all
j ∈ {1, . . . , n}, define

Bϕ = {f ∈ F | d(f(xj), aϕ(j)) < ε}.
Note that there are finitely many sets Bϕ and that every f ∈ F belongs to
one of these sets, due to the fact that F is equicontinuous. If f, g ∈ F , then
for all y ∈ V (xk),

d(f(y), g(y)) ≤ d(f(y), f(xk))+d(f(xk), aϕ(k))+d(aϕ(k), g(xk))+d(g(xk), g(y)) < 4ε.

Since the V (xk) forms an open cover of X for all k ∈ {1, . . . , n}, this means
that d∞(f, g) < 4ε. So, the diameter of the sets Bϕ is at most 4ε and they
cover F by the equicontinuous assumption. Hence, F is precompact and
thus, F is compact.

To show: (b) If F has compact closure, then the two conditions in the
statement of the theorem are satisfied.

(b) Assume that F has compact closure and thus, is precompact. Then, F
has a finite ε-net. Note that for all x ∈ X,

d(f(x), g(x)) ≤ sup
x∈X

d(f(x), g(x)) = d∞(f, g).

Hence, for all x ∈ X, F(x) is precompact (the same ε-net works as before).
This proves condition 2. To prove condition 1 holds, since F is precompact,
it has a finite ε-net, say {f1, . . . , fn}. So, for all x ∈ X, there exists an open
neighbourhood V (x) such that for all y ∈ V (x), d(fj(x), fj(y)) < ε for all
j ∈ {1, . . . , n}. Now assume that f ∈ F . Then, we can choose fk for some
k ∈ {1, . . . , n} such that d∞(fk, f) < ε. Hence, for all y ∈ V (x),

d(f(x), f(y)) ≤ d(f(x), fk(x)) + d(fk(x), fk(y)) + d(fk(y), f(y)) < 3ε.

Therefore, F is equicontinuous at x ∈ X. Since x was arbitrary, we deduce
that F must be equicontinuous.

The corollary that we will use from 4.3.6 is stated below:

Corollary 4.3.7. Let X be a compact topological space and Y a complete
metric space. Let F ⊆ Cts(X, Y ) be an equicontinuous family. Then, every
sequence of functions in F has a uniformly convergent subsequence.
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The corollary stems in particular from F being precompact, given the
assumptions of the corollary and Theorem 4.3.6. Now, we will prove the
result alluded to regarding compact operators.

Theorem 4.3.8. Let X and Y be Banach spaces. Let Λ : X → Y be a
bounded linear operator. Then, Λ∗ : Y ∗ → X∗ is compact if and only if Λ is
a compact operator.

Proof. Assume that X and Y are Banach spaces. Assume that Λ : X → Y
is a bounded linear operator.

To show: (a) If Λ is a compact operator, then Λ∗ : Y ∗ → X∗ is a compact
operator.

(b) If Λ∗ is a compact operator, then Λ is a compact operator.

(a) Assume that Λ is a compact operator. If {xn}∞n=1 is a sequence in the
closed unit ball

BC(0, 1) = {x ∈ X | ‖x‖ ≤ 1},
then {xn} is bounded and {Λxn} has a convergent subsequence in Y . Since
Y is a Banach space, it must be complete. As a result, the closure
K = Λ(BC(0, 1)) must be compact.

Now let {φn}∞n=1 be a bounded sequence in Y ∗. Without loss of generality,
we can assume that ‖φn‖ ≤ 1 for n ∈ Z>0.

To show: (aa) {φn}∞n=1 is equicontinuous.

(aa) Assume that ε ∈ R>0 and n ∈ Z>0. Set δ = ε. If |y − y′| < δ in Y then

|φn(y)− φn(y′)| ≤ ‖φn‖‖y − y′‖ ≤ ‖y − y′‖ < ε.

Since n ∈ Z>0, we deduce that the family of functionals {φn}∞n=1 is
equicontinuous.

(a) The key point here is that due to part (aa), the sequence {φn|K}∞n=1 is
equicontinuous, where φn|K is the restriction of φn to K = Λ(BC(0, 1)),
which is a compact subset of Y .

By the Arzela-Ascoli theorem, there exists a subsequence {φnk |K} of
{φn|K}, which converges uniformly on K. We now claim that {Λ∗φnk}
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converges in X∗.

It suffices to prove that {Λ∗φnk} is Cauchy. Since {φnk |K} is a convergent
sequence in Y ∗, {φnk |K} must be Cauchy. Assume that ε ∈ R>0. Select
N ∈ Z>0 such that if i, j > N then

sup
k∈K
|φni(k)− φnj(k)| < ε.

We can do this because {φnk |K} converges uniformly on K. Subsequently, if
i, j > N then

‖Λ∗φni − Λ∗φnj‖ = sup
‖x‖=1

|Λ∗φni(x)− Λ∗φnj(x)|

= sup
‖x‖=1

|φni(Λx)− φnj(Λx)|

≤ sup
k∈K
|φni(k)− φnj(k)| < ε.

The second last inequality follows from the fact that Λx ∈ Λ(BC(0, 1)) ⊆ K.
Therefore, the sequence {Λ∗φnk} is Cauchy in X∗. Since X∗ is complete,
the sequence {Λ∗φnk} must converge and thus, qualifies as a convergent
subsequence of {Λ∗φn}. So, Λ∗ is a compact operator.

(b) Assume that Λ∗ : Y → X is a compact operator. By applying part (a)
to Λ∗, we deduce that (Λ∗)∗ : (X∗)∗ → (Y ∗)∗ is also a compact operator.

Let ιX : X → (X∗)∗ and ιY : Y → (Y ∗)∗ be the canonical injective
isometries. Then,

(Λ∗)∗|X = (Λ∗)∗ ◦ ιX = ιY ◦ Λ.

Since (Λ∗)∗ is compact, the composite (Λ∗)∗ ◦ ιX is also compact. Hence,
ιY ◦ Λ is a compact operator from X to (Y ∗)∗.

We claim that because ιY is an isometry, Λ must be compact. Let {xn} be
a bounded sequence in X. Then, {(ιY ◦ Λ)xn} must have a convergent
subsequence {(ιY ◦ Λ)xnk} in (Y ∗)∗. So, this sequence must be Cauchy.

Now assume that ε ∈ R>0. Select P ∈ Z>0 such that if i, j > P

‖(ιY ◦ Λ)xni − (ιY ◦ Λ)xnj‖ < ε.

Using the fact that ιY is an isometry, we find that if i, j > P then
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‖Λxni − Λxnj‖ = ‖Λ(xni − xnj)‖
= ‖(ιY ◦ Λ)(xni − xnj)‖ < ε.

So, {Λxnk} is a Cauchy sequence in Y . Since Y is complete, it must be
convergent. So, {Λxnk} is a convergent subsequence of {Λxn} and therefore,
Λ is compact as required.

4.4 Weak Convergence in Hilbert Spaces

We know that every Hilbert space can be converted into a Banach space.
So, the concept of weak convergence, which was introduced in the context
of normed vector spaces, can be adapted for Hilbert spaces. The crucial
difference here is the presence of the Riesz Representation Theorem (3.3.1)
for Hilbert spaces. It allows us to express weak convergence with the inner
product.

Definition 4.4.1. Let H be a Hilbert space. Let {xn} be a sequence of
points in H. We say that {xn} converges weakly to a point x ∈ H if for
all y ∈ H,

lim
n→∞
〈y, xn〉 = 〈y, x〉.

As before, we write xn ⇀ x to denote weak convergence.

One property of weakly convergent sequences is boundedness.

Theorem 4.4.1. Let H be a Hilbert space. Let {xn} be a sequence of points
in H such that xn ⇀ x. Then, {xn} is a bounded sequence, which means
that there exists a constant C ∈ K such that ‖xn‖ ≤ C for all n ∈ Z>0.

Proof. Assume that H is a Hilbert space. Assume that {xn} is a sequence
of points in H such that xn ⇀ x. This means that for all y ∈ H,
limn→∞〈y, xn〉 = 〈y, x〉.

To show: (a) {xn} is bounded.

(a) First, we observe that for all y ∈ H, the set {〈y, xn〉 | n ∈ Z>0} is
bounded. By the Riesz representation theorem (3.3.1), every xn ∈ H
corresponds to a linear functional φxn ∈ H∗, which maps y ∈ H to 〈y, xn〉.
So, consider the family of linear functionals
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Φ = {φxn | n ∈ Z>0}.

Each member of Φ is bounded because

‖φxn‖ = sup
‖y‖≤1

|〈y, xn〉| <∞.

Therefore, we can apply the uniform boundedness principle (4.1.3) in order
to deduce that Φ is uniformly bounded. The other case cannot happen
because φxn(y) is bounded for all y ∈ H. Consequently, {xn} must be a
bounded sequence.

The next result requires much more work to prove.

Theorem 4.4.2. Let H be a Hilbert space and {xn} be a bounded sequence
of points in H. Then, {xn} has a weakly convergent subsequence {xnj}
where xnj ⇀ x for some x ∈ H.

Proof. Assume that H is a Hilbert space and {xn} is a bounded sequence of
points in H. First, we will construct a candidate subsequence of {xn}. Let
V be the vector space span{xn} and V ⊥ be its orthogonal complement. V
is separable because it has a countable, dense subset {xn | n ∈ Z>0}.
Hence, by Gram-Schmidt orthogonalisation, we construct an orthonormal
basis {e1, e2, . . . } for V .

Now we will construct the sequence. Consider the sequence {〈e1, xn〉},
where n ∈ Z>0. Note that this sequence is bounded due to our assumption.
So, there exists I1 ⊂ Z>0 such that the subsequence {〈e1, xn〉}n∈I1 converges
(remember that this is a sequence in either R or C. So, the
Bolzano-Weierstrass theorem applies). Next, the sequence {〈e2, xn〉}n∈I1 is
also bounded. In a similar vein, there exists I2 ⊂ I1 such that the
subsequence {〈e2, xn〉}n∈I2 converges. Continuing in this manner, we find
that for all m ∈ Z>0, there exists a countable set of indices Im ⊂ Im−1 such
that the sequence {〈em, xn〉}n∈Im converges. Now choose a subsequence
n1 < n2 < . . . with nk ∈ Ik for all k ∈ Z>0. This provides us with the
convergence

lim
k→∞
〈em, xnk〉 = αm

for some αm ∈ R or C and for all m ∈ Z>0.

Next, consider the point
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z =
∞∑
m=1

αmem.

We have to show that the series actually converges.

To show: (a) z is well defined.

(a) Since the sequence {xn} is bounded, ‖xn‖ ≤ C for some constant
C ∈ R>0. By the Cauchy-Schwarz inequality, the real sequence
{|〈em, xnk〉|2}k∈R>0 satisfies

|〈em, xnk〉|2 ≤ ‖xnk‖2 ≤ C2.

So, the dominated convergence theorem justifies this interchange between
the limit and sum

n∑
m=1

lim
k→∞
|〈em, xnk〉|2 = lim

k→∞

n∑
m=1

|〈em, xnk〉|2

We think of the above equation as applying the dominated convergence
theorem to integrals over the counting measure on R. Hence, for all
n ∈ Z>0,

n∑
m=1

|αm|2 =
n∑

m=1

lim
k→∞
|〈em, xnk〉|2

= lim
k→∞

n∑
m=1

|〈em, xnk〉|2

≤ lim
k→∞

∞∑
m=1

|〈em, xnk〉|2

≤ lim
k→∞
‖xnk‖2 (Theorem 3.5.2)

≤ C2.

This reveals that the series
∑∞

m=1|αm|2 is convergent. Since {e1, e2, . . . } is
an orthonormal basis for V , we find that for all m > n,

‖
m∑

k=n+1

αkek‖2 =
m∑

k=n+1

|αk|2 → 0
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as m,n→∞ since
∑∞

m=1|αm|2 is convergent. So, the sequence of partial
sums {

∑m
k=1 αkek}m∈Z>0 is Cauchy and consequently, the series

representation of z does indeed have a well-defined sum. Moreover,

‖z‖2 =
∞∑
m=1

|αm|2 ≤ C2.

This shows that z is well defined.

The crux of this argument is to show that the subsequence {xnk} converges
weakly to z.

To show: (b) {xnk}⇀ z.

(b) Assume that y ∈ H. We have to show that limk→∞〈y, xnk〉 = 〈y, z〉.
Using the orthogonal complement V ⊥, we decompose y as the sum y1 + y2,
where y2 ∈ V ⊥ and

y1 =
∞∑
m=1

bmem ∈ V.

Assume that ε ∈ R>0. Choose N ∈ Z>0 large enough so that∑
m>N

|bm|2 < ε2.

Then,

〈y, xnk − z〉 = 〈y1 + y2, xnk − z〉
= 〈y1, xnk − z〉
= 〈

∑
m≤N

bmem, xnk − z〉+ 〈
∑
m>N

bmem, xnk − z〉

= Ak +Bk.

We control Ak and Bk separately. Firstly, limk→∞Ak = 0 due to our
construction of {xnk}. We argue that
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lim
k→∞

Ak = lim
k→∞
〈
∑
m≤N

bmem, xnk − z〉

= lim
k→∞

(
∑
m≤N

bm〈em, xnk〉 −
∑
m≤N

bm〈em, z〉)

= lim
k→∞

(
∑
m≤N

bm〈em, xnk〉 −
∑
m≤N

bm〈em,
∞∑
n=1

αnen〉)

= lim
k→∞

(
∑
m≤N

bm〈em, xnk〉 −
∑
m≤N

bmαm) = 0.

Now, using all the inequalities we have found so far, we control |Bk| as
follows:

|Bk| = |〈
∑
m>N

bmem, xnk − z〉|

≤ ‖
∑
m>N

bmem‖‖xnk − z‖ (Cauchy-Schwarz)

= (
∑
m>N

|bm|2)
1
2‖xnk − z‖

< ε(‖xnk‖+ ‖z‖)
≤ 2Cε.

Hence, we have

lim
k→∞

sup|〈y, xnk − z〉| = lim
k→∞

sup|Ak +Bk| ≤ 2Cε.

Since ε > 0 was arbitrary, we conclude that lim supk→∞|〈y, xnk − z〉| = 0,
unveiling that the subsequence {xnk}⇀ z as required.

A peculiar property of a compact operator is that it maps weakly
convergent sequences to strongly convergent sequences. The following
theorem elucidates this point.

Theorem 4.4.3. Let H be a Hilbert space. Let {xn} be a weakly convergent
sequence such that xn ⇀ x for some x ∈ H. Let Λ : H → H be a compact
operator. Then,

lim
n→∞
‖Λxn − Λx‖ = 0,

asserting that the sequence {Λxn} converges strongly to the point Λx ∈ H.
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Proof. Assume that H is a Hilbert space and that {xn} is a weakly
convergent sequence. Then, {xn} must be a bounded sequence. Since Λ is a
compact operator, there exists a subsequence {xnj} such that the sequence
{Λxnj} converges strongly to (say) y ∈ H.

To show: (a) y = Λx.

(a) We will exploit the uniqueness of the weak limit. Note that for all
v ∈ H,

〈Λxn − Λx, v〉 = 〈xn − x,Λ∗v〉 → 0

as n→∞ because xn ⇀ x. Therefore, Λxn ⇀ Λx. But, we have already
shown that {Λxnj} converges strongly to y ∈ H. Since {Λxnj} is strongly
convergent, it must also be weakly convergent to the same point in H.
Therefore, by the uniqueness of the weak limit, Λx = y.

The next theorem provides another characterisation of strong convergence
from weak convergence.

Theorem 4.4.4. Let {xn}n∈Z>0 be a sequence in a Hilbert space H. Then,
{xn} strongly converges to x ∈ H if and only if limn→∞‖xn‖ = ‖x‖ and
xn ⇀ x.

Proof. Assume that H is a Hilbert space and {xn}n∈Z>0 is a sequence in H.

Suppose that limn→∞‖xn‖ = ‖x‖ and xn ⇀ x. Then,
limn→∞〈xn, xn〉 = 〈x, x〉 and

lim
n→∞
‖xn − x‖2 = lim

n→∞
〈xn − x, xn − x〉

= lim
n→∞

(〈xn, xn〉 − 〈xn, x〉 − 〈x, xn〉+ 〈x, x〉)
= 〈x, x〉 − 〈x, x〉 − 〈x, x〉+ 〈x, x〉
= 0.

Thus, ‖xn − x‖ → 0 as n→∞. This demonstrates that {xn} strongly
converges to x ∈ H.

For the converse, suppose that {xn} → x. Assume that y ∈ H. Then,

lim
n→∞
〈y, xn〉 = lim

n→∞
(〈y, xn − x〉) + 〈y, x〉

= 〈y, x〉
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since {xn} strongly converges to x. Hence, {xn}⇀ x. To see that
limn→∞‖xn‖ = ‖x‖, we note that

lim
n→∞
‖xn‖2 = lim

n→∞
〈xn, xn〉

= lim
n→∞

(〈xn − x, xn − x〉+ 〈xn, x〉+ 〈x, xn〉)− 〈x, x〉

= 〈x, x〉 = ‖x‖2

where the last line follows from the fact that {xn} weakly converges to x.
Thus, limn→∞‖xn‖ = ‖x‖, which completes the proof.
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Chapter 5

Some Spectral Theory

5.1 Fredholm Theorem

The Fredholm Theorem is incredibly important. It asserts that many
properties of finite dimensional operators can be adapted to a Hilbert
space. Within a Hilbert space H, these properties are only satisfied by
operators of the form I −K, where I : H → H is the identity operator and
K : H → H is a compact operator. The expression I −K is reminiscent of
the matrices one computes in the process of diagonalisation. In this section,
we will go through the proof of this important theorem. We will break the
theorem down into multiple components.

Theorem 5.1.1. Let H be a Hilbert space over the field R. Let K : H → H
be a compact linear operator. Then, ker(I −K) is finite dimensional.

Proof. Assume that H is a Hilbert space over the real numbers R. Assume
that K : H → H is a compact linear operator. Suppose for the sake of
contradiction that ker(I −K) is infinite dimensional, where I : H → H is
the identity operator. Then, by Gram-Schmidt, one can find an
orthonormal basis {e1, e2, . . . } contained in ker(I −K). Note that

(I −K)(en) = I(en)−K(en) = en −K(en) = 0.

Therefore, Ken = en for all n ∈ Z>0. Since H is a Hilbert space, we can use
Pythagoras’ theorem in tandem with our orthonormal basis {e1, e2, . . . } to
deduce that for m 6= n,

‖em − en‖2 = ‖em‖2 + ‖en‖2 = 2.

Hence, ‖Kem −Ken‖ = ‖em − en‖ =
√

2 for all m,n ∈ Z>0 where m 6= n.
However, this means that the sequence {Kenk} can never converge,
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contradicting the assumption that K is a compact operator. Therefore,
ker(I −K) is finite dimensional.

Theorem 5.1.2. Let H be a Hilbert space over the field R. Let K : H → H
be a compact linear operator. Then, Im(I −K) is a closed subset of H.

Proof. Assume that H is a Hilbert space over the real numbers R. Assume
that K : H → H is a compact linear operator. We will begin by proving a
preliminary result.

To show: (a) There exists β ∈ R>0 such that ‖u−Ku‖ ≥ β‖u‖ for all
u ∈ ker(I −K)⊥.

(a) Suppose that the statement is not true. Then, we can find a sequence of
points un ∈ ker(I −K)⊥ such that for all n ∈ Z>0, ‖un‖ = 1 and
‖un −Kun‖ < 1

n
. Observe that by construction, the sequence {un} is

bounded. So, it must contain a subsequence, which we will denote by {um},
such that um ⇀ u ({um} is weakly convergent). When we apply K to the
sequence {um}, we find that the sequence {Kum} strongly converges to Ku
because K is a compact operator on a Hilbert space. Now, we have the
following inequality:

‖um −Ku‖ ≤ ‖um −Kum‖+ ‖Kum −Ku‖ <
1

m
+ ‖Kum −Ku‖ → 0

as m→∞. So, ‖u‖ = limm→∞‖um‖ = 1 and

‖u−Ku‖ = lim
m→∞

‖um −Ku‖ = 0.

The latter equality in particular reveals that u = Ku and so,
u ∈ ker(I −K). Since u is also an element of ker(I −K)⊥, u = 0. However,
this contradicts the assumption that ‖u‖ = 1. Hence, the statement
purported in part a must be true.

To show: (b) Im(I −K) is a closed subset of H.

(b) It suffices to show that Im(I −K) ⊆ Im(I −K). Assume that
v ∈ Im(I −K). Then, there exists a sequence of points {vn} in Im(I −K)
such that vn → v. Our objective is to demonstrate that v ∈ Im(I −K).

To show: (ba) There exists u ∈ H such that u−Ku = v.
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(ba) Since vn ∈ Im(I −K), there exists un ∈ H such that for all n ∈ Z>0,
vn = un −Kun. We want to use the result proved in part (a). In order to
do this, let ũn ∈ ker(I −K) be the perpendicular projection of un on
ker(I −K). Then, we define

zn = un − ũn ∈ ker(I −K)⊥.

So, we have

vn = un −Kun = zn + ũn −Kzn −Kũn = zn −Kzn.

This is because Kũn = ũn. Now, we can apply part (a) in order to deduce
that there exists β ∈ R>0 such that

‖vm − vn‖ ≥ β‖zm − zn‖

for all m.n ∈ Z>0 such that m 6= n. Since the sequence {vn} converges to v,
it must be Cauchy. This reveals that the sequence {zn} is also Cauchy and
thus, convergent because H is complete. So, there exists u ∈ H such that
zn → u and subsequently, we deduce that

u−Ku = lim
n→∞

(zn −Kzn) = lim
n→∞

vn = v.

Theorem 5.1.3. Let H be a Hilbert space over the field R. Let K : H → H
be a compact linear operator. Then, Im(I −K) = ker(I −K∗)⊥.

Proof. Assume that H is a Hilbert space over R. Assume that K : H → H
is a compact linear operator and that I : H → H is the identity operator.
Since ker(I −K∗) is finite dimensional, it suffices to prove the following:

To show: (a) Im(I −K)⊥ = ker(I −K∗).

(a) Assume that h ∈ ker(I −K∗). Then, this holds if and only if
(I −K∗)h = 0. Using the inner product on H, this is true if and only if for
all y ∈ H,

〈y, (I −K∗)h〉 = 0.

Using the definition of the adjoint, this subsequently holds if and only if

〈(I −K)y, h〉 = 0.
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Since (I −K)y ∈ Im(I −K) for all y ∈ H, h ∈ Im(I −K)⊥. Hence,
Im(I −K)⊥ = ker(I −K∗). By taking the orthogonal complement of both
sides, we obtain the desired result.

Theorem 5.1.4. Let H be a Hilbert space over the field R. Let K : H → H
be a compact linear operator. Then, Im(I −K) = H if and only if
ker(I −K) = {0}.

Proof. Assume that H is a Hilbert space over R. Assume that K : H → H
is a compact linear operator and that I : H → H is the identity operator.

To show: (a) If ker(I −K) = {0}, then Im(I −K) = H.

(b) If Im(I −K) = H, then ker(I −K) = {0}.

(a) Suppose for the sake of contradiction that ker(I −K) = {0}, but there
exists h ∈ H such that h /∈ Im(I −K). The idea of this argument is to use
induction and Pythagoras’ theorem. Let H1 = (I −K)(H). Note that H1 is
a closed subspace of H. Since I −K is one-to-one, find that
H2 = (I −K)(H1) ⊂ H1 is also a closed subspace of H. Hence, by
induction, we can construct a sequence of closed subspaces
Hn ⊂ Hn−1 ⊂ · · · ⊂ H1 such that Hn = (I −K)n(H).

Now, for each n ∈ Z>0, we can pick an element em ∈ Hn ∩H⊥n+1 such that
‖em‖ = 1. Note that when m < n,

Kem−Ken = −(em−Kem)+(en−Ken)+(em−en) = [−(em−Kem)+(en−Ken)−en]+em.

Specifically, the element [−(em −Kem) + (en −Ken)− en] ∈ H⊥m+1 by
definition. This suggests that we can use Pythagoras’ theorem to deduce
that

‖Kem −Ken‖2 = ‖[−(em −Kem) + (en −Ken)− en]‖2 + ‖em‖2

≥ 1.

So, ‖Kem −Ken‖ ≥ 1. As a result, the sequence {Ken} does not have a
convergent subsequence. This contradicts the fact that K is a compact
operator. Therefore, Im(I −K) = H.
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(b) Assume that Im(I −K) = H. Then, we observe that
ker(I −K∗) = im(I −K)⊥ = H⊥ = {0}. Since K is a compact operator,
K∗ must also be a compact operator. So, Im(I −K∗) = H by part (a).
Applying duality again, we find that Im(I −K∗) = ker(I −K)⊥ = H.
Therefore, ker(I −K) = {0} as required.

Theorem 5.1.5. Let H be a Hilbert space over the field R. Let K : H → H
be a compact linear operator. Then, dim ker(I −K) = dim ker(I −K∗).

Proof. Assume that H is a Hilbert space over R. Assume that K : H → H
is a compact linear operator.

To show: (a) dim ker(I −K) ≥ dim Im(I −K)⊥.

(a) Suppose for the sake of contradiction that
dim ker(I −K) < dim Im(I −K)⊥. Then, there exists a linear map
A : ker(I −K)→ Im(I −K)⊥, which is injective, but not surjective. We
can extend A to another linear map B : H → Im(I −K)⊥, where Bu = 0
whenever u ∈ ker(I −K)⊥ and Bu = Au otherwise. Note that the range of
B is finite dimensional. So, B must be a compact operator and by
extension, K +B as well.

We will now demonstrate that ker(I − (K +B)) = {0}. Assume that
u ∈ H. Then, we can write u = u1 + u2, where u1 ∈ ker(I −K) and
u2 ∈ ker(I −K)⊥. As a result,

(I −K −B)(u1 + u2) = (I −K)u2 −Bu1 ∈ Im(I −K)⊕ Im(I −K)⊥.

Importantly, (I −K)u2 is orthogonal to Bu1, which means that
(I −K)u2 −Bu1 = 0 if and only if (I −K)u2 = 0 and Bu1 = 0. If
(I −K)u2 = 0, then u2 ∈ ker(I −K). But, u2 ∈ ker(I −K)⊥. Therefore,
u1 = 0. Furthermore, due to the definition of B and the fact that
u1 ∈ ker(I −K), u1 = 0. Hence, ker(I − (K +B)) = {0}.

Since K +B is a compact operator, ker(I − (K +B)) = {0} if and only if
Im(I − (K +B)) = H. We can construct an element v ∈ Im(I −K)⊥ such
that v /∈ Im(B). Hence, the equation

u−Ku− Au = v

cannot be solved, contravening the finding that Im(I − (K +B)) = H.
Hence, dim ker(I −K) ≥ dim Im(I −K)⊥.
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To show: (b) dim ker(I −K) = dim ker(I −K∗).

(b) We will use part (a) to deal with this. We already know that for the
compact operator K∗,

ker(I −K) = Im(I −K∗)⊥.

Hence, from part (a) we obtain

dim ker(I −K∗) ≥ dim Im(I −K∗)⊥ = ker(I −K).

Analogously,

ker(I −K∗) = Im(I −K)⊥.

and

dim ker(I −K) ≥ dim Im(I −K)⊥ = ker(I −K∗).

These two inequalities together show that
dim ker(I −K) = dim ker(I −K∗).

Here is a short summary of Fredholm’s theorem in its entirety:

1. ker(I −K) is finite dimensional.

2. Im(I −K) is a closed subset of H.

3. Im(I −K) = ker(I −K∗)⊥.

4. ker(I −K) = {0} if and only if Im(I −K) = H.

5. dim ker(I −K) = dim ker(I −K∗).

What exactly does this mean for operators of the form I −K, where K is a
compact operator on a Hilbert space H? It provides us with information
about the existence and uniqueness of solutions to the linear equation
u−Ku = f . There are two possible cases:

Case 1: ker(I −K) = {0}

If ker(I −K) = {0}, then Im(I −K) = H. This reveals that the operator
I −K is bijective. Hence, the equation (I −K)u = f has exactly one
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solution.

Case 2: ker(I −K) 6= {0}

In this case, the equation (I −K)u = 0 has a non-trivial solution, since the
kernel is non-trivial. In this scenario, the equation (I −K)u = f has
solutions if and only if f ∈ ker(I −K∗)⊥ as a consequence of 5.1.3.

5.2 Spectrum

We will now delve into the concept of a spectrum, which is pertinent to
linear algebra. We are interested in the spectrum of a bounded linear
operator Λ : H → H, where H is a Hilbert space over R.

Definition 5.2.1. Let H be a Hilbert space over R and Λ : H → H be a
bounded linear operator. Then, the resolvent set of Λ is the set of
numbers η ∈ R such that the operator ηI − Λ is both injective and
surjective. The resolvent set of Λ is denoted by ρ(Λ).

Here is one preliminary thought about the resolvent set. If η ∈ ρ(Λ), then
the operator ηI − Λ is a bounded, surjective operator on H. By the open
mapping theorem (4.1.8), ηI − Λ must be an open map. But, from the
definition of the resolvent set, ηI − Λ is also bijective. Since ηI − Λ is
bijective and open, it must be a homeomorphism. Consequently, the inverse
operator (ηI − Λ)−1 is continuous itself (and thus, a bounded linear
operator on H).

Definition 5.2.2. Let H be a Hilbert space over R and Λ : H → H be a
bounded linear operator. Then, the spectrum of Λ, denoted by σ(Λ), is
the complement of the resolvent set of Λ.

σ(Λ) = R\ρ(Λ).

Definition 5.2.3. Let H be a Hilbert space over R and Λ : H → H be a
bounded linear operator. Then, the point spectrum of Λ, denoted by
σp(Λ), is the set of real numbers η ∈ R such that (ηI − Λ) is not injective.
Alternatively, η ∈ σp(Λ) if there exists a non-zero vector w ∈ H such that
Λw = ηw.

In line with linear algebra, η is called an eigenvalue of Λ and w is the
associated eigenvector.
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Definition 5.2.4. Let H be a Hilbert space over R and Λ : H → H be a
bounded linear operator. Then, the essential spectrum of Λ, denoted by
σe(Λ), is defined as the complement

σe(Λ) = σ(Λ)\σp(Λ).

Alternatively, it is the set of all real numbers δ ∈ R such that (δI − Λ) is
injective, but not surjective.

Tying in with the previous work on compact operators, what does the
spectrum of a compact operator look like? The following theorem reveals
the answer.

Theorem 5.2.1. Let H be an infinite dimensional Hilbert space. Let
K : H → H be a compact linear operator. Then, 0 ∈ σ(K) and
σ(K) = σp(K) ∪ {0}. Moreover, either σp(K) is finite or is equal to the set
{λk | k ∈ Z>0} where limk→∞ λk = 0.

Proof. Assume that H is an infinite dimensional Hilbert space. Assume
that K : H → H is a compact linear operator.

To show: (a) 0 ∈ σ(K).

(b) σ(K) = σp(K) ∪ {0}.

(c) Either σp(K) is finite or is equal to the set {λk | k ∈ Z>0} where
limk→∞ λk = 0.

(a) Suppose for the sake of contradiction that 0 /∈ σ(K). Then, from the
definition of σ(K), 0 must be an element of the resolvent set ρ(K). By
definition of the resolvent set, the operator −K must be bijective. Hence,
K is bijective, with a continuous inverse. As a result of composition,
I = K ◦K−1. Since K is compact and K−1 is continuous, I must be a
compact operator. This contradicts the fact that H is an infinite
dimensional space, in tandem with the fact that the closed unit ball in H is
not compact. So, 0 ∈ σ(K).

(b) Suppose for the sake of contradiction that σ(K) 6= σp(K) ∪ {0}. Then,
there exists λ ∈ σ(K) such that λ 6= 0 and λ /∈ σp(K). Since λ /∈ σp(K),
λI −K must be injective and ker(λI −K) = {0}. By Fredholm’s theorem,
this holds if and only if Im(λI −K) = H. Since λ ∈ ρ(K), the inverse
(λI −K)−1 is continuous and thus, bounded. This contradicts the fact that
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λ ∈ σ(K). Hence, σ(K) = σp(K) ∪ {0}.

(c) Assume that {λn} is a sequence of eigenvalues of K, with λn → λ. We
will show that λ = 0. Suppose for the sake of contradiction that λ 6= 0.
Since λn ∈ σp(K), there exists an eigenvector wn ∈ H such that
Kwn = λnwn. Define

Hn = span{w1, . . . , wn}.

Note that the set of eigenvectors {w1, . . . , wn} is linearly independent. So,
Hn ⊂ Hn+1 for all n ∈ Z>0. We also observe that (K − λnI)Hn ⊆ Hn−1 due
to the definition of Hn. Hence, for all n ∈ Z>0, we choose en ∈ Hn ∩H⊥n−1

with ‖en‖. If we fix m < n, then we note the following:

1. Ken − λnen ∈ Hn−1 because en ∈ Hn and (K − λnI)Hn ⊆ Hn−1.

2. Kem − λmem ∈ Hm−1 ⊆ Hn−1 because em ∈ Hm and
(K − λmI)Hm ⊆ Hm−1.

3. em ∈ Hm ⊆ Hn−1.

4. en ∈ H⊥n−1.

Therefore,

‖Kem −Ken‖2 = ‖[(Kem − λem)− (Ken − λen) + λmem − λnen]‖2

= ‖(Kem − λem)− (Ken − λen) + λmem‖2 + ‖λnen‖2.

= ‖(Kem − λem)− (Ken − λen) + λmem‖2 + |λn|2

≥ |λn|2.

So, ‖Kem −Ken‖ ≥ |λ|. This means that the sequence {Ken}, where
n ∈ Z>0, cannot have any convergent subsequence. However, this
contradicts the fact that K is a compact operator. Therefore, λ = 0.

5.3 Hilbert-Schmidt

In this section, we will study symmetric operators on a Hilbert space H
over R. We know from linear algebra that a symmetric matrix is
diagonalisable. It turns out that a similar result holds for compact
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symmetric operators on a Hilbert space. This result is the
Hilbert-Schmidt theorem, which is central to this section.

As usual, we require a few preliminary definitions and results.

Definition 5.3.1. Let H be a Hilbert space over the field R. Let
Λ : H → H be a linear operator. Then, Λ is symmetric if Λ = Λ∗. If H is
a HIlbert space over C, then Λ is called self-adjoint.

The following theorem was taken from Kreyszig [EK78]. This theorem is
very important for the result we will eventually prove pertaining to the
spectrum of a bounded linear symmetric operator. Somehow, this was
either assumed knowledge or ignored by Bressan.

Theorem 5.3.1. Let H be a Hilbert space over C and Λ : H → H be a
bounded self-adjoint linear operator. Then, λ ∈ ρ(Λ) if and only if there
exists c ∈ R>0 such that for all x ∈ H,

‖Λx− λx‖ ≥ c‖x‖.

Proof. Assume that H is a Hilbert space over C. Assume that Λ : H → H
be a bounded, linear, self-adjoint operator. Assume that λ ∈ C.

To show: (a) If λ ∈ ρ(Λ), then there exists c ∈ R>0 such that for all x ∈ H,
‖Λx− λx‖ ≥ c‖x‖.

(b) If there exists c ∈ R>0 such that for all x ∈ H, ‖Λx− λx‖ ≥ c‖x‖, then
λ ∈ ρ(Λ).

(a) Assume that λ ∈ ρ(Λ). By the open mapping theorem, the operator
Λ− λI must have a bounded inverse. So, there exists a k ∈ R>0 such that

‖(Λ− λI)−1‖ ≤ k.

Hence, for all x ∈ H, we have

‖x‖ = ‖(Λ− λI)−1(Λ− λI)x‖
≤ ‖(Λ− λI)−1‖‖(Λ− λI)x‖
≤ k‖(Λ− λI)x‖.

Subsequently, we have
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1

k
‖x‖ ≤ ‖(Λ− λI)x‖.

Taking the scalar 1/k gives the desired result.

(b) Assume that there exists c ∈ R>0 such that for all x ∈ H,

‖Λx− λx‖ ≥ c‖x‖.

To show: (ba) Λ− λI : H → (Λ− λI)(H) is bijective.

(bb) The image (Λ− λI)(H) is dense in H.

(bc) The image (Λ− λI)(H) is a closed subset of H.

(ba) It suffices to show that Λ− λI is injective. Assume that
Λx1 − λx1 = Λx2 − λx2 for some x1, x2 ∈ H. Then,

0 = ‖(Λ− λI)x1 − (Λ− λI)x2‖
= ‖(Λ− λI)(x1 − x2)‖
≥ c‖x1 − x2‖.

for some c ∈ R>0 as enforced by our assumption. Therefore, ‖x1 − x2‖ = 0
and so, x1 = x2 as a result. Hence, Λ− λI is injective.

(bb) Consider the set (Λ− λI)(H)
⊥

. Since (Λ− λI)(H) is a subset of H,

(Λ− λI)(H)
⊥

is a closed subset of H. Hence, from orthogonal projection,

H = (Λ− λI)(H)⊕ (Λ− λI)(H)
⊥
.

To show: (bba) (Λ− λI)(H)
⊥

= {0}.

(bba) Assume that x0 ∈ (Λ− λI)(H)
⊥

. Then, for all x ∈ H,

〈x0,Λx− λx〉 = 〈x0,Λx〉 − 〈x0, λx〉 = 0.

We now use the fact that Λ is self-adjoint in order to deduce that

〈x,Λx0〉 = 〈Λx, x0〉 = 〈x, λx0〉.
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Therefore, Λx0 = λx0. We will now show that x0 = 0. Suppose for the sake
of contradiction that x0 6= 0. Then. the previous equation reveals that λ is
an eigenvalue of Λ. Since Λ is self-adjoint, its eigenvalues must be real. So,
λ = λ. So,

(Λ− λI)x0 = Λx0 − λx0 = 0.

However, this would contradict our original assumption because

0 = ‖(Λ− λI)x0‖ ≥ c‖x0‖

and c > 0. Hence, x0 = 0 and consequently, (Λ− λI)(H)
⊥

= {0}.

(bb) Since (Λ− λI)(H)
⊥

= {0} and

H = (Λ− λI)(H)⊕ (Λ− λI)(H)
⊥
,

(Λ− λI)(H) = H. This shows that the image (Λ− λI)(H) is dense in H.

(bc) Assume that y ∈ (Λ− λI)(H). We will show that y ∈ (Λ− λI)(H).
Since y ∈ (Λ− λI)(H), there exists a sequence {yn} such that
yn ∈ (Λ− λI)(H) and yn → y. Because, yn ∈ (Λ− λI)(H), there exists
xn ∈ H such that Λxn − λxn = yn. We know from part (a) that

‖xn − xm‖ ≤
1

c
‖(Λ− λI)(xn − xm) =

1

c
‖yn − ym‖.

This proves that the sequence {xn} is Cauchy because {yn} converges.
Since H is complete, {xn} must converge to say x ∈ H. Now observe that
(Λ− λI)x ∈ (Λ− λI)(H) and due to the uniqueness of limits, we must have
(Λ− λI)x = y. Hence, y ∈ (Λ− λI)(H). So, the image (Λ− λI)(H) is
closed.

(b) Combining parts (bb) and (bc), we deduce that (Λ− λI)(H) = H.
Therefore, (Λ− λI)(H) is bijective. From the definition of a resolvent set,
we finally find that λ ∈ ρ(Λ).

For a continuous, linear, symmetric operator, there are well-defined bounds
on its spectrum. We will see this in the following result.

Theorem 5.3.2. Let H be a Hilbert space over R and Λ : H → H be a
bounded, linear and symmetric operator. Define
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m = inf
u∈H,‖u‖=1

〈Λu, u〉 and M = sup
u∈H,‖u‖=1

〈Λu, u〉.

Then, the spectrum σ(Λ) ⊆ [m,M ], m,M ∈ σ(Λ) and ‖Λ‖ = max(−m,M).

Proof. Assume that H is a HIlbert space over R. Assume that Λ : H → H
is a bounded, linear, symmetric operator over H. Assume that m,M ∈ R
are defined as above.

To show: (a) σ(Λ) ⊆ [m,M ].

(b) m,M ∈ σ(Λ).

(c) ‖Λ‖ = max(−m,M).

(a) It is more tractable for us to work with the resolvent set ρ(Λ).

To show: (aa) (−∞,m) ∪ (M,∞) ⊆ ρ(Λ).

(aa) Assume that η ∈ (M,∞). Define the bilinear functional
B : H ×H → H as

B[x, y] = 〈ηx− Λx, y〉.

First note that B[x, y] is continuous. We would like to apply the
Lax-Milgram theorem to B. This requires B to be positive definite. For
this, we observe that for all u ∈ H,

B[u, u] = 〈ηu− Λu, u〉 = 〈ηu, u〉 − 〈Λu, u〉 ≥ (η −M)‖u‖2

due to the definition of M . Therefore, B is positive definite. So, we can
apply the Lax-Milgram theorem to deduce that for all h ∈ H, there exists a
unique x ∈ H such that for all y ∈ H,

B[x, y] = 〈ηx− Λx, y〉 = 〈h, y〉.

This reduces to the statement that for all h ∈ H, there exists a unique
x ∈ H such that

(ηI − Λ)x = h.

This means that the operator (ηI − Λ) is surjective. Furthermore, due to
the uniqueness of x ∈ H, (ηI − Λ) is also injective. Therefore, η ∈ ρ(Λ) by
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definition of the resolvent set. The case where η ∈ (−∞,m) is similar and
uses −Λ rather than Λ. So, (−∞,m) ∪ (M,∞) ⊆ ρ(Λ).

(a) Taking complements yields σ(Λ) ⊆ [m,M ].

We will prove part (c) before part (b).

(c) We will assume that |m| ≤M . The case where M < −m can be
handled by very similar arguments - change Λ to −Λ and recycle the
arguments which follow.

For all u, v ∈ H, we have

4〈Λu, v〉 = 〈Λ(u+ v), u+ v〉 − 〈Λ(u− v), u− v〉
≤M(‖u+ v‖2 + ‖u− v‖2)

= 2M(‖u‖2 + ‖v‖2).

The first equality works since 〈Λu, v〉 = 〈u,Λv〉 = 〈Λv, u〉. Now assume that
Λu 6= 0. Then, if we set

v =
‖u‖
‖Λu‖

Λu,

we find that

2‖u‖‖Λu‖ ≤M(‖u‖2 + ‖u‖2) = 2M‖u‖2.

and

‖Λu‖ ≤M‖u‖
for all u ∈ H. Note that this inequality also holds when Λu = 0. By taking
the supremum of both sides and letting ‖u‖ = 1, we deduce that ‖Λ‖ ≤M .
Next, we will derive another inequality as follows:

‖Λ‖ = sup
‖u‖=1

‖Λu‖

= sup
‖u‖=1

‖Λu‖‖u‖

≥ sup
‖u‖=1

〈Λu, u〉 (Cauchy-Schwarz)

= M.
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Hence, ‖Λ‖ ≥M and as a result, ‖Λ‖ = M . As stated before, the other
case where M < −m can be dealt with by similar arguments, which lead to
the conclusion that ‖Λ‖ = m. Therefore, ‖Λ‖ = max(−m,M).

(b) Once again, we will only establish that M ∈ σ(Λ) since the argument
for m is very similar. Since sup‖u‖=1〈Λu, u〉 = M by definition, there exists
a sequence {un} such that 〈Λun, un〉 →M as n→∞. Furthermore,
‖un‖ = 1 for all n ∈ Z>0. Then, we note that

‖Λun −Mun‖2 = ‖Λun‖2 − 2M〈Λun, un〉+M2‖un‖2

= ‖Λun‖2 − 2M〈Λun, un〉+M2

≤ M2 − 2M〈Λun, un〉+M2 from part (c)

= 2M2 − 2M〈Λun, un〉
→ 0

as n→∞. Thus, there is no positive real number c such that

‖(Λ−MI)un‖ = ‖Λun −Mun‖ ≥ c‖xn‖ = c.

for all n ∈ Z>0. By the contrapositive of 5.3.1, M /∈ ρ(Λ). Hence,
M ∈ σ(Λ) as required.

We have now arrived at the most important result of the section.

Theorem 5.3.3 (Hilbert-Schmidt). Let H be an infinite dimensional,
separable Hilbert space over R. Let Λ : H → H be a compact, symmetric,
linear operator. Then, the eigenvectors of Λ form a countable orthonormal
basis for H.

Proof. Assume that H is an infinite dimensional separable Hilbert space
over R. Assume that Λ : H → H is a compact symmetric linear operator on
H. Let η0 = 0 and {η1, η2, . . . } be the set of non-zero eigenvalues of Λ.
Additionally, we let H0 = ker(Λ) and Hi = ker(Λ− ηiI) for all i ∈ Z>0.
Note that 0 ≤ dimH0 ≤ ∞ and 0 < dimHi <∞ for all i ∈ Z>0.

To show: (a) If m 6= n, then Hm and Hn are orthogonal.

(a) Assume that m 6= n. Assume that km ∈ Hm and kn ∈ Hn. Then, from
the definition, Λkm = ηmkm and Λkn = ηnkn. Now, we argue as follows:
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ηm〈km, kn〉 = 〈ηmkm, kn〉
= 〈Λkm, kn〉
= 〈km,Λkn〉
= 〈km, ηnkn〉
= ηn〈km, kn〉.

Since ηm 6= ηn, it must be the case that 〈km, kn〉 = 0. Hence, Hm and Hn

are orthogonal to each other.

Now we consider the set of linear combinations below:

H̃ = {
N∑
k=1

αkuk | N ∈ Z>0, uk ∈ Hk, αk ∈ R}.

To show: (b) H̃⊥ ⊆ ker(Λ) = H0.

(b) Assume that u ∈ H̃⊥. Assume that v ∈ H̃. Then, Λv ∈ Λ(H̃) ⊆ H̃ and
〈Λu, v〉 = 〈u,Λv〉 = 0. This reveals that the image Λ(H̃⊥) ⊆ H̃⊥. Define Λ̃
to be the restriction of Λ to the subspace H̃⊥. Then, Λ̃ is still a compact,
symmetric operator. From the previous theorem, we have

‖Λ̃‖ = sup
u∈H̃⊥, ‖u‖=1

|〈Λ̃u, u〉| = M.

Suppose for the sake of contradiction that M 6= 0. Then, either M ∈ σ(Λ̃)
or −M ∈ σ(Λ̃). In either case, we note that σ(Λ̃) = σp(Λ̃) ∪ {0} because Λ̃
is a compact operator. Hence, either M ∈ σp(Λ̃) or −M ∈ σp(Λ̃). As a
result, there exists an eigenvector w ∈ H̃⊥ such that either

Λ̃w = Λw = Mw or Λ̃w = Λw = −Mw.

This contradicts the fact that all the eigenvectors of K are contained in the
union of subspaces Hk. Therefore, M = 0 and as a result, ‖Λ̃‖ = 0.
Translating back to Λ, we find that H̃⊥ ⊆ ker(Λ).

Since each of the subspaces Hm and Hn are orthogonal to each other
whenever m 6= n, it follows that H̃⊥ ⊆ ker(Λ)⊥ = H⊥0 . Combining this
result with part (b), we deduce that H̃⊥ ⊆ H⊥0 ∩H0 = {0}. So, H̃ = H,
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revealing that H̃ is a dense subset of H (by taking the closure).

For each k ∈ Z>0, the finite-dimensional subspace Hk has an orthonormal
basis Bk = {ek,1, ek,2, . . . , ek,N(k)}. Furthermore, since H is separable, the
closed subspace H0 = ker(Λ) has a countable orthonormal basis
B0 = {e0,1, e0,2, . . . }. Hence, the union

B =
⋃

k∈Z>0

Bk

forms an orthonormal basis of H.

An important problem is when given a countable set S = {u1, u2, . . . } in a
Banach space X over R, is it possible to decide whether span(S) is a dense
subset of X? There are two theorems that answer this in the affirmative.

1. If X is a separable Hilbert space and there exists a compact,
symmetric operator Λ : X → X on X such that span(S) ⊆ ker(Λ)
and span(S) contains all the eigenvectors of Λ, then the previous
theorem yields span(S) = X. This can be deduced from the proof of
part (b) in 5.3.3.

2. If X = Cts(E,R), where E is a compact metric space, then provided
that span(S) is an algebra which separates points and contains the
constant functions, span(S) = X. This is an important result known
as the Stone-Weierstrass Theorem.

We provide a proof of the Stone-Weierstrass theorem below. Note that the
version we give is more general because we only use a locally compact
Hausdorff space, rather than a compact space. Also, we do not assume that
the subalgebra is unital.

Theorem 5.3.4. Let X be a locally compact Hausdorff space. Let
Cts0(X,R) ⊆ Cts(X,R) be the subspace of functions which vanish at
infinity. That is,

Cts0(X,R) = {f ∈ Cts(X,R) | ∀ε ∈ R≥0,∃ compact K ⊆ X such that ∀x /∈ K, |f(x)| < ε}.

Suppose that A ⊆ Cts0(X,R) is a non-unital subalgebra of Cts0(X,R)
which separates points and has the property that for all x ∈ X, there exists
f ∈ A such that f(x) 6= 0. Then, A = Cts0(X,R).
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Proof. In a similar vein to the proof of the usual Stone-Weierstrass
theorem, it suffices to prove the statement for the case where the
subalgebra A is closed. So, assume that X is locally compact Hausdorff and
that A is a closed, non-unital subalgebra of Cts0(X,R) which separates
points. Suppose further that for all x ∈ X, there exists f ∈ A such that
f(x) 6= 0. We will break the proof down into multiple steps.

To show: (a) If x, y ∈ X such that x 6= y, then there exists f ∈ A such that
f(x) 6= f(y), f(x) 6= 0 and f(y) 6= 0.

(a) Assume that x, y ∈ X such that x 6= y. Suppose for the sake of
contradiction that there does not exist f ∈ A such that f(x) 6= f(y),
f(x) 6= 0 and f(y) 6= 0. Then, pick a function g ∈ A such that g(x) 6= g(y)
(we can do this since A separates points). Suppose that g(x) 6= 0. Due to
our assumption, g(y) = 0. Using the second property of A, there exists
h ∈ A such that h(y) 6= 0. Suppose for the sake of contradiction that
h(x) 6= h(y). Again, we apply our assumption in order to deduce that
h(x) = 0. Now, we consider the function f = g + λh for some λ ∈ R\{0}
which satisfies g(x) 6= λh(y). Since A is a subalgebra, g + λh ∈ A because
g, h ∈ A.

To show: (aa) f(x) 6= f(y).

(ab) f(x) 6= 0.

(ac) f(y) 6= 0.

(aa) We compute directly from the definition of f that
f(x) = g(x) + λh(x) = g(x) and f(y) = g(y) + λh(y) = λh(y). Since
g(x) 6= λh(y), we deduce that f(x) 6= f(y).

(ab) From part aa, f(x) = g(x) 6= 0 by assumption.

(ac) Again from part aa, f(x) = λh(y) 6= 0 since λ, h(y) 6= 0.

(a) So, we have found a function f ∈ A, which satisfies f(x) 6= f(y),
f(x) 6= 0 and f(y) 6= 0. However, this contradicts our original assumption.
As a result of this h(x) = h(y). Next, we consider the function f2 = g + h.
Then, f2(x) = g(x) + h(x) and f2(y) = g(y) + h(y) = h(x). Since g(x) 6= 0,
f2(x) 6= f2(y). Additionally, since h(x) = h(y) 6= 0, f2(x) 6= 0 and f2(y) 6= 0.
Once again, this derives a contradiction to our original assumption. For the
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case where g(y) 6= 0, a similar argument to the above once again establishes
a contradiction. Hence, there exists f ∈ A such that f(x) 6= f(y), f(x) 6= 0
and f(y) 6= 0.

Our next step is to prove the following:

To show: (b) If x, y ∈ X such that x 6= y and a, b ∈ R, then there exists
f ∈ A such that f(x) = a and f(y) = b.

(b) Assume that x, y ∈ X such that x 6= y. Assume that a, b ∈ R. Then,
from part a, there exists f ∈ A such that f(x) 6= f(y), f(x) 6= 0 and
f(y) 6= 0. We claim that a function of the form p = αf + βf 2 does the
trick, where α, β ∈ R. Note that since f ∈ A and A is a subalgebra, p ∈ A
from the definition of p. Since we want p(x) = a and p(y) = b, this is
equivalent to solving the matrix equation below:(

f(x) [f(x)]2

f(y) [f(y)]2

)(
α
β

)
=

(
a
b

)
.

The determinant of the 2× 2 matrix on the LHS is
f(x)[f(y)]2 − f(y)[f(x)]2 = f(x)f(y)(f(y)− f(x)). Since f(x) 6= f(y),
f(x) 6= 0 and f(y) 6= 0, the determinant is not equal to zero. As a result, we
can solve for α, β ∈ R by multiplying on the left by the inverse. Therefore,
we have p = αf + βf 2 ∈ A with p(x) = a and p(y) = b as required.

Now we can finally embark on the proof of Stone-Weierstrass for locally
compact Hausdorff spaces.

To show: (c) A = Cts0(X,R).

(c) Since A is a subalgebra of Cts0(X,R), A ⊆ Cts0(X,R). So, it suffices to
prove that Cts0(X,R) ⊆ A. Assume that f ∈ Cts0(X,R) and that ε ∈ R>0.
Suppose that x, y ∈ X such that x 6= y. Then, from part b, there exists
fx,y ∈ A such that fx,y(x) = f(x) and fx,y(y) = f(y). Now, note that the
function Dx,y : X → R, Dx,y(z) = |fx,y(z)− f(z)| is a continuous function.
Hence, the particular preimage below is an open subset of X:

D−1
x,y((−∞, ε)) = {z ∈ X | |fx,y(z)− f(z)| < ε}.

We will denote this open set by Ux,y. Note that x ∈ Ux,y by definition. Its
complement X\Ux,y is a closed subset of X. Since X is locally compact, we
deduce that X\Ux,y is also locally compact. However, we can prove the
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stronger statement that X\Ux,y is compact.

To show: (ca) X\Ux,y is compact.

(ca) Since f ∈ Cts0(X,R) and fx,y ∈ A, f − fx,y ∈ Cts0(X,R). This means
that f − fx,y is a function which vanishes at infinity. So, given ε ∈ R>0,
there exists a compact subset K ⊆ X such that for all z /∈ K,
|f(z)− fx,y(z)| < ε. As a result, for all z ∈ X\K, |f(z)− fx,y(z)| < ε. Due
to the definition of Ux,y, X\K ⊆ Ux,y. The contrapositive of this statement
is that X\Ux,y ⊆ K. Since X\Ux,y is a closed subset of the compact set K,
X\Ux,y must be a compact subset of K ⊆ X consequently.

(c) Analogously to the proof of the original Stone-Weierstrass theorem, fix
a point x1 ∈ X. Consider the set

L = {Ux,y ⊆ X | x ∈ X\Ux1,y}.

Then, L is an open cover of X\Ux1,y. Since X\Ux1,y is compact, there exists
x2, . . . , xn ∈ X such that

X\Ux1,y =
n⋃
i=2

Uxi,y.

Now, we let gy = max{fx1,y, fx2,y, . . . , fxn,y}. Then, gy ∈ Cts0(X,R) and for
some arbitrary s ∈ X, there exists k ∈ {1, . . . , n} such that s ∈ Uxk,y. Due
to the definition of the open sets Uxk,y, f(s)− gy(s) < ε for all s, y ∈ X. To
establish the other bound, let

Vy = Ux1,y ∩ Ux2,y ∩ · · · ∩ Uxn,y.

Then, y ∈ Vy by definition and since X\Uxi,y is compact for all
i ∈ {1, . . . , n}, X\Vy must also be compact because

X\Vy = (X\Ux1,y) ∪ · · · ∪ (X\Uxn,y).

The open sets in {Vz | z ∈ X\Vy} form an open cover of X\Vy and so, there
exists Vy1 , . . . , Vym such that

X\Vy = Vy1 ∪ · · · ∪ Vym .

Now set g = min{gy1 , gy2 , . . . , gym}. Then, g ∈ A and for all s ∈ X,
f(s)− g(s) < ε, revealing that f(s)− ε < g(s). Also, there exists
j ∈ {1, . . . ,m} such that s ∈ Vyj or s ∈ Vy and as a result,
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g(s) ≤ gyj(s) < f(s) + ε.

Hence, |f(s)− g(s)| < ε for all s ∈ X. This reveals that f ∈ A. Therefore,
Cts0(X,R) ⊆ A and as a result, A = Cts0(X,R).

As alluded to in many parts of the above proof, the classic version of the
Stone-Weierstrass theorem can be proved in a very similar manner.
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Chapter 6

Differential Equations and
Linear Semigroups

6.1 The Matrix Exponential

The main content of this chapter relies on a working knowledge of the
matrix exponential (or the exponential of a bounded linear operator). In
this section, we will define the exponential of a bounded linear operator and
study some of its properties. The main reference for the next two sections
is [DM21].

Definition 6.1.1. Let T : V → V be a bounded linear operator. That is,
let T ∈ B(V ;V ). Then, the exponential of T is defined as the following
operator:

exp(T ) =
∞∑
i=0

T i

i!

The operator T i denotes the composition of T with itself i times.

With the given definition, we immediately run into a problem. How do we
know that exp(T ) ∈ B(V ;V )? It is not obvious that the above series
converges. Our first main result is to prove that exp(T ) converges
absolutely in B(V ;V ). The following lemma is key to our argument:

Lemma 6.1.1. Let V be a Banach space and am =
∑m

n=0 un be a sequence
in V with the property that the corresponding series

m∑
n=0

‖un‖
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converges in R as m→∞. Then,
∑∞

n=0 un converges. A series which has
the property above is called absolutely convergent.

Proof. Assume that V is a Banach space and {am} is the sequence of partial
sums in V defined as above for all m ∈ Z>0. Suppose that the sequence is
absolutely convergent. Then, the sequence

∑m
n=0‖un‖ converges as m→∞.

This means that the sequence bm =
∑m

n=0‖un‖ is a Cauchy sequence in R.
Take ε ∈ R>0. Then, there exists N ∈ Z>0 such that for all m > m′ ≥ N ,

|bm − b′m| = |
m∑
n=0

‖un‖ −
m′∑
n=0

‖un‖| = |
m∑

n=m′+1

‖un‖| < ε.

To see that the sequence {am} converges in V , we observe that for all
m > m′,

‖am − am′‖ = ‖
m∑
n=0

un −
m′∑
n=0

un‖

= ‖
m∑

n=m′+1

un‖

≤
m∑

n=m′+1

‖un‖

< ε.

Hence, the sequence of partial sums {am} converges in V .

The above lemma tells us that if we want to prove a certain sequence
converges in a Banach space V , we can prove that the norms of each
element in the sequence converges in R instead (which proves that the
sequence is absolutely convergent). Unsurprisingly, this is the strategy we
will use to prove our first main result of the exponential. The next
ingredient for our proof concerns the composition of bounded linear
operators.

Lemma 6.1.2. Let U, V,W be normed vector spaces and S : V → W ,
T : U → V be bounded linear operators. Then, S ◦ T is also a bounded
linear operator satisfying ‖S ◦ T‖ ≤ ‖S‖‖T‖.
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Proof. Assume that U, V,W are normed vector spaces. Assume that
S : V → W and T : U → V are bounded linear operators.

To show: (a) ‖S ◦ T‖ ≤ ‖S‖‖T‖.

(a) This follows from a quick computation:

‖S ◦ T‖ = sup
‖u‖U=1

‖(S ◦ T )(u)‖W

= sup
‖u‖U=1

‖S(T (u))‖W

≤ sup
‖u‖U=1

‖S‖‖T (u)‖V

= ‖S‖‖T‖.

Hence, S ◦ T is a bounded linear operator, with ‖S ◦ T‖ ≤ ‖S‖‖T‖.

Now we are ready for the proof of our first main result.

Theorem 6.1.3. Let V be a Banach space and T : V → V be a bounded
linear operator. Then, the exponential of T

exp(T ) =
∞∑
i=0

T i

i!

converges absolutely in B(V ;V ).

Proof. Assume that V is a Banach space and T ∈ B(V ;V ). Since V is a
Banach space, B(V ;V ) is also a Banach space. From 6.1.1, if we want to
prove that the sequence

am =
m∑
i=0

T i

i!

in B(V ;V ) is absolutely convergent, it suffices to prove that the sequence

bm =
m∑
i=0

‖T
i

i!
‖ =

m∑
i=0

‖T i‖
i!

converges in R. However, by 6.1.2, the operator T i ∈ B(V ;V ) for all
i ∈ Z≥0 with ‖T i‖ ≤ ‖T‖i. Note that T 0 = idV (the identity operator on
V ). Therefore, in R,
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bm =
m∑
i=0

‖T i‖
i!
≤

m∑
i=0

‖T‖i

i!
→ exp(‖T‖)

as m→∞. An alternative method of deducing convergence of this
sequence would be to use the comparison and ratio tests. Therefore, the
sequence {bm} converges in R, revealing that the sequence {am} converges
absolutely in B(V ;V ).

A final application of 6.1.1 finally reveals that exp(T ) is convergent and so,
exp(T ) ∈ B(V ;V ). Recall that this was a consequence of the uniform
boundedness principle (in particular, theorem 4.1.4).

Despite the fact that we are predominantly concerned with infinite
dimensional normed vector spaces in these notes, we will revert to
discussing finite dimensional normed vector spaces, in order to better
understand the specific concept of the matrix exponential - the exponential
map when applied to matrices, which denote linear
operators/transformations over a finite dimensional vector space.

The next lemma reveals that it is pointless to discuss different norms on a
finite dimensional normed vector space.

Lemma 6.1.4. Let V be a finite dimensional vector space V . Let
‖−‖a, ‖−‖b be two different norms on V . Then, they are Lipschitz
equivalent. Alternatively, this means that there exists real numbers
0 < c1 ≤ c2 such that

c1‖x‖a ≤ ‖x‖b ≤ c2‖x‖a.

Proof. Assume that V is a finite dimensional vector space. Assume that
‖−‖a, ‖−‖b are two different norms on V . Suppose that {v1, . . . , vn} is a
basis for V . Since Lipschitz equivalence of norms is an equivalence relation,
it suffices to prove that any norm on V , which we will denote by ‖−‖, is
Lipschitz equivalent to the norm ‖−‖1, which is defined by

‖−‖1 : V → K

‖
n∑
i=1

aivi‖1 =
n∑
i=1

|ai|.
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We will proceed in two distinct steps:

To show: (a) ‖−‖ is uniformly continuous when V is equipped with the
norm ‖−‖1.

(a) Assume that ε ∈ R>0. Set δ = ε/C, where
C = sup{‖vi‖ | i ∈ {1, . . . , n}} so that ‖x− x′‖1 < δ. Using the basis of V ,
set

x =
n∑
i=1

aivi and x′ =
n∑
i=1

bivi.

Using the reverse triangle inequality on K, we deduce that

|‖x‖ − ‖x′‖| ≤ ‖x− x′‖

= ‖
n∑
i=1

(ai − bi)vi‖

≤
n∑
i=1

|ai − bi|‖vi‖ (Linearity of norm)

≤ C
n∑
i=1

|ai − bi|

= C‖x− x′‖1

< C
ε

C
= ε.

Hence, the function ‖−‖ is uniformly continuous from (V, ‖−‖1) to (K, |−|).
From our construction of V with the induced topology from ‖−‖1, it must
be homeomorphic to Rn. Consequently, the set

W = {v ∈ V | ‖v‖1 = 1}

is compact because the closed unit ball in Rn is closed and bounded and
thus, compact. The extreme value theorem, then tells us that the
continuous function ‖−‖ attains it supremum and infimum on W . So, there
exists v, w ∈ V such that

‖v‖ = C1 = inf{‖v‖ | ‖v‖1 = 1}
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and

‖w‖ = C2 = sup{‖v‖ | ‖v‖1 = 1}.

Since, ‖v‖1 = ‖w‖1 = 1 by definition, v, w 6= 0. So, C1, C2 6= 0 and for all
y ∈ V .

C1‖y‖1 ≤ ‖y‖ ≤ C2‖y‖1.

Note that this follows if ‖y‖1 = 1 or y = 0. If ‖y‖1 > 1, we can multiply by
1/‖y‖1 to reduce to the previous case. This completes the proof.

Next, we will use the above lemma to prove that bounded operators from a
finite dimensional vector space must be bounded.

Lemma 6.1.5. Let (V, ‖−‖V ) and (W, ‖−‖W ) be normed vector spaces with
V finite dimensional. Then, any linear transformation T : V → W is
bounded.

Proof. Assume that (V, ‖−‖V ) and (W, ‖−‖W ) are normed vector spaces
with V finite dimensional. By 6.1.4, we can assume that ‖−‖V = ‖−‖1

since a linear transformation T : V → W is bounded with respect to ‖−‖V
if and only if it is bounded to any Lipschitz equivalent norm. Let
{v1, . . . , vn} be a basis for V . Set x =

∑n
i=1 aivi. Then,

‖Tx‖W = ‖
n∑
i=1

aiT (vi)‖W

≤
n∑
i=1

‖aiT (vi)‖W

=
n∑
i=1

|ai|‖T (vi)‖W

≤ C‖x‖1.

where C = supi∈{1,...,n}‖T (vi)‖W . Hence, T is bounded.

The final piece of the puzzle in describing the matrix exponential in its
most familiar form is the following theorem:
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Theorem 6.1.6. Let (V, ‖−‖V ) be a finite dimensional normed vector
space. Then, V must be complete.

Proof. Assume that (V, ‖−‖V ) is a finite dimensional normed vector space.
By dividing or multiplying by the appropriate constants, we observe that
every Cauchy or convergent sequence with respect to the norm ‖−‖V is also
Cauchy or convergent with respect to any other Lipschitz equivalent norm
on V . Therefore, we can set ‖−‖V = ‖−‖1.

Let {v1, . . . , vn} be a basis for V and {xm} denote a Cauchy sequence in V .
Suppose that xm =

∑n
i=1 ai,mvi.

To show: (a) The sequence {xm} converges with respect to the ‖−‖1 norm.

(a) Assume that ε ∈ R>0. Since {xm} is Cauchy, there exists N ∈ Z>0 such
that for all m,m′ ≥ N ,

‖xm − xm′‖1 < ε.

However, we can expand the LHS to get

‖
n∑
i=1

(ai,m − ai,m′)vi‖1 =
n∑
i=1

|ai,m − ai,m′ | < ε

So, for all j ∈ {1, . . . , n},

|aj,m − aj,m′ | < ε

since every summand is non-negative. Thus, the sequence {aj,m} converges
since R is complete. Denote the limit by aj and define

x =
n∑
i=1

aivi.

We will show that the sequence {xm} converges to x. Since {aj,m}
converges to aj, there exists Nj ∈ Z>0 such that for all m ≥ Nj,
|aj,m − aj| < ε/n. Take P = max{N1, . . . , Nn}. Then, for all m ≥ P ,
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‖xm − x‖1 = ‖
n∑
i=1

(ai,m − ai)vi‖1

=
n∑
i=1

|ai,m − ai|

< n(
ε

n
)

= ε.

Therefore, the sequence {xm} converges to x. So, V must be complete.

Now we will summarise what the last three lemmas tell us about the matrix
exponential. Let V be a finite dimensional vector space with dimV = n
and A ∈ B(V V ). Since V is a Banach space from 6.1.6, B(V V ) is also a
Banach space. Since V is finite dimensional, A can be expressed as a n× n
matrix. Furthermore, from 6.1.5, A is bounded, which means that from
6.1.3,

exp(A) =
∞∑
i=0

Ai

i!

converges absolutely in B(V ;V ). So, exp(A) is well-defined for all
A ∈Mn×n(K) because every matrix A ∈Mn×n(K) defines a bounded
operator on V .

We will now prove various properties of the exponential. We will relax the
assumption that V is finite dimensional. First, we require some technical
results. The first one is familiar in the context of real analysis.

Lemma 6.1.7 (Rearrangement). Let V be a Banach space and vn ∈ V
such that the sequence of partial sums {

∑m
n=0 vn} converges absolutely. Let

j : Z≥0 → Z≥0 be a bijection. Then, the rearranged sequence {
∑m

n=0 vj(n)}
converges absolutely and

∞∑
n=0

vn =
∞∑
n=0

vj(n).

Proof. Assume that V is a Banach space and vn ∈ V such that the
sequence {

∑m
n=0 vn} converges absolutely. Since the sequence is absolutely

convergent, the sequence of partial sums in R
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m∑
n=0

‖vn‖

must converge. Now assume that j : Z≥0 → Z≥0 is a bijection. Then, the
rearranged sequence in R

m∑
n=0

‖vj(n)‖

converges to the same limit as the previous sequence. By 6.1.1, we know
that the sequence of rearranged partial sums {

∑m
n=0 vj(n)} converges in V .

It suffices to show that
∑∞

n=0 vj(n) =
∑∞

n=0 vn.

To show: (a)
∑∞

n=0 vj(n) =
∑∞

n=0 vn.

(a) Let Lm =
∑m

n=0 vn and Rm =
∑m

n=0 vj(n). We will demonstrate that
limm→∞‖Lm −Rm‖ = 0. Keeping this in mind, assume ε ∈ R>0.

Set Sm =
∑m

n=0‖vn‖ in R. By absolute convergence, {Sm} is a convergent
sequence and thus, Cauchy. Hence, we can find N1 ∈ Z>0 such that for all
m,m′ ≥ N1,

|Sm − Sm′ | <
ε

2
.

This ensures that the “tail” of the series
∑∞

n=0‖vn‖ is bounded because

m′∑
i=m+1

‖vi‖ = Sm − S ′m <
ε

2

and consequently, for all B ⊆ Z≥0\{0, . . . , N1},∑
i∈B

‖vi‖ <
ε

2
.

Now, we have to bound the “front” of this series. Let
N2 = max{j−1(0), . . . , j−1(N1)} and in the usual fashion,
N = max{N1, N2}. Then, for all m > N , jm 6∈ {0, . . . , N1} because
m > N2. Setting A = {j−1(0), . . . , j−1(N1)}, we argue as follows:
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Lm −Rm =
m∑
n=0

vn −
m∑
n=0

vj(n)

=

N1∑
n=0

vn +
m∑

n=N1+1

vn −
m∑
n=0

vj(n)

=
∑
i∈A

vj(i) +
m∑

n=N1+1

vn −
m∑
n=0

vj(n)

=
m∑

n=N1+1

vn −
∑

i∈{0,...,m}\A

vj(i).

Since the sets {N1 + 1, . . . ,m} and j({0, . . . ,m}\A) are both finite sets,
which are disjoint from {0, . . . , N1}, we deduce that

‖Lm −Rm‖ =
m∑

n=N1+1

‖vn‖ −
∑

i∈{0,...,m}\A

‖vj(i)‖

<
ε

2
+
ε

2
= ε.

Hence, limm→∞‖Lm −Rm‖ = 0 and subsequently,∑∞
n=0 vn =

∑∞
n=0 vj(n).

We can refine the above lemma slightly to the case where j : Z≥0 → Z≥0 is
surjective with the preimage j−1(n) is finite for all n ∈ Z≥0. The statement
we are concerned with is the following:

Lemma 6.1.8. Let V be a Banach space and vn ∈ V such that the sequence
of partial sums {

∑m
n=0 vn} converges absolutely. Let j : Z≥0 → Z≥0 be a

surjective map such that the preimage j−1(n) is finite for all n ∈ Z≥0.
Then, the sequence of partial sums

m∑
n=0

(
∑

i∈j−1(n)

vi)

converges absolutely and
∑∞

n=0(
∑

i∈j−1(n) vi) =
∑∞

n=0 vn.

Proof. Assume that V is a Banach space and vn ∈ V such that the sequence
of partial sums {

∑m
n=0 vn} converges absolutely. Assume that j : Z≥0 → Z≥0
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be a surjective map such that the preimage j−1(n) is finite for all n ∈ Z≥0.

We will enumerate all the positive integers in Z≥0 according to their image
under j. Let

α(i) =
∑
a<j(i)

Card(j−1(a)).

where Card refers to cardinality. In the case where the elements in the
preimage j−1(j(i)) are arranged in ascending order contains β(i) elements
strictly less than i, we define J(i) = α(i) + β(i). Since J is an enumeration
of Z≥0, the previous lemma 6.1.7 tells us that the sequence of partial sums
{
∑m

n=0 vJ(n)} converges absolutely to
∑∞

n=0 vn. The trick here is to realise
that the sequence

{
m∑
n=0

∑
i∈j−1(n)

vi}

is a subsequence of {
∑m

n=0 vJ(n)}. Therefore, it must converge to the same
limit.

Here is the main property of the exponential map.

Theorem 6.1.9. Let V be a Banach space and S, T ∈ B(V ;V ). Then, if
ST = TS (we mean composition), then exp(S) exp(T ) = exp(S + T ).

Proof. Assume that V is a Banach space and S, T ∈ B(V ;V ). Assume that
ST = TS. Due to the commutativity of S and T , one can show by
induction on n that the usual binomial formula holds:

(S + T )n =
n∑
i=0

(
n

i

)
Sn−iT i.

Let {am} be the sequence of partial sums defined by

am =
m∑
n=0

1

n!
(S + T )n.

Using our expression for (S + T )n, we can write am as
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am =
m∑
n=0

1

n!
(S + T )n

=
m∑
n=0

1

n!

n∑
i=0

(
n

i

)
Sn−iT i

=
m∑
n=0

n∑
i=0

(
1

(n− i)!
Sn−i)(

1

i!
T i)

=
m∑
n=0

∑
a+b=n

(
1

a!
Sa)(

1

b!
T b).

We can expand the expression exp(S) exp(T ) is a similar manner in order
to obtain

exp(S) exp(T ) = lim
k→∞

[(
k∑

n=0

1

n!
Sn)(

k∑
n=0

1

n!
T n)]

= lim
k→∞

k∑
a,b=0

(
1

a!
Sa)(

1

b!
T b).

By taking the limit of the sequence am as m→∞ and setting

Xa,b =
1

a!
Sa

1

b!
T b,

we deduce the following expressions:

exp(S + T ) = lim
m→∞

∑
a+b≤m

Xa,b and exp(S) exp(T ) = lim
m→∞

∑
a,b≤m

Xa,b.

We want to show that the two expressions are equal. This is equivalent to
rearranging the terms in one of the infinite sums to obtain the other. The
previous lemmas provide us with a method for dealing with this.

Define f : Z≥0 : Z≥0 × Z≥0 to be the enumeration defined by

f(0) = (0, 0), f(1) = (0, 1), f(2) = (1, 0), f(3) = (0, 2), f(4) = (1, 1), f(5) = (2, 0), . . .

Take f(i) = (ai, bi). Then, the sum below
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∞∑
i=0

1

ai!
‖S‖ai 1

bi!
‖T‖bi

converges because it is the limit of a sequence of partial sums which
contains the convergent subsequence∑

a+b≤m

1

a!
‖S‖a 1

b!
‖T‖b

An increasing sequence with a convergent subsequence is bounded and
therefore, convergent. Hence, the series

∑∞
i=0 Xf(i) converges absolutely

because

k∑
i=0

‖Xf(i)‖ ≤
k∑
i=0

1

ai!
‖S‖ai 1

bi!
‖T‖bi .

In order to apply the previous lemma, we let Θ0 ⊆ Θ1 ⊆ . . . be any strictly
ascending chain of non-empty finite sets in Z≥0 × Z≥0 with⋃
i Θi = Z≥0 × Z≥0. Define j : Z≥0 → Z≥0 by

j(a) = inf{i | f(a) ∈ Θi}.

Note that f is surjective by construction. Hence, from the previous lemma,
the series

∞∑
n=0

(
∑

i∈j−1(n)

Xf(i))

converges absolutely to
∑∞

i=0 Xf(i). The trick here is that we can take
alternatively:

Θ2m = {(a, b) ∈ Z≥0 × Z≥0 | a ≤ m, b ≤ m}

and

Θ2m+1 = {(a, b) ∈ Z≥0 × Z≥0 | a+ b ≤ m+ 1}.

This definition provides the required ascending chain of subsets
Θ0 ⊆ Θ1 ⊆ . . . . So, we can apply our argument above to deduce that
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exp(S + T ) = lim
m→∞

∑
a+b≤m

Xa,b

= lim
m→∞

∑
a≤m,b≤m

Xa,b

= exp(S) exp(T ).

We note the following useful consequences of 6.1.9:

Corollary 6.1.10. Let V be a Banach space. Then,

1. exp(0) = idV .

2. If α, β ∈ F, then for all S ∈ B(V ;V ),
exp(αS) exp(βS) = exp((α + β)S).

3. The map exp(S) is invertible, with inverse exp(−S).

6.2 Logarithms

It is well-known that on the appropriate domain in R, the logarithm
function can be defined as an inverse to the exponential map. After the
analysis of the matrix exponential conducted in the previous section, a
natural question to ask is whether one can define the logarithm of a
bounded linear operator on a Banach space. It turns out that just like the
ordinary logarithm in R, one can do this in an appropriate radius of
convergence. The first result of this section is key to describing the
construction of the logarithm.

Lemma 6.2.1. Let V be a Banach space and T ∈ B(V ;V ). If ‖T‖ < 1,
then (I − T )−1 is a bounded linear operator on V with the expression

(I − T )−1 =
∞∑
i=0

T i.

Note that I is the identity operator on B(V ;V ).

Proof. Assume that V is a Banach space and T ∈ B(V ;V ). Assume that
‖T‖ < 1. Then, since V is a Banach space, B(V ;V ) is also a Banach space.
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Our first task is to establish the convergence of the sum
∑∞

i=0 T
i.

To show: (a) The sum
∑∞

i=0 T
i converges.

(a) We already know that for all j ∈ Z≥0, ‖T j‖ ≤ ‖T‖j. In light of 6.1.1, we
observe that the sequence of partial sums in R, defined by

am =
m∑
i=0

‖T i‖ ≤
m∑
i=0

‖T‖i

converges as m→∞ because ‖T‖ < 1. The term am is bounded above by a
geometric series. Hence, from 6.1.1, the sum

∑∞
i=0 T

i converges in B(V ;V ).

Part (a) tells us further that
∑∞

i=0 T
i is a bounded linear operator on V . It

remains to determine the equation we are after. Let S =
∑∞

i=0 T
i and

Sm =
∑m

i=0 T
i for all i ∈ Z≥0.

To show: (b) S(I − T ) = (I − T )S = I.

(b) We compute directly that

Sm(I − T ) = (I + T + · · ·+ Tm)(I − T )

= I − Tm+1.

Notice that (I − T )Sm also evaluates to the same expression, by a similar
computation. Taking the limit as m→∞, we deduce that
S(I − T ) = (I − T )S = I, hence revealing that S = (I − T )−1.

We want to apply the lemma we just proved to the exponential of a
bounded operator exp(T ), where T ∈ B(V ;V ) with V a Banach space.
However, the lemma 6.2.1 tells us that this can only be done in a certain
radius of convergence. In order to define the logarithm, consider the
operator I − exp(T ) ∈ B(V ;V ). Suppose that ‖T‖ < log 2. Then,
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‖I − exp(T )‖ = ‖I −
∞∑
i=0

T i

i!
‖

= ‖
∞∑
i=1

T i

i!
‖

≤
∞∑
i=1

‖T‖i

i!

= exp(‖T‖)− 1

< 1 since ‖T‖ < log 2.

Hence, 6.2.1 applies, provided that the bounded operator T is in the subset
W where

W = {T ∈ B(V ;V ) | ‖T‖ < log 2}.

Thus, (I − (I − exp(T )))−1 = (exp(T ))−1 is a bounded linear operator for
all T ∈ W . Thus, we can define the logarithm log : U → W by

log(T ) = (exp(T ))−1 =
∞∑
i=0

(I − exp(T ))i.

Here, U is the set

U = {T ∈ B(V ;V ) | ‖I − exp(T )‖ < 1}.

Explicitly, the map I − exp needs to be restricted to a map from W to U ,
in order to define log(T ) as a consequence of 6.2.1 in the first place.

Returning to the situation in 6.2.1, we can do the following computation to
establish a quick bound for the norm of (I − T )−1:

‖(I − T )−1‖ = ‖
∞∑
i=0

T i‖

≤
∞∑
i=0

‖T‖i

=
1

1− ‖T‖
since ‖T‖ < 1.
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Thus, we have the following corollary:

Corollary 6.2.2. Let V be a Banach space and T ∈ B(V ;V ). If ‖T‖ < 1,
then (I − T )−1 exists as a bounded linear operator on V , whose norm
satisfies the following inequality:

‖(I − T )−1‖ ≤ (1− ‖T‖)−1.

Applying the above corollary to I − exp : W → U , we deduce that

‖log(T )‖ ≤ (1− ‖I − exp(T )‖)−1.

6.3 Solutions to ODEs

The problem of determining the existence and uniqueness of solutions to an
ordinary differential equation has been very thoroughly studied, alongside
iterative methods to construct such solutions. Picard’s theorem guarantees
the existence and uniqueness of a solution to an ODE over the real numbers
within some closed interval (provided that the ODE satisfies a particular
condition). The main result of this section reveals that Picard’s theorem
can be extended to Lipschitz continuous ODEs in Banach spaces. Before we
prove this, we require a few definitions and Banach’s fixed point theorem,
which plays a major role in the proof which follows. Incidentally, Banach’s
fixed point theorem also plays a large role in the proof of Picard’s theorem.

Definition 6.3.1. Let X be a Banach space. Then, the map g : X → X is
a Lipschitz continuous map if it satisfies the Lipschitz condition:
there exists L ∈ R>0 such that for all x, y ∈ X,

‖g(x)− g(y)‖ ≤ L‖x− y‖.

Definition 6.3.2. Let (X, d) be a metric space. Then, the map g : X → X
is called a contraction mapping if there exists λ ∈ (0, 1) such that for all
x, y ∈ X,

d(g(x), g(y)) ≤ λd(x, y).

λ is called the contraction factor of g.

As stated before, the major theorem we require here is Banach’s fixed point
theorem. We prove this below:
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Theorem 6.3.1 (Banach Fixed Point Theorem). Let (X, d) be a complete
metric space and f : X → X be a contraction mapping with contraction
factor λ ∈ (0, 1). Then, f has a unique fixed point. Moreover, if x0 ∈ X is
arbitrary, then the sequence {fn(x0)} converges to the fixed point.

Proof. Assume that (X, d) is a complete metric space and f : X → X is a
contraction mapping. First we will show that a fixed point of f must be
unique.

To show: (a) If x ∈ X such that f(x) = x, then x is unique.

(a) Assume that p, q ∈ X are fixed points of f such that p 6= q and
consequently, d(p, q) > 0. Then, since f is a contraction mapping,

d(f(p), f(q)) ≤ λd(p, q) < d(p, q).

This contradicts the fact that d(f(p), f(q)) = d(p, q) and that d(p, q) > 0.
Therefore, the fixed point of f must be unique.

Now we will prove the existence of a fixed point x ∈ X of f .

To show: (b) There exists x ∈ X such that f(x) = x.

(b) Assume that x ∈ X and let an = fn(x) (composing f n times). Since f
is a contraction mapping, we can prove via induction on n that

d(fn(x), fn(y)) ≤ λnd(x, y)

for all x, y ∈ X.

To show: (ba) The sequence {an}n∈Z≥0
is Cauchy.

(ba) Fix n ∈ Z≥0. Assume that ε ∈ R>0. Pick N ∈ Z>0 such that

λn

1− λ
d(f(x), x) < ε.

Then, for all m > n ≥ N ,
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d(am, an) ≤ d(am, am−1) + · · ·+ d(an+1, an)

= d(fm−1(f(x)), fm−1(x)) + · · ·+ d(fn(f(x)), fn(x))

≤ (λm−1 + · · ·+ λn)d(f(x), x)

= d(f(x), x)
m−1∑
i=n

λi

≤ λnd(f(x), x)
∞∑
i=0

λi

=
λn

1− λ
d(f(x), x)

< ε.

Hence, the sequence {an} is Cauchy.

(b) Since {an} is Cauchy and X is a complete metric space, {an} must
converge. Suppose that it converges to a ∈ X. It remains to show that a is
a fixed point of f . We argue as follows

f(a) = f( lim
n→∞

an)

= f( lim
n→∞

fn(a))

= lim
n→∞

f(fn(a))

= lim
n→∞

fn+1(a)

= a.

Therefore, f has a fixed point a ∈ X.

The ODE we will consider in the next result is termed the Cauchy
problem. If X is a Banach space, x ∈ X and g : X → X satisfies the
Lipschitz condition, then the Cauchy problem is the ODE

d

dt
x(t) = g(x(t)) with x(0) = x.

The next result states that the Cauchy problem does have a unique solution.

Theorem 6.3.2. Let X be a Banach space. Let g : X → X be a Lipschitz
continuous map. Then, for all x ∈ X, the Cauchy problem has a unique
solution t 7→ x(t), defined for all t ∈ R.
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Proof. Assume that X is a Banach space and that g : X → X is a Lipschitz
continuous map. First, we fix T ∈ R>0 and consider the Banach space
Cts([0, T ], X), not with the usual norm, but equipped with the equivalent
norm below:

‖w‖† = sup
t∈[0,T ]

e−2Lt‖w(t)‖.

Here, L ∈ R>0. A function x : [0, T ]→ X is a solution to the Cauchy
problem if and only if x is a fixed point of the Picard operator

Φ(w)(t) = x+

∫ t

0

g(w(s)) ds

where t ∈ [0, T ].

To show: (a) The Picard operator Φ is a contraction with respect to the
equivalent norm introduced on Cts([0, T ], X).

(a) Assume that u, v ∈ Cts([0, T ], X). Then, set δ = ‖u− v‖†. So, for all
s ∈ [0, T ], we have

‖u(s)− v(s)‖ ≤ sup
s∈[0,T ]

‖u(s)− v(s)‖

= e2Ls sup
s∈[0,T ]

e−2Ls‖u(s)− v(s)‖

= δe2Ls.

Utilising the properties of integrals and the Lipschitz continuity of g, we
deduce that for all t ∈ [0, T ],
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e−2Lt‖Φ(u)(t)− Φ(v)(t)‖ = e−2Lt‖
∫ t

0

g(u(s))− g(v(s)) ds‖

≤ e−2Lt

∫ t

0

‖g(u(s))− g(v(s))‖ ds

≤ e−2Lt

∫ t

0

L‖u(s)− v(s)‖ ds

≤ Le−2Lt

∫ t

0

δe2Ls ds

= Le−2Lt δ

2L
(e2Lt − 1)

=
δ

2
(1− e−2Lt)

≤ δ

2
.

Therefore, by taking the supremum of both sides over t ∈ [0, T ], we find
that

‖Φ(u)− Φ(v)‖† ≤
δ

2
=

1

2
‖u− v‖†.

Thus, Φ : Cts([0, T ], X)→ Cts([0, T ], X) is a contraction mapping with
contraction factor 1/2.

Now, we can apply the Banach fixed point theorem (6.3.1) in order to
obtain the existence of a fixed point for Φ. That is, there exists
x ∈ Cts([0, T ], X) such that

x(t) = x+

∫ t

0

g(x(s)) ds

for all t ∈ [0, T ]. As a result, x becomes the unique solution to the Cauchy
problem on the interval [0, T ]. Observe finally that by similar arguments
(“reversing time”), one can construct a unique solution on any time interval
of the form [−T, 0]. This proves the assertion.

Presented below are two methods of iteratively constructing an
approximate solution to the Cauchy problem. For both of these methods,
let h ∈ R>0 (step size) and define tj = jh for all j ∈ Z≥0. For the initial
condition, we take x(t0) = x(0) = x.
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1. The more familiar of the two methods is the forward Euler
approximation, which is more commonly known as the Euler
method. The values of the approximate solutions at each tj are
inductively defined as follows:

x(tj+1) = x(tj) + hF (x(tj))

2. The second method is called backward Euler approximation. The
values of the approximate solutions are defined instead as

x(tj+1) = x(tj) + hF (x(tj+1)).

In general, a backwards Euler approximation is harder to compute
than its forwards counterpart, since we have to solve an implicit
equation for x(tj+1) when applying the method. However, the upshot
here is that backwards Euler approximations often have much better
stability and convergence properties.

6.4 Motivating Semigroups

One of the most familiar differential equations is

dx

dt
= Ax with x(0) = x

where A : Rn → Rn is a linear operator. The solution to such an equation is
well-known:

x(t) = etAx

where

etA =
∞∑
k=0

(tA)k

k!
.

Note that the above series is absolutely convergent for every t ∈ R. This
solution is valid for every bounded linear operator A on an arbitrary
Banach space X. The important properties of the exponential map in the
solution are

1. e0A = I, which is just the identity map.

2. For all x ∈ X, the map x(t) = etAx is continuous.
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3. esAetA = e(s+t)A.

The last property is particularly important; it is called the semigroup
property. In a nutshell, the theory of linear semigroups studies the
correspondence between a linear operator A and its exponential etA, where
t ∈ R≥0. When A is bounded, its exponential can be computed via the
aforementioned convergent series. On the other hand, if we are given a
family of exponentials etA, one can recover A as the limit

A = lim
t→0+

etA − I
t

.

Remarkably, there are important cases where the operators etA are all
bounded, whereas A itself is an unbounded operator. These scenarios form
the breeding grounds for the most interesting applications of semigroup
theory, which are pertinent to the analysis of parabolic and hyperbolic
PDEs.

Here are some first examples of the exponential map:

Example 6.4.1. If A : Rn → Rn can be represented by a diagonal matrix
D = diag[λ1, . . . , λn], then etA is computed by exponentiating the diagonal.
Indeed, we find that etA can be represented by the matrix

etD = diag[etλ1 , . . . , etλn ].

If the matrix of A is not diagonal but is diagonalisable (the eigenvalues of A
are all distinct), then one has to diagonalise the matrix first so that
A = PDP−1. In this case, etA = PetDP−1. If the matrix of A is not
diagonalisable at all, we will first have to reduce the matrix to its Jordan
canonical form. So, there exists U ∈ GLn(R) such that A = UJU−1. Then,
we use the fact that J can be decomposed as the sum D +N , where D is a
diagonal matrix and N is nilpotent. Then,

etA = UetDetNU−1.

We use the power series expansion to compute etN . Since N is nilpotent,
there exists j ∈ Z>0 such that N j = 0. As a consequence, etN is reduced to
a finite sum, thus guaranteeing the existence of the operator etN . As an
example of the most complicated case, let

A =

−2 1 4
−5 2 5
−1 1 3

 .
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Then, A = UJU−1, where

U =

1 0 7
0 1 15
1 0 −2


and

J =

2 1
2
−1


is the Jordan canonical form of A. We decompose J = D +N , where
D = diag[2, 2,−1] and

N =

0 1 0
0 0 0
0 0 0


is nilpotent, with N2 = 0. Next, we compute

etD =

e2t

e2t

e−t


and

etN = I +Nt

=

1
1

1

+

0 t 0
0 0 0
0 0 0


=

1 t
1

1

 .

Putting all of the pieces together, we find that
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etA = UetJU−1

= UetDetNU−1

= U

e2t te2t

e2t

e−t

U−1

=

(2
9
− 5t

3
)e2t + 7

9
e−t te2t (5t

3
+ 7

9
)e2t − 7

9
e−t

5
3
e−t − 5

3
e2t e2t 5

3
e2t − 5

3
e−t

(2
9
− 5t

3
)e2t − 2

9
e−t te2t (5t

3
+ 7

9
)e2t + 2

9
e−t

 .

Example 6.4.2. Recall that l1 is the Banach space of all sequences of
complex numbers x = (x1, x2, . . . ) with norm

‖x‖1 =
∞∑
k=1

|xk|.

If we are given a sequence of complex numbers {λk}, we can define the
linear operator

Ax = (λ1x1, λ2x2, λ3x3, . . . ).

Therefore, the exponential operators are

etA = (etλ1x1, e
tλ2x2, . . . ).

An interesting point here is that ‖A‖ = supk∈Z>0
|λk| might be infinite, but

‖etA‖ = supk∈Z>0
|etλk | can be bounded for all t ∈ R≥0.

Assume that the real part of all eigenvalues λk is uniformly bounded. That
is, there exists ω ∈ R such that Re(λk) ≤ ω for all k ∈ Z>0. Then,

|etλk | = |etRe(λk)| ≤ etω

for all t ∈ R≥0. This shows that etA is a bounded operator, whereas A may
not necessarily be a bounded operator itself. For example, if we define the
sequence {λk} such that λk = 1 + ki for all k ∈ Z>0 and define A : l1 → l1

as above, then

‖A‖ = sup
k∈Z>0

|λk| =∞,

but for all t ∈ R≥0,
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‖etA‖ = sup
k∈Z>0

|etλk | ≤ et.

In the theory of linear semigroups, one considers two main problems.

1. Given a semigroup of linear operators {St | t ∈ R≥0}, find an operator
A such that St = etA. A is called a generator for the semigroup.

2. Given a linear operator A, construct its semigroup {etA | t ∈ R≥0}
and study its properties.

We will begin our study of semigroup theory from the perspective of the
first point.

6.5 Properties of Semigroups

We will now define semigroups.

Definition 6.5.1. Let X be a Banach space A strongly continuous
semigroup of linear operators on X is a family of linear operators

{St : X → X | t ∈ R≥0}

such that the following properties are satisfied:

1. Each St is a bounded linear operator.

2. For all s, t ∈ R≥0, St ◦ Ss = St+s where ◦ denotes composition of
operators. This is the semigroup property.

3. S0 = I (the identity operator).

4. For all u ∈ X, the map t 7→ Stu is continuous from [0,∞) to X.

Definition 6.5.2. Let X be a Banach space and

S = {St : X → X | t ∈ R≥0}

be a strongly continuous semigroup of linear operators. Then, S is a
semigroup of type ω if the bounded linear operators St satisfy the bounds

‖St‖ ≤ etω
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for all t ∈ R≥0. If ω = 0, then S is called a contractive semigroup. In
this case, ‖St‖ ≤ 1 and for all t ∈ R≥0 and u, v ∈ X,

‖Stu− Stv‖ ≤ ‖u− v‖,

hence the adjective “contractive”.

Definition 6.5.3. Let X be a Banach space and

S = {St : X → X | t ∈ R≥0}

be a strongly continuous semigroup of linear operators. The operator
A : X → X defined by

Au = lim
t→0+

Stu− u
t

is called the generator of the semigroup S. It is not too difficult to
show that A is a linear operator. The domain of A is

Dom(A) = {u ∈ X | lim
t→0+

Stu− u
t

exists}.

For a given u ∈ X, we regard the map u(t) = Stu as the solution to a linear
ODE

d

dt
u(t) = Au(t) with u(0) = u.

In the context of ODEs, we are given the solution u(t) and then tasked
with the problem of finding the operator A (i.e. finding the equation).

Here are some elementary properties of the semigroup S and its generator
A.

Theorem 6.5.1. Let X be a Banach space and S = {St | t ∈ R≥0} be a
strongly continuous semigroup of linear operators and let A be its generator.
Assume that u ∈ Dom(A). Then, for all t ∈ R≥0, Stu ∈ Dom(A) and
AStu = StAu. Furthermore, the map u(t) = Stu is continuously
differentiable and provides a solution to the Cauchy problem.

Proof. Assume that X is a Banach space and S is the semigroup defined
above. Assume that A is the generator of S. Assume that u ∈ Dom(A).

To show: (a) For all t ∈ R≥0, Stu ∈ Dom(A).
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(b) For all t ∈ R≥0, AStu = StAu.

(a) Assume that t ∈ R≥0. Then, we compute that

lim
s→0+

SsStu− Stu
s

= lim
s→0+

Ss+tu− Stu
s

= lim
s→0+

StSsu− Stu
s

= St lim
s→0+

Ssu− u
s

= StAu.

Since the limit we started with exists, we deduce that Stu ∈ Dom(A) for all
t ∈ R≥0.

(b) Note that

lim
s→0+

SsStu− Stu
s

= AStu.

So, AStu = StAu for all t ∈ R≥0.

To show: (c) The map u(t) is continuously differentiable.

(c) We will attempt to compute the left and right derivatives of Stu for all
t ∈ R≥0. First, the right derivative is computed as

lim
h→0+

St+hu− Stu
h

= lim
h→0+

StShu− Stu
h

= St lim
h→0+

Shu− u
h

= StAu.

The left derivative is more difficult to compute. We argue as follows:

lim
h→0+

[
Stu− St−hu

h
− StAu] = lim

h→0+
[
St−h(Shu− u)

h
− StAu]

= lim
h→0+

[St−h(
(Shu− u)

h
− Au) + (St−hAu− StAu)]

= [St−h( lim
h→0+

[
(Shu− u)

h
− Au]) + lim

h→0+
(St−hAu− StAu)]

= lim
h→0+

(St−hAu− StAu)

= 0.
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The two calculations together reveals that d
dt

(Stu) = StAu = AStu. Hence,
the map u(t) = Stu is differentiable and satisfies the Cauchy problem. Since
Au ∈ X, the map t 7→ St(Au) is continuous from [0,∞) to X. Combining
this with the derivative result above, we deduce that the map u(t) = Stu
must be continuously differentiable.

The next result states important properties of generators of semigroups.

Theorem 6.5.2. Let X be a Banach space and {St : X → X | t ∈ R≥0} be
a semigroup, with generator A : X → X. Then, Dom(A) is a dense subset
of X and A is closed. That is, the graph of A

Γ(A) = {(x,Ax) | x ∈ X} ⊆ X ×X

is a closed subset of X ×X.

Proof. Assume that X is a Banach space and {St | t ∈ R≥0} is a semigroup
with generator A : X → X. To prove the first statement, note that
Dom(A) ⊆ X. It suffices to prove the reverse inclusion.

To show: (a) X ⊆ Dom(A).

(a) Assume that u ∈ X. For all ε ∈ R>0, consider

Uε =
1

ε

∫ ε

0

Ssu ds.

Observe that the limit

lim
ε→0+

1

ε

∫ ε

0

Ssu ds = u.

This is due to the fundamental theorem of calculus. Since Dom(A) is a
vector space, it remains to show that

εUε =

∫ ε

0

Ssu ds ∈ Dom(A)

for all ε ∈ R>0. But, for all 0 < h < ε,
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lim
h→0+

ShεUε − εUε
h

= lim
h→0+

1

h
(

∫ ε

0

Sh+su ds−
∫ ε

0

Ssu ds)

= lim
h→0+

1

h

∫ ε

0

Sh+su− Ssu ds

= lim
h→0+

(
1

h

∫ ε+h

h

Ssu ds−
1

h

∫ ε

0

Ssu ds)

= lim
h→0+

(
1

h

∫ ε+h

ε

Ssu ds+
1

h

∫ ε

h

Ssu ds−
1

h

∫ ε

h

Ssu ds−
1

h

∫ h

0

Ssu ds)

= lim
h→0+

(
1

h

∫ ε+h

ε

Ssu ds−
1

h

∫ h

0

Ssu ds)

= Sεu− u.

Therefore, εUε ∈ Dom(A) and so, Uε defines a sequence in Dom(A), which
converges to u. Thus, X ⊆ Dom(A), revealing that Dom(A) is a dense
subset of X.

To see that the graph Γ(A) is closed, let {(uk, vk)}k∈Z>0 be a sequence of
points in Γ(A) such that vk = Auk for all k ∈ Z>0. Assume that uk → u
and vk → v for some u, v ∈ X.

To show: (b) u ∈ Dom(A) and Au = v.

(b) Since uk ∈ Dom(A) for all k ∈ Z>0,

lim
h→0+

Shuk − uk
h

= Auk = vk.

Integration yields

Shuk − uk =

∫ h

0

d

dt
Stuk dt =

∫ h

0

StAuk dt.

Taking the limit as k →∞, we obtain

Shu− u =

∫ h

0

d

dt
StAu dt =

∫ h

0

Stv dt.

Now, we divide both sides by h and take the limit as h→ 0+ to obtain

lim
h→0+

Shu− u
h

= lim
h→0+

1

h

∫ h

0

Stv dt = S0v = v.
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Therefore, u ∈ Dom(A) and v = Au by definition.

So, (u, v) ∈ Γ(A) and consequently, Γ(A) is a closed subset of X ×X. Ergo,
A is a closed operator.

6.6 Resolvent Operators

The next two sections of this chapter are dedicated to exploring whether we
there is always an associated semigroup to an operator A : Dom(A)→ X.
An important link between semigroups and their generators is the resolvent.
We will first informally discuss why this is so.

Consider the typical “flow” equation a semigroup must satisfy

d

dt
u(t) = Au(t), u(0) = u.

Recall that the Cauchy problem can be solved iteratively and
approximately by the backward Euler approximation. To enact this, we fix
a time step h ∈ R>0 and solve the following equation for u:

u(t+ h) = u(t) + Au(t+ h).

Rearranging this, we obtain for all u(t) ∈ X,

u(t+ h) = (I − hA)−1u(t).

The expression (I − hA)−1 is reminiscent of the operators studied in
Chapter 5. It is called the backwards Euler operator and is denoted by
E−h . Now, there are two ways to proceed from here, in order to obtain the
solution u(t).

First, one could take a limit of backwards Euler approximations. By setting
the time step h = τ/n for some fixed τ > 0 and n ∈ Z>0 and iterating the
approximation procedure n times, we obtain

u(τ) ≈ E−τ/n ◦ · · · ◦ E
−
τ/n = (I − τ

n
A)−nu.

Now, we fix τ and let n→∞. Then,

u(τ) = lim
n→∞

(I − τ

n
A)−nu.

178



The second method is to again fix a time step h ∈ R>0 and set λ = 1/h.
Define the operator

Aλ : X → X

u 7→ A(I − hA)−1u.

We interpret Aλu as the value of A computed at the point E−h u, which is
very close to u. Luckily, for h ∈ R>0 small enough, Aλ = A1/h is a
well-defined bounded linear operator. Hence, we can apply the exponential
map to tAλ:

exp(tAλ) =
∞∑
k=0

(tAλ)
k

k!
.

Then, we finally define u(t) = limλ→∞ exp(tAλ)u. See Bressan [AB10] for
an example of this method in action.

Now, we will define the resolvent operator.

Definition 6.6.1. Let A be a linear operator on a Banach space X. If
λ ∈ ρ(A) (the resolvent set of A), then the resolvent operator
Rλ : X → X is defined by Rλu = (λI − A)−1u.

Notice that the resolvent operator is related to the backward Euler operator
by λRλ = E−1/λ. Recall that if λ ∈ ρ(A), then Rλ must be a bounded,
bijective operator on X. Moreover, its inverse is also a bounded linear
operator (check the start of Section 5.2 for the argument).

Since we are interested in the existence of semigroups, it is reasonable to
assume that A is a closed operator in light of 6.5.2. By the closed graph
theorem (4.2.3), A must be continuous and hence, Rλ = (λI − A)−1 must
also be continuous, for all λ ∈ ρ(A). Furthermore, if u ∈ Dom(A), then we
have ARλu = RλAu. This is because if {St}t∈R≥0

is the semigroup
associated with A, then
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RλAu = Rλ( lim
t→0+

Stu− u
t

)

= lim
t→0+

Rλ(
Stu− u

t
) (Continuity)

= lim
t→0+

RλStu−Rλu

t

= lim
t→0+

StRλu−Rλu

t
(Rλ and St commute)

= ARλu.

To see that Rλ and St commute for all t ∈ R≥0 and λ ∈ ρ(A), it suffices to
note that the identity operator I : X → X and A both commute with St.
In the next lemma, we will prove a few more identities about the resolvent
operator.

Lemma 6.6.1. Let X be a Banach space and A : X → X be a closed linear
operator. If λ, µ ∈ ρ(A), then Rλ −Rµ = (µ− λ)RλRµ and RλRµ = RµRλ.

Proof. Assume that X is a Banach space and A : X → X is a closed linear
operator. Assume that λ, µ ∈ ρ(A). Then, for all u ∈ X,
v = Rλu−Rµu ∈ Dom(A) (we are implicitly using the fact that Dom(A) is
dense in X here). Now, observe that

(λI − A)v = (λI − A)[(λI − A)−1 − (µI − A)−1]u

= u− (λI − A)(µI − A)−1u

= u− (λI − µI + µI − A)(µI − A)−1u

= (µ− λ)(µI − A)−1u.

Applying R−1
λ to both sides then gives the desired result. So,

Rλu−Rµu = (µ− λ)RλRµu. Now, we can rearrange this identity to show
that

RλRµu =
Rλu−Rµu

µ− λ
=
Rµu−Rλu

λ− µ
= RµRλu.

The most important theorem of this section gives an integral formula for
the resolvent operator.
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Theorem 6.6.2. Let {St}t∈R≥0
be a semigroup of type ω and A : X → X

be its generator (X is a Banach space). Then, for all λ > ω, λ ∈ ρ(A),

Rλu =

∫ ∞
0

e−tλStu dt

and

‖Rλ‖ ≤
1

λ− ω
.

Proof. Assume that X is a Banach space and {St}t∈R≥0
is a semigroup of

type ω on X. Assume that A : X → X is its generator. Then, for all
t ∈ R≥0, ‖St‖ ≤ etω. Thus, the integral above is absolutely convergent. We
compute for all λ > ω

‖
∫ ∞

0

e−tλStu dt‖ ≤
∫ ∞

0

e−tλ‖St‖‖u‖ dt

=

∫ ∞
0

et(ω−λ)‖u‖ dt

=
1

ω − λ
‖u‖.

We can safely define

R̃λu =

∫ ∞
0

e−tλStu dt.

The above calculation reveals that R̃λ is a bounded linear operator, with
norm ‖R̃λ‖ ≤ 1/(λ− ω). We will now show that R̃λ = Rλ.

To show: (a) For all u ∈ X, (λI − A)R̃λu = u.

(a) Assume that u ∈ X. Then, a direct computation reveals that for all
h ∈ R>0,

ShR̃λu− R̃λu

h
=

1

h

∫ ∞
0

e−λt(St+hu− Stu) dt

=
1

h

∫ ∞
0

(e−λ(t−h) − e−λt)Stu dt−
1

h

∫ h

0

e−λ(t−h)Stu dt.

=
eλh − 1

h

∫ ∞
0

e−λtStu dt−
eλh

h

∫ h

0

e−λtStu dt.
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Taking the limit as h→∞, we find that

lim
h→∞

ShR̃λu− R̃λu

h
= λR̃λu− u.

Therefore, R̃λu ∈ Dom(A) and so, AR̃λu = λR̃λu− u for all u ∈ X.
Rearranging yields (λI − A)R̃λu = u.

We have demonstrated that λI −A is surjective for all λ > ω from part (a).
Now, we will show that it is injective.

To show: (b) The operator λI − A is injective.

(b) First, we need a preliminary result. If u ∈ Dom(A), then

AR̃λu = A

∫ ∞
0

e−λtStu dt

=

∫ ∞
0

e−λtAStu dt

=

∫ ∞
0

e−λtStAu dt

= R̃λAu.

Now, suppose that (λI − A)u = (λI − A)v for some u, v ∈ X. Then,
R̃λu, R̃λv ∈ Dom(A) and so, by using part (a) and the above identity,

u = (λI − A)R̃λu (Part (a))

= λIR̃λu− AR̃λu

= λIR̃λu− R̃λAu

= R̃λ(λI − A)u

= R̃λ(λI − A)v (By assumption)

= (λI − A)R̃λv

= v (Part (a)).

Therefore, λI − A is an injective operator.

Hence, λI −A is a bijective operator for all λ > ω. Therefore, λ ∈ ρ(A) and
as a result, R̃λ = (λI − A)−1 = Rλ.
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How do we interpret this formula? One way is to view the resolvent
operators Rλ as the Laplace transform of the semigroup. With h ∈ R>0,
write h = 1/λ. We can derive the backward Euler approximation as

E−h u = E−1/λu = λRλ = λ

∫ ∞
0

e−tλStu dt =

∫ ∞
0

e−t/h

h
Stu dt.

In order to ensure that the integral is convergent, we require h < ω−1,
where S is a semigroup of type ω.

6.7 Existence and uniqueness of semigroups

Now, we are ready to tackle one of the main theorems pertaining to
semigroups. The question we want to answer is given an operator
A : Dom(A)→ X, when does there exist a semigroup generated by A?

Theorem 6.7.1 (Existence and uniqueness of a semigroup). Let X be a
Banach space and A : X → X be a linear operator. Let ω ∈ R≥0. Then, the
following statements are equivalent:

1. A is the generator of a unique semigroup of linear operators {St}t∈R≥0

of type ω.

2. A is a closed, densely defined operator. For all λ > ω, λ ∈ ρ(A) and

‖(λI − A)−1‖ ≤ 1

λ− ω
.

Proof. Assume that X is a Banach space and A : X → X is a linear
operator. Assume that ω ∈ R≥0. From the previous results, we have already
shown that the first statement implies the second, up to uniqueness of the
semigroup. Hence, we will show that A must generate a unique semigroup.

To show: (a) If {St}t∈R≥0
and {S ′t}t∈R≥0

are two semigroups of bounded
linear operators generated by A, then for all t ∈ R≥0, St = S ′t.

(a) Assume that u ∈ Dom(A). Then, St−sS̃su ∈ Dom(A) for all s, t ∈ R≥0.
First, we evaluate the following expression
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d

ds
[St−sS̃su] = lim

h→0+

St−s−hS̃s+hu− St−sS̃su
h

= lim
h→0+

St−s−hS̃s+hu− St−s−hS̃su+ St−s−hS̃su− St−sS̃su
h

= lim
h→0+

St−s−hS̃s+hu− St−s−hS̃su
h

+ lim
h→0+

St−s−hS̃su− St−sS̃su
h

= St−s(AS̃su)− ASt−sS̃su.

The reason why we care about this expression is because

Stu− S̃tu =

∫ t

0

d

ds
[St−sS̃su] ds

=

∫ t

0

[St−s(AS̃su)− ASt−sS̃su] ds

= 0.

This is because for all u ∈ Dom(A), St−s(AS̃su) = ASt−sS̃su. Now, since
Dom(A) is dense in X, we conclude that St = S̃t for all t ∈ R≥0 on X.
Hence, the semigroup generated by A must be unique.

Now, we will show that statement 2 implies statement 1. This is the more
difficult direction. Assume that A is closed, Dom(A) = X, λ ∈ ρ(A) for all
λ > ω (with ω ∈ R≥0) and

‖(λI − A)−1‖ ≤ 1

λ− ω
.

To show: (b) A is the generator of a semigroup of type ω.

(b) From our assumption, the resolvent operator Rλ = (λI − A)−1 is
well-defined for all λ > ω. Hence, we can define the following bounded
linear operator:

Aλu = −λu+ λ2Rλu = −λ(λI − A)Rλu+ λ2Rλu = λARλu.

It is bounded because A is bounded via 4.2.3 and Rλ is a bounded linear
operator by assumption. Note that by writing h = 1/λ, we can write

Aλu = A(I − hA)−1 = A(E−h u).

Since Aλ is bounded for all λ > ω, we can consider its exponential map:
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etAλ = e−λt
∞∑
k=0

(λ2t)kRk
λ

k!
.

Let us establish an upper bound for the norm of etAλ :

‖etAλ‖ = ‖e−λt
∞∑
k=0

(λ2t)kRk
λ

k!
‖

≤ e−λt
∞∑
k=0

(λ2t)k‖Rλ‖k

k!

= exp(−λt+ λ2t‖Rk‖)
≤ exp(−λt+ λ2t/(λ− ω))

= exp(
λωt

λ− ω
).

In particular, when λ ≥ 2ω, ‖etAλ‖ ≤ e2ωt. The point of defining the
bounded operators Aλ is encapsulated in the following parts of the proof:

To show: (ba) For all u ∈ Dom(A), limλ→∞Aλu = Au.

(bb) For all u ∈ X, limλ→∞Aλu = Au.

(ba) Assume that u ∈ Dom(A). Then,

λRλu− u = λRλu− (λI − A)Rλu = ARλu = RλAu.

So, the standard argument shows that

‖λRλu− u‖ = ‖RλAu‖
≤ ‖Rλ‖‖Au‖

≤ 1

λ− ω
‖Au‖

→ 0 as λ→∞.

This reveals that limλ→∞ λRλu = u. Applying A to both sides and noting
that A is a continuous linear operator (by 4.2.3), we find that

lim
λ→∞

Aλu = lim
λ→∞

λARλu = Au.
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(bb) Now assume that v ∈ X. Utilising the fact that A is densely defined
(Dom(A) = X), there exists a sequence {un} in Dom(A) such that un → v
as n→∞. Now, there exists N ∈ Z>0 such that for all n > N ,
‖un − v‖ < ε/2. Now, we argue as follows:

‖λRλv − v‖ ≤ ‖λRλv − λRλun‖+ ‖λRλun − un‖+ ‖un − v‖
= ‖λRλ(v − un)‖+ ‖λRλun − un‖+

ε

2

≤ ‖λRλ‖‖v − un‖+ ‖λRλun − un‖+
ε

2

< λ‖Rλ‖
ε

2
+ ‖λRλun − un‖+

ε

2
.

Taking the limit as λ→∞, we find that

lim
λ→∞
‖λRλv − v‖ < lim

λ→∞
(

λ

λ− ω
ε

2
+
ε

2
) = ε.

Hence, limλ→∞ λRλv = v. Applying the operator A, we find that
limλ→∞Aλv = Av.

Our next claim is that the family of uniformly bounded operators etAλ

converges to a linear operator, called St. In order to see this, we will take
λ, µ > 2ω and estimate the difference etAλ − etAµ .

For all u ∈ X, we have

etAλu− etAµu =

∫ t

0

d

ds
[e(t−s)AµesAλu] ds

=

∫ t

0

(Aλ − Aµ)e(t−s)AµesAλu ds.

Now, we take the norm of both sides to get

‖etAλu− etAµu‖ ≤
∫ t

0

‖Aλu− Aµu‖‖e(t−s)Aµ‖‖esAλ‖ ds

=

∫ t

0

‖Aλu− Aµu‖e2ω(t−s)e2ωs ds

= te2ωt‖Aλu− Aµu‖.

Using the result proved in part (bb), we can take the limit as λ, µ→∞ to
obtain for all u ∈ X,
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lim sup
λ,µ→∞

‖etAλu− etAµu‖ ≤ te2ωt lim sup
λ,µ→∞

‖Aλu− Aµu‖ = 0.

Therefore, for all t ∈ R≥0 and u ∈ X, the below limit is well-defined

Stu = lim
λ→∞

etAλu.

We will show that {St}t∈R≥0
is a strongly continuous semigroup of type ω.

To show: (bc) For all s, t ∈ R≥0 and u ∈ X, StSsu = St+su.

(bd) For all t ∈ R≥0 and u ∈ X, ‖St‖ ≤ etω.

(bc) Assume that s, t ∈ R≥0 and u ∈ X. Then, by the definition,

StSsu = lim
λ→∞

exp(tAλ) exp(sAλ)u

= lim
λ→∞

exp((t+ s)Aλ)u

= St+su.

This proves the semigroup property.

(bd) We will compute an upper bound for ‖Stu‖:

‖Stu‖ = ‖ lim
λ→∞

etAλu‖

= lim
λ→∞
‖etAλu‖

≤ lim sup
λ→∞

‖etAλ‖‖u‖

≤ lim
λ→∞

etλω/(λ−ω)‖u‖

= etω‖u‖.

Thus, taking the supremum over all u ∈ X such that ‖u‖ ≤ 1, we find that
‖St‖ < etω. So, the semigroup must be of type ω.

Now, it remains to prove that A generates the semigroup {St}t∈R≥0
. Let B

be the operator which generates {St}t∈R≥0
. Then, we must show that

A = B. We will proceed in three steps:
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To show: (be) Dom(A) ⊆ Dom(B).

(bf) For all u ∈ Dom(A), Bu = Au.

(bg) Dom(B) ⊆ Dom(A).

(be) Assume that u ∈ Dom(A). Then, for all λ > ω, we must have

etAλu− u =

∫ t

0

esAλAλu ds.

The triangle inequality tells us that

‖esAλAλu− SsAu‖ ≤ ‖esAλ‖‖Aλu− Au‖+ ‖esAλAu− SsAu‖.

So, as λ→∞, the RHS approaches 0 because limλ→∞Aλu = Au and
limλ→∞ e

sAλu = Ssu. Thus, when λ→∞,

lim
λ→∞

(etAλu− u) = Stu− u =

∫ t

0

SsAu ds

for all t ∈ R≥0 and u ∈ Dom(A). This is equivalent to showing that the
limit

lim
t→0+

Stu− u
t

exists. Thus, u ∈ Dom(B) and Dom(A) ⊆ Dom(B).

(bf) Expanding the definition of Bu, we find that

Bu = lim
h→0+

Stu− u
t

= lim
h→0+

1

t

∫ t

0

SsAu ds

= Au.

This means that Au = Bu for all u ∈ Dom(A).

(bg) Now choose λ > ω. Then, the operators λI − A : Dom(A)→ X and
λI −B : Dom(B)→ X are both injective and surjective. By using the
previous two parts of the proof, we note that the restriction
(λI −B)|Dom(A) = λI − A. The restricted map must be surjective. The
point here is that the operator λI −B cannot be extended to any domain
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strictly larger than Dom(A), due to the surjectivity. So,
Dom(A) = Dom(B) as required. This finally completes the proof.
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Chapter 7

Sobolev Spaces

7.1 Introducing weak derivatives

Sobolev spaces are an important tool in the study of partial differential
equations. The leitmotif of this section is to not look for strong solutions of
partial differential equations, but rather so-called weak solutions, which will
be defined later. It turns out that weak solutions to PDEs are contained in
appropriate Sobolev spaces. Thus, they are more suitable to the study of
PDEs than Cn functions for all n ∈ Z>0 or Hölder continuous functions.

There are several important ideas which need to be fleshed out. The first of
these is the concept of test functions. Here is the first definition of the
section:

Definition 7.1.1. Let Ω ⊆ Rn be an open subset of Rn. Then, define C∞c
to be the space of smooth functions f : Ω→ R which are compactly
supported. That is, for all f ∈ C∞c (Ω), the support

supp(f) = {x ∈ Ω | f(x) 6= 0}
is a compact subset of Ω. Functions in C∞c are called test functions.

Test functions provide a segue into the definition of a weak derivative. The
reason for this is the integration by parts formula. Let x1, . . . , xn be
coordinates for Rn. If Ω ⊆ Rn is open, u ∈ C1(Ω) and φ ∈ C∞c (Ω), then∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

∂u

∂xi
φ dx

for all i ∈ {1, . . . , n}. In short, since φ has compact support in Ω, it must
vanish at the boundary ∂Ω.
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Note that if u ∈ Ck(Ω) for some k ∈ Z>0, we have the following more
general identity for all i ∈ {1, . . . , n}:∫

Ω

u
∂kφ

∂xki
dx = (−1)k

∫
Ω

∂ku

∂xki
φ dx

The next definition we will make pertains to locally integrable functions.

Definition 7.1.2. Let Ω ⊆ Rn be an open set. We define L1
loc(Ω) to be the

space of locally integrable functions on Ω. That is, if f ∈ L1
loc(Ω), then

f is a Lebesgue measurable function from Ω to R which is (Lebesgue)
integrable when restricted to every compact subset K ⊆ Ω.

For example, the functions ex, log|x| and |x|−1/2 are all in L1
loc(R), whereas

x−1 6∈ L1
loc(R). On the other hand, if Ω = (0,∞), then xk ∈ L1

loc(Ω) for all
k ∈ Z.

The most important point here is that a locally integrable function
f ∈ L1

loc(Ω) determines the linear functional

Λf : C∞c (Ω)→ R

ϕ 7→
∫

Ω

f(x)ϕ(x) dm(x).

It is linear due to the properties of Lebesgue integration. Now, we need
some extra notation. Let α = (α1, α2, . . . , αn) be an n-tuple of non-negative
integer numbers. The tuple α is commonly known as a multi-index. Its
length is given by |α| =

∑n
i=1 αi. The point is that each multi-index

corresponds to a partial differential operator of order |α|:

Dαf =
∂|α|

∂xα1
1 . . . ∂xαnn

f

Now we are ready to define distributions.

Definition 7.1.3. Let Ω ⊆ Rn be an open set. A distribution is a linear
functional Λ : C∞c (Ω)→ R such that for all compact subsets K ⊆ Ω, there
exists NK ∈ Z≥0 and CK ∈ R>0 such that for all φ ∈ C∞c such that
supp(φ) ⊆ K,

|Λ(φ)| ≤ CK‖φ‖CNK .
Here, we have for all N ∈ Z≥0,

‖φ‖CN = sup
x∈K
{Dαφ(x) | |α| ≤ N}.
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It should be stressed here that both NK and CK depend on the compact
subset K.

Definition 7.1.4. If there exists an integer N ∈ Z≥0 independent o K such
that the above definition holds (with the constant CK still depending on
K), then the distribution has finite order. The smallest such integer N is
the order of the distribution.

We already know one example of a distribution.

Example 7.1.1. Let Ω ⊆ Rn be an open set. Let f ∈ L1
loc(Ω). Then, as

discussed before, f induces the linear functional

Λf : C∞c (Ω)→ R

ϕ 7→
∫

Ω

f(x)ϕ(x) dm(x).

We claim that this is a distribution. Suppose that φ ∈ C∞c (Ω) such that
supp(φ) ⊆ K ⊆ Ω, where K is a compact subset of Ω. Then,

|Λf (φ)| = |
∫

Ω

fφ dx|

= |
∫
K

fφ dx|

≤ sup
x∈K
|φ(x)||

∫
K

f dx|

≤ sup
x∈K
|φ(x)|

∫
K

|f | dx

≤ C‖φ‖C0 .

where C =
∫
K
|f | dx and N = 0, regardless of the choice of compact subset

K. Therefore, Λf is a distribution of order zero.

The set of all distributions of Ω is a vector space, as the next lemma
demonstrates.

Lemma 7.1.1. Let Ω ⊆ Rn. Then, the set of all distributions on Ω forms a
R-vector space.
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Proof. Assume that Ω ⊆ Rn. Let D(Ω) denote the set of all distributions
on Ω. We will show that D(Ω) is closed under addition and scalar
multiplication.

To show: (a) If Λ,Φ ∈ D(Ω), then Λ + Φ ∈ D(Ω).

(b) If Λ ∈ D(Ω) and α ∈ R, then αΛ ∈ D(Ω).

(a) Assume that Λ,Φ ∈ D(Ω). Then, for all compact subsets K ⊆ Ω, there
exists CK , DK ∈ R>0 and MK , NK ∈ Z≥0 such that for all ϕ ∈ C∞c (Ω) with
supp(ϕ) ⊆ K,

|Λ(ϕ)| ≤ CK‖ϕ‖CMK and |Φ(ϕ)| ≤ DK‖ϕ‖CNK .
Now observe that

|(Λ + Φ)(ϕ)| = |Λ(ϕ) + Φ(ϕ)|
≤ |Λ(ϕ)|+ |Φ(ϕ)|
≤ CK‖ϕ‖CMK +DK‖ϕ‖CNK
≤ (CK +DK)‖ϕ‖CPK .

Here, PK = max(CK , DK). This shows that Λ + Φ ∈ D(Ω).

(b) Now assume that α ∈ R. Then,

|(αΛ)(ϕ)| = |α||Λ(ϕ)|
≤ |α|CK‖ϕ‖CMK .

Thus, αΛ ∈ D(Ω).

Therefore, D(Ω) is a R-vector space.

Interestingly, there is more to the vector space D(Ω) which meets the eye.
It is tied to the idea that while an arbitrary function f may not admit a
classical derivative, for a distribution Λ, a “derivative” can always be
defined. It turns out that D(Ω) is also closed under the partial differential
operator Dα. We will prove this statement below.
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Theorem 7.1.2. Let Ω ⊆ Rn be an open set. Let Λ : C∞c (Ω)→ R be a
distribution and α a multi-index. Define the map

DαΛ(φ) = (−1)|α|Λ(Dαφ).

Then, DαΛ is itself a distribution.

Proof. Assume that Ω ⊆ Rn is an open set. Assume that Λ ∈ D(Ω) and
α = (α1, . . . , αn) is a multi-index. Assume that DαΛ is defined as above.
From its definition, DαΛ must be a linear functional. Assume that K ⊆ Ω
is a compact set and ϕ ∈ C∞c (Ω), with supp(ϕ) ⊆ K. Now, we argue as
follows:

|DαΛ(ϕ)| = |(−1)|α|Λ(Dαϕ)|
= |Λ(Dαϕ)|
≤ CK‖Dαϕ‖CNK
≤ CK‖ϕ‖CNK+|α| .

So, DαΛ must be a distribution.

The reason for the above definition of Dα is that if Λf : C∞c (Ω)→ R is the
linear functional associated with f ∈ L1

loc(Ω), then for all φ ∈ C∞c (Ω) with
supp(φ) contained in some compact subset of Ω

DαΛf (φ) = (−1)|α|Λf (D
αφ)

= (−1)|α|
∫

Ω

fDαφ dx

=

∫
Ω

Dαfφ dx

= ΛDαf (φ).

With all of this in mind, we have now reached the definition of a weak
derivative.

Definition 7.1.5. Let Ω ⊆ Rn be an open set and f ∈ L1
loc(Ω). Let

α = (α1, . . . , αn) be a multi-index and Λf be the linear functional
associated with f . If there exists a function g ∈ L1

loc(Ω) such that
DαΛf = Λg or equivalently
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∫
Ω

fDαφ dx = (−1)|α|
∫

Ω

gφ dx

for all φ ∈ C∞c (Ω), then g is called the weak α-th derivative of f .

We will now prove some basic properties of weak derivatives and then
discuss a few selected examples. The first result demonstrates that weak
derivatives are unique, up to a set of Lebesgue measure zero.

Lemma 7.1.3. Let Ω ⊆ Rn be an open set and f ∈ L1
loc(Ω). Then, if the

weak derivative of f exists, it is unique almost everywhere.

Proof. Assume that Ω ⊆ Rn is an open set and f ∈ L1
loc(Ω). Suppose that

g, g̃ ∈ L1
loc(Ω) such that for all φ ∈ C∞c (Ω),∫

Ω

fDαφ dx = (−1)|α|
∫

Ω

gφ dx = (−1)|α|
∫

Ω

g̃φ dx

for some multi-index α = (α1, . . . , αn). Rearranging the above equation, we
find that for all φ ∈ C∞c (Ω), ∫

Ω

(g − g̃)φ dx = 0.

This is enough to demonstrate that g(x) = g̃(x) for almost all x ∈ Ω.

Weak derivative also satisfy a nice convergence property, as depicted below.

Lemma 7.1.4. Let Ω ⊆ Rn be an open set and {un} be a sequence in
L1
loc(Ω) such that each un has an α-th weak derivative Dαun (here,

α = (α1, . . . , αn) is a multi-index). Then, if un → u and Dαun → vα in
L1
loc(Ω), then vα = Dαu.

Proof. Assume that Ω ⊆ Rn is open and {un} is a sequence in L1
loc(Ω).

Assume that un → u and Dαun → vα in L1
loc(Ω). Then, we compute for

every test function φ ∈ C∞c (Ω),

∫
Ω

vαφ dx =

∫
Ω

lim
n→∞

Dαunφ dx

= lim
n→∞

∫
Ω

Dαunφ dx

= lim
n→∞

(−1)|α|
∫

Ω

unD
αφ dx

= (−1)|α|
∫

Ω

uDαφ dx.
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Therefore, vα = Dαu.

Now, we will cover some examples of weak derivatives.

Example 7.1.2. Set Ω = R and consider the function

f(x) =

{
0, if x ≤ 0,

x, if x > 0.
∈ L1

loc(R).

What is the first weak derivative of f? Suppose that ϕ ∈ C∞c (R). Then, we
use integration by parts to compute that

D(1)Λf (ϕ) = −Λf (D
(1)ϕ)

= −
∫
R
f(x)D(1)ϕ(x) dx

= −
∫ ∞

0

xϕ′(x) dx

=

∫ ∞
0

ϕ(x) dx (Integration by parts)

=

∫
R
H(x)ϕ(x) dx.

So, we can conclude that the first weak derivative of the function f(x) is
the Heaviside step function H(x).

Now, observe that H(x) ∈ L1
loc(R). What is the first weak derivative of

H(x)? Again, we can use the definition to calculate

D(1)ΛH(ϕ) = −ΛH(D(1)ϕ)

= −
∫
R
H(x)D(1)ϕ(x) dx

= −
∫ ∞

0

ϕ′(x) dx

= ϕ(0)− ϕ(∞)

= ϕ(0) (ϕ vanishes at the boundary of R).

=

∫
R
δ(x)ϕ(x) dx.
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Note that δ(x) is the Dirac delta function. In fact, this does not constitute
a weak derivative of H(x). Intuitively, this is because the Dirac delta
function is not actually a function. To see why rigorously, suppose that for
some function g ∈ L1

loc(R) that for all ϕ ∈ C∞c (R),∫
g(x)ϕ(x) dx = ϕ(0).

Then, the dominated convergence theorem tells us that

lim
h→0

∫ h

−h
|g(x)| dx = 0.

Choose ε ∈ R>0 so that
∫ δ
−δ|g(x)| dx ≤ 1/2. Let η : R→ [0, 1] be a smooth

function with η(0) = 1 and supp(η) ⊆ [−ε, ε]. Then,

1 = ϕ(0)

=

∫
R
g(x)ϕ(x) dx

=

∫ δ

−δ
g(x)ϕ(x) dx

≤ sup
x∈R
|ϕ(x)|

∫ δ

−δ
g(x) dx

≤ 1

2
.

This is a contradiction.

The next example highlights the difference between a weak derivative and
the classical notion of the derivative.

Example 7.1.3. Let f denote the function

f(x) =

{
0, if x ∈ Q,
2 + sin x, otherwise.

By definition f is discontinuous at every point x ∈ R. So, it is not
differentiable at any point. However, f does have a first weak derivative. In
particular, since m(Q) = 0, we can disregard the behaviour of f on Q and
thus, we have
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D(1)Λf (ϕ) = −
∫
f(x)ϕ′(x) dx = −

∫
(2+sin x)ϕ′(x) dx =

∫
cosx ϕ(x) dx.

So, cos x constitutes the first weak derivative of f(x).

7.2 Mollifications

The primary use of mollifications is to approximate general functions with
smooth functions. They can be likened to the role of bump functions and
partitions of unity in differential geometry.

Definition 7.2.1. Denote by J : Rn → R the standard mollifier on Rn:

J(x) =

{
Cn exp(− 1

|x|2−1
) if |x| < 1,

0 otherwise.

Here the constant Cn is a normalisation constant, ensuring that∫
Rn J(x) dx = 1.

Definition 7.2.2. For all ε ∈ R>0 we also define

Jε(x) =
1

εn
J(
x

ε
).

Some properties of the standard mollifier and its rescaled variants include:
for all ε ∈ R>0, Jε ∈ C∞c (Rn) with supp(Jε) = {x ∈ Rn | |x| ≤ ε} and∫

Rn
Jε(x) dx = 1.

Below, we define the mollification of a locally integrable function f :

Definition 7.2.3. Let Ω ⊆ Rn be an open set and f ∈ L1
loc(Ω). For all

ε ∈ R>0, the mollification of f is defined to be the function

fε(x) = Jε(x) ∗ f(x) =

∫
B(x,ε)

Jε(x− y)f(y) dy.

Note that due to the properties of Jε and f , the above convolution is
well-defined at all points in the subset

Ωε = {x ∈ Ω | B(x, ε) ⊆ Ω}.
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As with any newly defined mathematical object, we will prove some
properties mollifications satisfy. In the process, the properties of
mollifications will highlight why they are suitable for approximating general
functions.

Theorem 7.2.1 (Properties of Mollifiers). Let Ω ⊆ Rn be an open set and
f ∈ L1

loc(Ω). Let ε ∈ R>0. Then,

1. fε ∈ C∞(Ωε).

2. limε→0 fε = f for almost all x ∈ Ω.

3. If f is continuous, then fε → f uniformly on compact subsets of Ω.

4. If p ∈ [1,∞) and f ∈ Lploc(Ω), then fε → f in Lploc(Ω).

Proof. Assume that Ω ⊆ Rn is an open set and f ∈ L1
loc(Ω). Assume that

ε ∈ R>0.

To show: (a) fε ∈ C∞(Ωε).

(b) limε→0 fε = f for almost all x ∈ Ω.

(c) If f is continuous, then fε → f uniformly on compact subsets of Ω.

(d) If p ∈ [1,∞) and f ∈ Lploc(Ω), then fε → f in Lploc(Ω).

(a) Assume that {e1, . . . , en} is the standard basis for Rn. Assume that
x ∈ Ωε and i ∈ {1, . . . , n}. Fix h ∈ R>0 small enough so that x+ hei ∈ Ωε.
Using the definition of fε, we compute the following quotient:

fε(x+ hei)− fε(x)

h
=

1

h

∫
B(x,ε)

(Jε(x+ hei − y)− Jε(x− y))f(y) dy

=
1

εn

∫
B(x,ε)

1

h
(J(

x+ hei − y
ε

)− J(
x− y
ε

))f(y) dy.

Since the closed ball B(x, ε) is contained in Ω by definition,
f ∈ L1(B(x, ε)). This is because each Ωε is open in Rn. Now, since J is
smooth, we have the following limit as h→ 0:

lim
h→0

1

h
[J(

x+ hei − y
ε

)− J(
x− y
ε

)] =
1

ε

∂J

∂xi
(
x− y
ε

)
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From the previous equation, we can take the limit as h→ 0 of both sides to
obtain

∂fε
∂xi

(x) =
1

εn

∫
B(x,ε)

1

ε

∂J

∂xi
(
x− y
ε

)f(y) dy

=

∫
B(x,ε)

1

εn+1

∂J

∂xi
(
x− y
ε

)f(y) dy

=

∫
B(x,ε)

∂Jε
∂xi

(x− y)f(y) dy.

By iterating the above argument, we can demonstrate that for all
multi-indices α, the partial derivative Dαfε exists and is continuous from its
integral definition. This is enough to show that fε ∈ Ωε.

(b) We will invoke the Lebesgue differentiation theorem, which
demonstrates that for almost all x ∈ Ω, we have

0 = |f(x)− f(x)|
= lim

r→0
Ar|f(y)− f(x)|

= lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy.

Now, let x ∈ Ω be a point such that the above identity holds. Then, we
argue as follows:

|fε(x)− f(x)| = |
∫
B(x,ε)

Jε(x− y)f(y) dy − f(x)|

= |
∫
B(x,ε)

Jε(x− y)f(y) dy −
∫
B(x,ε)

Jε(x− y)f(x) dy|

≤ |
∫
B(x,ε)

Jε(x− y)[f(y)− f(x)] dy|

≤ 1

εn

∫
B(x,ε)

J(
x− y
ε

)|f(y)− f(x)| dy

≤ C

m(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)| dy (C ∈ R>0)

→ 0 (Lebesgue differentiation theorem)
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as ε→ 0. Note that the second equality in the above working is due to the
normalisation of Jε. This demonstrates that fε → f for almost all x ∈ Ω.

(c) Assume that f is continuous and K ⊆ Ω be a compact subset. Choose
δ ∈ R>0 small enough so that the compact neighbourhood

Kδ = {x ∈ Rn | d(x,K) ≤ δ}

which contains K is still contained in Ω. Since f is continuous, it must be
uniformly continuous on the compact set Kδ. This means that for all
ε ∈ R>0 and x ∈ K, there exists δ ∈ R>0 such that if |y − x| < δ, then

y ∈ Kδ and |f(x)− f(y)| < ε.

By applying a similar computation to part (b), we have

|fε(x)− f(x)| = |
∫

Ω

Jε(x− y)f(y) dy − f(x)|

= |
∫

Ω

Jε(x− y)f(y) dy −
∫

Ω

Jε(x− y)f(x) dy|

≤
∫

Ω

|Jε(x− y)[f(y)− f(x)]| dy < ε.

We carefully note that in the last line, we used uniform continuity on the
compact set Kδ. Since x ∈ K was arbitrary, we obtain uniform convergence
fε(x)→ f(x) for all x ∈ K.

(d) Assume that p ∈ [1,∞) and f ∈ Lploc(Ω). Construct Kδ in the same way
as before. The claim is that for all ε ∈ (0, p),

‖fε‖Lp(K) ≤ ‖f‖Lp(Kδ)

Define q = p/(p− 1). Then, for all x ∈ K, Hölder’s inequality tells us that
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|fε(x)| = |
∫
B(x,ε)

Jε(x− y)f(y) dy|

≤
∫
B(x,ε)

Jε(x− y)|f(y)| dy

=

∫
B(x,ε)

(Jε(x− y))
p−1
p (Jε(x− y))

1
p |f(y)| dy

≤ (

∫
B(x,ε)

Jε(x− y) dy)
p−1
p (

∫
B(x,ε)

Jε(x− y)|f(y)|p dy)
1
p (Hölder’s inequality)

= (

∫
B(x,ε)

Jε(x− y)|f(y)|p dy)
1
p (Normalisation of Jε).

Therefore, we have

‖fε‖Lp(K) =

∫
K

|fε(x)|p dx

≤
∫
K

(

∫
B(x,ε)

Jε(x− y)|f(y)|p dy) dx

=

∫
K

|f(y)|p(
∫
B(x,ε)

Jε(x− y) dx) dy

≤
∫
Kδ

|f(y)|p(
∫
B(x,ε)

Jε(x− y) dx) dy

=

∫
Kδ

|f(y)|p dy

= ‖f‖Lp(Kδ).

Now, we use the fact that continuous functions are dense in Lp in order to
choose a continuous function g ∈ Cts(Kδ,R) such that for all δ ∈ R>0,
‖f − g‖Lp(Kδ) < δ. Combining this with the above result, we find that

‖fε − f‖Lp(K) ≤ ‖fε − gε‖Lp(K) + ‖gε − g‖Lp(K) + ‖g − f‖Lp(K)

= ‖f − g‖Lp(Kδ) + ‖gε − g‖Lp(K) + ‖g − f‖Lp(K)

< δ + ‖gε − g‖Lp(K) + δ.

Since g is continuous, we can use the results in parts (b) and (c) to deduce
that |gε − g| → 0 uniformly on the compact set Kδ. This means that if we
take the limit ε→ 0,

202



lim sup
ε→0

‖fε − f‖Lp(K) ≤ 2δ.

Since δ ∈ R>0 was arbitrary, we deduce that fε → f in Lp(K). Since this
holds for all compact subsets K ⊆ Ω, we deduce that fε → f in Lploc(Ω).

Here is a corollary of the above theorem

Corollary 7.2.2. Let Ω ⊆ Rn be an open set and f ∈ L1
loc(Ω) such that for

all φ ∈ C∞c (Ω), ∫
Ω

fφ dx = 0.

Then, f(x) = 0 for almost all x ∈ Ω.

Proof. Assume that Ω ⊆ Rn is an open set and f ∈ L1
loc(Ω) such that for all

φ ∈ C∞c (Ω), ∫
Ω

fφ dx = 0.

Take φ(y) = Jε(x− y) for some ε ∈ R>0. Then, using 7.2.1, we deduce that
for almost all x ∈ Ω,

f(x) = lim
ε→0

fε(x)

= lim
ε→0

∫
B(x,ε)

Jε(x− y)f(y) dy

= lim
ε→0

∫
Ω

Jε(x− y)f(y) dy

= 0.

The third equality in the above working is due to the fact that supp(Jε) ⊆ Ω
for an appropriate choice of ε ∈ R>0. So, f(x) = 0 for almost all x ∈ Ω.

Now we return to thinking about weak derivatives. Another very nice
property of mollifications is that since they are test functions, they end up
commuting with weak derivatives.
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Theorem 7.2.3. Let ε ∈ R>0 and Ωε ⊆ Ω such that

Ωε = {x ∈ Ω | B(x, ε) ⊆ Ω}.

Let f ∈ L1
loc(Ω) such that its weak derivative Dαf is defined for some

multi-index α. Then, for all x ∈ Ωε,

Dα(Jε ∗ f) = Jε ∗Dαf.

Proof. Assume that ε ∈ R>0. Then, for all x ∈ Ωε, the function
φ(y) = Jε(x− y) ∈ C∞c (Ω). We write Dα

x and Dα
y to distinguish between

differentiation with respect to the variables x and y respectively. Therefore,
we compute directly that

Dα(fε)(x) = Dα
x (

∫
Ω

Jε(x− y)f(y) dy)

=

∫
Ω

Dα
x (Jε(x− y))f(y) dy

= (−1)|α|
∫

Ω

Dα
y (Jε(x− y))f(y) dy

= (−1)2|α|
∫

Ω

Jε(x− y)Dα
y (f(y)) dy

=

∫
Ω

Jε(x− y)Dα
y (f(y)) dy

= (Dα
xf)ε(x).

Hence, for all x ∈ Ωε,

Dα(Jε ∗ f) = Jε ∗Dαf.

The fact that weak derivatives commute with mollifications gives us a
method to relate weak derivatives with the classical notion of the
derivative. The below example provides a glimpse into why this is true.

Lemma 7.2.4. Let Ω ⊆ Rn be an open connected set and u ∈ L1
loc(Ω).

Suppose that for almost all x ∈ Ω that the first order weak derivatives
Dxiu(x) = 0 for all i ∈ {1, . . . , n}, then u is equal to a constant function
almost everywhere.
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Proof. Assume that Ω ⊆ Rn is an open connected set and u ∈ L1
loc(Ω). The

mollified function uε = Jε ∗ u ∈ C∞c (Ωε) whose weak derivatives Dxiuε
vanish on Ωε, as a consequence of 7.2.3. Hence, uε must be a constant
function on each connected component of Ωε.

Interestingly, even if Ω is connected, Ωε is not necessarily connected.
However, this is not a problem. Consider any two points x, y ∈ Ω. Since Ω
is connected, there exists a polygonal path Γ which joins x and y and lies
entirely in Ω. Define

δ = min
z∈Γ

d(z, ∂Ω).

Then, for all ε ∈ (0, δ), Γ is contained in the set Ωε (because it can never
extend out of Ω). So, x and y are in the same connected component of Ωε.
So, uε(x) = uε(y) for all x, y ∈ Ω.

Finally, set ũ = limε→0 uε. Since uε is constant for an appropriately small
ε ∈ R>0 as outlined above, ũ must also be a constant function on Ω.
However, we also know from 7.2.1 that ũ(x) = u(x) for almost all x ∈ Ω.
This completes the proof.

A direct application of the above lemma is for the following theorem:

Theorem 7.2.5. Let Ω ⊆ R be an open interval. Assume that u : Ω→ R
has a weak derivative v ∈ L1(Ω). Then, there exists an absolutely
continuous function ũ such that for almost all x ∈ Ω, ũ = u and

v(x) = lim
h→0

ũ(x+ h)− ũ(x)

h
.

Proof. Assume that Ω is an open interval in R. Assume that u : Ω→ R and
v are defined as above. Set

ũ(x) = u(x0) +

∫ x

x0

v(y) dy.

Here, x0 is a Lebesgue point of u. By definition ũ is absolutely continuous
and
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lim
h→0

ũ(x+ h)− ũ(x)

h
= lim

h→0

u(x0) +
∫ x+h

x0
v(y) dy − u(x0)−

∫ x
x0
v(y) dy

h

= lim
h→0

1

h

∫ x+h

x

v(y) dy

= v.

Now, assume that ε ∈ R>0. Consider the mollifications uε and vε. Then,
these function are smooth and for all x ∈ Ω, we have

uε(x) = uε(x0) +

∫ x

x0

vε(y) dy.

because uε has weak derivative vε by 7.2.3. Now, as ε→ 0, the RHS must
converge to ũ(x) for all x ∈ Ω by definition. However, the LHS converges to
u(x) for every Lebesgue point of u. This is a consequence of 7.2.1. Hence,
ũ(x) = u(x) for almost all x ∈ Ω.

7.3 Properties of Sobolev spaces

Before we arrive at the definition of a Sobolev space, there are a few
definitions from measure theory that we will highlight briefly.

Definition 7.3.1. Let f : Rn → R be a measurable function. The function
f is called summable if ∫

Rn
|f | dx <∞.

It is called locally summable if for all open balls B(x, r) ⊆ Rn,∫
Rn
|f1B(x,r)| dx =

∫
B(x,r)

|f | dx <∞.

Here, 1B(x,r) is the characteristic function associated with the open ball
B(x, r). The integrals above are with respect to Lebesgue measure on Rn.

Definition 7.3.2. Let f : Rn → R be a measurable function. The
essential supremum of f is defined by

ess sup f = inf{α ∈ R | f(x) < α for almost all x ∈ Rn}.
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There are a multitude of alternative ways of defining the essential
supremum. The one above originates from Bressan [AB10]. For instance,

1. ess sup f = inf{α ∈ R | (f − α)−1((−∞, 0)) is conull.}

2. ess sup f = inf{α ∈ R | (f − α)−1([0,∞)) is null.}

3. ess sup f = inf{α ∈ R | m({x ∈ Rn | f(x) ≥ α}) = 0}

In particular, the third alternative definition can be found in Evans [LE98].
It is not too hard to show that all these definitions are equivalent.

Now, we can properly state the definition of a Sobolev space.

Definition 7.3.3. Let Ω ⊆ Rn. Let p ∈ [1,∞] and k ∈ Z≥0. The Sobolev
space W k,p(Ω) is the space of all locally summable functions f : Ω→ R
such that for all multi-indices α with |α| ≤ k, the weak derivative Dαf
exists and belongs to Lp(Ω).

Recalling the norm on the space Lp(Ω) for all p ∈ [1,∞], we can define the
following norms on various Sobolev spaces as follows:

‖u‖Wk,p = (
∑
|α|≤k

∫
Ω

|Dαu|p dx)1/p (p ∈ [1,∞))

‖u‖Wk,∞ =
∑
|α|≤k

ess sup
x∈Ω
|Dαu|

By using the norms on Lp(Ω), it is not too difficult to show that the above
norms are actually norms. We will show later that with the norms above,
the Sobolev spaces W k,p are actually Banach spaces for all p ∈ [1,∞] and
k ∈ Z≥0.

There are a few more definitions which need to be ironed out before we
proceed.

Definition 7.3.4. Let Ω ⊆ Rn, p ∈ [1,∞] and k ∈ Z>0. The subspace
W k,p

0 (Ω) ⊆ W k,p(Ω) is the closure of C∞c (Ω) in W k,p(Ω). Alternatively,
u ∈ W k,p

0 (Ω) if and only if there exists a sequence of functions {un} in
C∞c (Ω) such that

lim
n→∞
‖u− un‖Wk,p = 0.
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One can interpret W k,p
0 (Ω) as the closed subspace of all functions

f ∈ W k,p(Ω) such that for all multi-indices α such that |α| ≤ k − 1,
Dαu = 0 on the boundary ∂Ω.

Definition 7.3.5. Let Ω ⊆ Rn. An open set U is compactly contained
in Ω if its closure U is a compact subset of Ω.

Definition 7.3.6. Let Ω ⊆ Rn, p ∈ [1,∞] and k ∈ Z>0. Denote by W k,p
loc (Ω)

the space of functions which are locally in W k,p. That is, the functions
u : Ω→ R ∈ W k,p

loc (Ω) must satisfy the following property: If U is an open
set compactly contained in Ω, then the restriction u|U ∈ W k,p(U).

Interestingly, just like Lp spaces, the case where p = 2 is particularly special.

Definition 7.3.7. Let Ω ⊆ Rn and p ∈ [1,∞]. The Hilbert-Sobolev
space is defined by Hk(Ω) = W k,2(Ω). It is equipped with the inner product

〈u, v〉Hk =
∑
|α|≤k

∫
Ω

DαuDαv dx

Similarly, we define Hk
0 (Ω) = W k,2

0 (Ω).

Now we will prove that Sobolev spaces are Banach spaces and Hilbert
spaces in the case where p = 2.

Theorem 7.3.1. Let Ω ⊆ Rn, p ∈ [1,∞] and k ∈ Z>0. Then, W k,p(Ω) is a
Banach space, W k,p

0 (Ω) is a closed subspace of W k,p(Ω) and hence, a
Banach space and Hk(Ω) and Hk

0 (Ω) are Hilbert spaces.

Proof. Assume that Ω ⊆ Rn, p ∈ [1,∞] and k ∈ Z>0.

To show: (a) W k,p(Ω) is a vector space.

(b) The function ‖−‖Wk,p defines a norm on W k,p(Ω).

(c) W k,p(Ω) is a Banach space.

(d) W k,p
0 (Ω) is a Banach space.

(a) Assume that f, g ∈ W k,p(Ω) and λ, µ ∈ R. Then, the linear combination
λf + µg is a locally summable function because f and g are both locally
summable. Using the linearity of Dα, the weak derivatives must satisfy

Dα(λf + µg) = λDαu+ µDαv.
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Since Lp(Ω) is a vector space, Dα(λf + µg) ∈ Lp(Ω) for all |α| ≤ k. Hence,
W k,p(Ω) is a vector space.

(b) Using the linearity of Dα and the definition of ‖−‖Wk,p , we find that for
all p ∈ [1,∞) and u ∈ W k,p(Ω),

‖λu‖Wk,p = (
∑
|α|≤k

∫
Ω

|Dα(λu)|p dx)1/p

= (
∑
|α|≤k

∫
Ω

|λDαu|p dx)1/p

= (|λ|p
∑
|α|≤k

∫
Ω

|Dαu|p dx)1/p

= |λ|(
∑
|α|≤k

∫
Ω

|Dαu|p dx)1/p

= |λ|‖u‖Wk,p .

A similar computation works for p =∞. Secondly, note again by the
definition of ‖−‖Wk,p ,

‖u‖Wk,p ≥ ‖u‖Lp ≥ 0

with equality holding if and only if u = 0. Finally, to see that the triangle
inequality holds in the case where p ∈ [1,∞),

‖u+ v‖Wk,p = (
∑
|α|≤k

‖Dαu+Dαv‖pLp)
1/p

≤ (
∑
|α|≤k

(‖Dαu‖Lp + ‖Dαv‖Lp)p)1/p (Minkowski)

≤ (
∑
|α|≤k

‖Dαu‖pLp)
1/p + (

∑
|α|≤k

‖Dαv‖pLp)
1/p

= ‖u‖Wk,p + ‖v‖Wk,p .

For the case where p =∞, the computation is similar:
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‖u+ v‖Wk,∞ =
∑
|α|≤k

ess sup
x∈Ω
|Dα(u+ v)|

=
∑
|α|≤k

‖Dαu+Dαv‖L∞

≤
∑
|α|≤k

(‖Dαu‖L∞ + ‖Dαv‖L∞) (Minkowski)

= ‖u‖Wk,∞ + ‖v‖Wk,∞ .

So, W k,p(Ω) is a normed vector space for all k ∈ Z>0 and p ∈ [1,∞].

(c) Assume that {un}n∈Z>0 is a Cauchy sequence in W k,p(Ω). Then, for all
multi-indices α such that |α| ≤ k, the sequence of weak derivatives {Dαun}
is Cauchy in Lp(Ω), due to 7.1.4. Since Lp(Ω) is a Banach space, the
sequence {Dαun} must converge to some function uα ∈ Lp(Ω). Similarly,
there exists u ∈ Lp(Ω) such that

‖un − u‖Wk,p → 0.

By 7.1.4, Dαu = uα. Thus, W k,p(Ω) is a Banach space.

(d) By definition, W k,p
0 (Ω) is a closed subspace of W k,p(Ω) (it is the closure

of C∞c (Ω)). Since W k,p(Ω) is complete, W k,p
0 (Ω) is also complete and thus,

a Banach space.

Finally, in the special case where p = 2, parts (c) and (d) show that Hk(Ω)
and Hk

0 (Ω) are Hilbert spaces with the inner product

〈u, v〉Hk =
∑
|α|≤k

∫
Ω

DαuDαv dx.

Let us look at some examples of Sobolev spaces. First, we need a result
from measure theory.

Lemma 7.3.2. Let (X,A, µ) be a finite measure space and p, q ∈ Z>0 such
that 1 ≤ p < q <∞. Then, Lq(X,A, µ) ⊆ Lp(X,A, µ).
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Proof. Assume that (X,A, µ) is a finite measure space and p, q ∈ Z>0 such
that 1 ≤ p < q <∞. Assume that f ∈ Lq(X,A, µ). Then, by Hölder’s
inequality, we have

∫
|f |p dµ =

∫
|f |p · 1 dµ

≤ (

∫
|f |pq/p dµ)p/q(

∫
dµ)1−p/q (Hölder)

= (

∫
|f |q dµ)p/qµ(X)1−p/q

<∞.

Therefore, f ∈ Lp(X,A, µ). Note that Hölder’s inequality can also prove
the converse in a similar vein.

Example 7.3.1. Let Ω = (a, b) ⊆ R be an open interval, p ∈ [1,∞] and
k = 1. By definition, the Sobolev space W 1,p((a, b)) consists of all locally
summable functions f : (a, b)→ R whose first order weak derivatives all
exist (for all multi-indices α such that |α| ≤ 1) and are in Lp((a, b)). From
the above result, Lp((a, b)) ⊆ L1((a, b)). Hence, the functions in W 1,p((a, b))
are almost everywhere equal to absolutely continuous functions, whose
derivatives are in Lp((a, b)).

Example 7.3.2. Let Ω = B(0, 1) ⊆ Rn be the open ball centred at the
origin, with radius 1. Consider the following function for all γ ∈ R>0 and
0 < |x| < 1

u(x) = |x|−γ = (
n∑
i=1

x2
i )
−γ/2.

Observe that u ∈ C1(Ω\{0}). with derivative

∂u

∂xi
= −γ

2
· 2xi · (

n∑
i=1

x2
i )
−γ/2−1 =

−γxi
|x|γ+2

.

for all i ∈ {1, . . . , n}. Note that the gradient ∇u has norm given by

|∇u(x)| = (
n∑
i=1

| ∂u
∂xi
|2)1/2 =

γ

|x|γ+1
.
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The point of the above computation is that on the open set Ω\{0}, u does
have weak derivatives of all orders - they are exactly the classical
derivatives. The question is: when does the above formula for ∂xiu (the
partial derivatives of u) define the weak derivatives of u over the entire
domain Ω?

Assume that φ ∈ C∞c (Ω) and ε ∈ R>0. We begin by using an integration by
parts to deduce that

∫
Ω−B(0,ε)

u∂xiφ dx =

∫
∂(Ω−B(0,ε))

uφνi dS −
∫

Ω−B(0,ε)

∂xiuφ dx

=

∫
|x|=ε

uφνi dS −
∫
ε<|x|<1

∂xiuφ dx.

Here, ν = (ν1, . . . , νn) is the inwards pointing normal on the boundary
|x| = ε. Note that φ vanishes when |x| = 1 by definition. When γ + 1 < n,
|∇u(x)| ∈ L1(Ω). In this particular case, we can bound the first term as
follows

|
∫
|x|=ε

uφνi dS| ≤
∫
|x|=ε
|uφνi| dS

≤ ‖φ‖L∞
∫
|x|=ε
|uνi| dS

≤ ‖φ‖L∞
∫
|x|=ε

ε−γ dS

= ‖φ‖L∞εn−1−γ

→ 0

as ε→ 0. Therefore, in the limit ε→ 0, we have∫
Ω

u∂xiφ dx = −
∫

Ω

∂xiuφ dx

provided that γ < n− 1. Furthermore, |∇u(x)| ∈ Lp(Ω) whenever
(γ+ 1)p < n. Therefore, we can conclude that u ∈ W 1,p(Ω) if γ < (n− p)/p.

We will now proceed to derive further basic properties of Sobolev spaces.
The next result is motivated by the following question: Can we estimate the
norm of a function in a Sobolev space by the norm of its weak derivatives?
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It turns out that according to [AB10], that this is a deep question. The
Poincaré inequality provides a small step towards answering the question.

Lemma 7.3.3 (Poincaré Inequality). Let Ω ⊆ Rn be an open set which
satisfies the inclusion Ω ⊆ (a, b)× Rn−1 for some a, b ∈ R. Then, for all
u ∈ H1

0 (Ω),

‖u‖L2 ≤ 2(b− a)‖Dx1u‖L2 .

Proof. From the definition of H1
0 (Ω) = W 1,2(Ω), it suffices to prove the

inequality in the case where u is a test function. Assume first that
u ∈ C∞c (Ω). Extend u to the entire space Rn by setting u(x) = 0 whenever
x 6∈ Ω. The notation here is that x = (x1, x

′), with x′ = (x2, . . . , xn). Since
u(x) is a test function, it must vanish when x1 = a. So,

u2(x1, x
′) =

∫ x1

a

2u∂x1u(t, x′) dt.

Arguing with integration by parts, we have

‖u‖2
L2 =

∫
Rn
u2(x) dx

=

∫
Rn−1

∫ b

a

u2(x1, x
′) dx1 dx

′

=

∫
Rn−1

∫ b

a

1 · (
∫ x1

a

2u∂x1u(t, x′) dt) dx1 dx
′

=

∫
Rn−1

([x1

∫ x1

a

2u∂x1u(t, x′) dt]ba −
∫ b

a

x12u∂x1u(t, x′) dx1) dx′

=

∫
Rn−1

∫ b

a

(b− x1)2u∂x1u(t, x′) dx1 dx
′

≤ 2(b− a)

∫
Rn
|u||∂x1u| dx

≤ 2(b− a)‖u‖L2‖∂x1u‖L2 (Cauchy-Schwarz)

Dividing both sides by ‖u‖L2 gives the desired result in the case where
u ∈ C∞c (Ω).

Now suppose that f ∈ H1
0 (Ω). Then, there exists a sequence of functions

fn ∈ C∞c (Ω) such that ‖fn − f‖H1 → 0. So,

213



‖f‖L2 = lim
n→∞
‖fn‖L2

≤ lim
n→∞

2(b− a)‖∂x1fn‖L2

= 2(b− a)‖∂x1f‖L2 .

Therefore, ‖f‖L2 ≤ 2(b− a)‖Dx1f‖L2 . This completes the proof.

With Sobolev spaces, we can proceed to derive more properties of weak
derivatives. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be multi-indices.
Then, we can define an order on multi-indices - we say that β ≤ α if βi ≤ αi
for all i ∈ {1, . . . , n}. We also define for multi-indices(

α

β

)
=

n∏
i=1

αi!

βi!(αi − βi)!

whenever β ≤ α.

Lemma 7.3.4. Let Ω ⊆ Rn be an open set, p ∈ [1,∞] and |α| ≤ k. Let
u ∈ W k,p(Ω). Then,

1. The restriction of u to any open subset Ω′ ⊆ Ω is contained in the
space W k,p(Ω′).

2. For all multi-indices α, β such that |α| ≤ k, Dαu ∈ W k−|α|,p(Ω).
Moreover, if |α|+ |β| ≤ k, then Dα(Dβu) = Dβ(Dαu) = Dα+βu.

3. If η ∈ Ck(Ω), then ηu ∈ W k,p(Ω). Furthermore, the weak derivative is
given by the Leibnitz formula

Dα(ηu) =
∑
β≤α

(
α

β

)
DβηDα−βu.

4. There exists a constant C ∈ R>0 depending on Ω and on ‖η‖Ck (but
not on u) such that ‖ηu‖Wk,p(Ω) ≤ C‖u‖Wk,p(Ω).

5. Let Ω′ ⊆ Rn be an open set and ϕ : Ω′ → Ω be a Ck diffeomorphism
with a uniformly bounded inverse. Then the composite
u ◦ ϕ ∈ W k,p(Ω′).
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6. There exists a constant D ∈ R>0 depending on Ω′ and on ‖ϕ‖Ck (but
not on u) such that ‖u ◦ ϕ‖Wk,p(Ω′) ≤ D‖u‖Wk,p(Ω).

Proof. Assume that Ω is an open subset of Rn, p ∈ [1,∞] and |α| ≤ k.
Assume that u ∈ W k,p(Ω). Then, the first statement follows from the
definition of a Sobolev space.

To prove the second statement, we will use the definition of the weak
derivative. Since u ∈ W k,p(Ω), we have for all test functions φ ∈ C∞c (Ω),∫

Ω

uDαφ dx = (−1)|α|
∫

Ω

Dαuφ dx.

where α is a multi-index satisfying |α| ≤ k. Assume that β is another
multi-index such that |α|+ |β| ≤ k. Then, Dβφ ∈ C∞c (Ω) and∫

Ω

DαuDβφ dx = (−1)|α|
∫

Ω

uDα+βφ dx

= (−1)|α|+|α|+|β|
∫

Ω

(Dα+βu)φ dx

= (−1)|β|
∫

Ω

(Dα+βu)φ dx.

This demonstrates that Dα ∈ W k−|α|(Ω) because |β| ≤ k − |α|.
Furthermore, the above equation reveals that Dα+βu is the βth order weak
derivative of Dαu. So, Dα(Dβu) = Dβ(Dαu) = Dα+βu.

For the third statement, assume that η ∈ Ck(Ω). Then, from 7.2.1, there
exists a sequence {uε} of smooth functions such that uε → u as ε→ 0. The
key point here is that smooth functions satisfy the Leibnitz formula. So, for
all ε ∈ R>0,

Dα(ηuε) =
∑
β≤α

(
α

β

)
DβηDα−βuε.

Therefore, for every test function φ ∈ C∞c (Ω), we must have the following
equation: ∫

Ω

(ηuε)D
αφ dx = (−1)|α|

∫
Ω

Dα(ηuε)φ dx

=
∑
β≤α

(−1)|α|
(
α

β

)∫
Ω

(DβηDα−βuε)φ dx.
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Of course, |α| ≤ k. Taking the limit as ε→ 0, we deduce that∫
Ω

(ηu)Dαφ dx =
∑
β≤α

(−1)|α|
(
α

β

)∫
Ω

(DβηDα−βu)φ dx.

This subsequently demonstrates the Leibnitz rule for functions in W k,p(Ω):

Dα(ηu) =
∑
β≤α

(
α

β

)
DβηDα−βu.

For the next statement, observe that the derivatives of η are bounded so
that for all |β| ≤ k,

‖Dβη‖L∞ ≤ ‖η‖Ck .

So, we bound as follows:

‖ηu‖p
Wk,p(Ω)

=
∑
|α|≤k

‖Dα(ηu)‖pLp

=
∑
|α|≤k

‖
∑
β≤α

(
α

β

)
DβηDα−βu‖pLp

≤
∑
|α|≤k

(
∑
β≤α

(
α

β

)
‖DβηDα−βu‖Lp)p (Minkowski)

≤
∑
|α|≤k

(
∑
β≤α

(
α

β

)
‖η‖Ck‖Dα−βu‖Lp)p

=
∑
|α|≤k

(
∑
β≤α

(
α

β

)
‖Dα−βu‖Lp)p‖η‖pCk

≤ C‖u‖p
Wk,p(Ω)

where C is a constant which depends on ‖η‖p
Ck

and Ω. Taking the pth root
of both sides gives the desired bound.

For the last two statements, we will give a proof by strong induction.
Assume that Ω′ ⊆ Rn is an open set and ϕ : Ω′ → Ω be a Ck

diffeomorphism, with a uniformly bounded inverse. For the base case,
assume that k = 0. Then, there are no weak derivatives to worry about and
as a result, the composite u ◦ ϕ : Ω′ → R must be in W 0,p(Ω′). Also,

216



‖u ◦ ϕ‖W 0,p(Ω′)‖ ≤ ‖ϕ‖C0(Ω′)‖u‖W 0,p(Ω′).

Now, assume that the statements are true for all k ∈ {0, . . . ,m− 1}. Take
the mollification uε = Jε ∗ u. Then, by the chain rule,

Dxi(uε ◦ ϕ)(x) =
n∑
j=1

(Dxjuε)(ϕ(x))Dxiϕj(x)

where ϕ = (ϕ1, ϕ2, . . . , ϕn) and i ∈ {1, . . . , n}. So, if u ∈ Wm,p(Ω), then as
ε→ 0,

‖Dxi(u ◦ ϕ)‖Wm−1,p(Ω′) ≤ C ′‖∇u‖Wm−1,p(Ω)‖ϕ‖Cm(Ω′) (Chain Rule)

≤ D‖u‖Wm,p(Ω).

where D is a constant which depends on Ω′ and ‖ϕ‖Cm . This completes the
induction.

7.4 Approximations and Extensions

The next theorem is very powerful. Just like how smooth functions are
dense in the space of continuous functions, they are also dense in Sobolev
spaces! The following proof makes use of a smooth partition of unity, a
fundamental tool in differential geometry.

Theorem 7.4.1. Let Ω ⊆ Rn be an open set and u ∈ W k,p(Ω) with
p ∈ [1,∞) and k ∈ Z≥0. Then, C∞(Ω) = W k,p(Ω).

Proof. Assume that Ω ⊆ Rn be an open set. Assume that u ∈ W k,p(Ω) with
p ∈ [1,∞) and k ∈ Z≥0. Consider the locally finite open covering {Vj}j∈Z>0 ,
defined by

V1 = {x ∈ Ω | d(x, ∂Ω) >
1

2
}

Vj = {x ∈ Ω | 1

j + 1
< d(x, ∂Ω) <

1

j − 1
}

where j ∈ Z≥2. Define {ηn}n∈Z>0 to be a partition of unity subordinate to
the above cover. Observe that for all j ∈ Z>0 ηju ∈ W k,p(Ω), from the
previous theorem. Due to the construction of the partition of unity,
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supp(ηju) ⊆ Vj.

Now consider the mollifications Jε ∗ (ηju) for all ε ∈ R>0 and j ∈ Z>0. Since
mollifications commute with weak derivatives (see 7.2.3), we have for all
multi-indices α such that |α| ≤ k,

lim
ε→0

Dα(Jε ∗ (ηju)) = lim
ε→0

Jε ∗Dα(ηju) = Dα(ηju)

By construction, each ηj has compact support. So, the convergence above
occurs in Lp(Ω). Thus, for all j ∈ Z>0, we can find εj ∈ R>0 such that

‖ηju− Jεj ∗ (ηju)‖Wk,p(Ω) ≤ ε2−k.

With this, we can now define the smooth function u] ∈ C∞(Ω)

u] =
∞∑
j=1

Jεj ∗ (ηju).

It is smooth because each summand is smooth (see 7.2.1). Luckily, we do
not have to worry about the convergence of u]. It is pointwise convergent
because every compact set K ⊆ Ω intersects finitely many Vj. When we
restrict u] to K, the above sum therefore has only finitely many non-zero
terms, establishing pointwise convergence.

Now let

Ω1/n = {x ∈ Ω | d(x, ∂Ω) >
1

n
}

Since
∑

j ηj(x) = 1 (partition of unity), we find that for all n ≥ 1

‖u] − u‖Wk,p(Ω1/n) = ‖
∞∑
j=1

Jεj ∗ (ηju)− u‖Wk,p(Ω1/n)

= ‖
n+2∑
j=1

(Jεj ∗ (ηju)− ηju)‖Wk,p(Ω)

≤
n+2∑
j=1

‖Jεj ∗ (ηju)− ηju‖Wk,p(Ω)

≤
∞∑
j=1

ε2−j

= ε.
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Therefore,

‖u] − u‖Wk,p(Ω) = sup
n≥1
‖u] − u‖Wk,p(Ω1/n) ≤ ε.

Therefore, the set of smooth functions C∞(Ω) is dense in W k,p(Ω).

We will use the above result to prove a regularity theorem which describes
the connection between weak and classical derivatives of a function in an
appropriate Sobolev space.

Theorem 7.4.2. Let Ω ⊆ Rn denote the following open set

Ω = {x = (x1, x
′) ∈ Rn | x′ = (x2, . . . , xn) ∈ Ω′ and α(x′) < x1 < β(x′)}

where Ω′ ⊆ Rn−1 is an open set. Let u ∈ W 1,1(Ω). Then, there exists a
function ũ such that for almost all x ∈ Ω, ũ(x) = u(x). Moreover for almost
all x′ ∈ Ω′ ⊆ Rn−1, the map x1 7→ ũ(x1, x

′) is absolutely continuous with
derivative equal to Dx1u almost everywhere.

Note that we say “almost everywhere”, we mean with respect to the usual
Lebesgue measure.

Proof. Assume that Ω = (α(x′), β(x′))× Ω′ as explained above. Assume
that u ∈ W 1,1(Ω). Using 7.4.1, there exists a sequence {un} in C∞(Ω) such
that ‖un − u‖W 1,1(Ω) < 2−n.

Define the functions f, g : Ω→ R by

f(x) = |u1(x)|+
∞∑
n=1

|un+1(x)− un(x)|

and

g(x) = |Dx1u1(x)|+
∞∑
n=1

|Dx1un+1(x)−Dx1un(x)|.

By the triangle inequality, we have

‖un − un+1‖W 1,1(Ω) ≤ ‖un − u‖W 1,1(Ω) + ‖un+1 − u‖W 1,1(Ω) < 2−n+1.

From the definition of the W 1,1 norm, we therefore find that f, g ∈ L1(Ω)
and that f and g are absolutely convergent for almost all x ∈ Ω. Thus, they
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must converge pointwise almost everywhere. Furthermore, we have the
following bounds for all n ∈ Z>0 and x ∈ Ω:

|un(x)| ≤ f(x) and |Dx1un(x)| ≤ g(x).

Now since f and g are integrable over Ω, Fubini’s theorem tells us that
there exists a null set N ⊆ Ω′ such that for all x′ ∈ Ω′\N ,∫ β(x′)

α(x′)

f(x1, x
′) dx1 <∞ and

∫ β(x′)

α(x′)

g(x1, x
′) dx1 <∞.

Take a point x′ ∈ Ω′\N . Choose a point y1 ∈ (α(x′), β(x′)) where the
pointwise convergence un(y1, x

′)→ u(y1, x
′) holds. Since un is smooth, we

have for all α(x′) < x1 < β(x′)

un(x1, x
′) = un(y1, x

′) +

∫ x1

y1

Dx1un(s, x′) ds.

Now consider the limit as n→∞. Observe that since |Dx1un(x)| ≤ g(x)
and g is integrable, we can use the dominated convergence theorem to show
that

lim
n→∞

un(y1, x
′) +

∫ x1

y1

Dx1un(s, x′) ds = u(y1, x
′) + lim

n→∞

∫ x1

y1

Dx1un(s, x′) ds

= u(y1, x
′) +

∫ x1

y1

lim
n→∞

Dx1un(s, x′) ds

= u(y1, x
′) +

∫ x1

y1

Dx1u(s, x′) ds.

Now, we can define

ũ(x1, x
′) = u(y1, x

′) +

∫ x1

y1

Dx1u(s, x′) ds.

The RHS is an absolutely continuous function of the variable x1. But, the
LHS satisfies for almost all x1 ∈ [α(x′), β(x′)],

ũ(x1, x
′) = lim

n→∞
un(x1, x

′) = u(x1, x
′).
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In the next section of the chapter, we will explore various embeddings of
Sobolev spaces. An important technique towards this goal is that under
certain circumstances, a function u ∈ W 1,p(Ω), where Ω ⊆ Rn can be
extended to a function Eu ∈ W 1,p(Rn). Again, the proof of this statement
relies on a partition of unity.

Theorem 7.4.3. Let Ω ⊆ Ω̃ ⊆ Rn be bounded open sets, with Ω̃ containing
Ω. Assume that ∂Ω ∈ C1. Then, there exists a bounded linear operator
E : W 1,p(Ω)→ W 1,p(Rn) and a constant C ∈ R>0 such that Eu(x) = u(x)
for almost all x ∈ Ω, Eu(x) = 0 for all x 6∈ Ω̃ and

‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω)

Proof. Assume that Ω and Ω̃ are the open sets defined as above. Assume
that ∂Ω ∈ C1 (a C1 boundary). We will first prove the statement for the
case where

Ω = {(x1, . . . , xn) ∈ Rn | x1 > 0}.

Int this case we can define E] : W 1,p(Ω)→ W 1,p(Rn) by

E](u)(x1, . . . , xn) = u(|x1|, x2, . . . , xn).

Intuitively, we can extend the definition of u by reflection to the other half
of the plane. To see that this map is well-defined, observe that
DxiE

]u = Dxiu for all i ∈ {2, 3, . . . , n}. For the case where i = 1, observe
first that on the half-plane Ω,

Dx1E
]u(x1, . . . , xn) = Dx1u(x1, . . . , xn)

On the other half-plane, we have for all x1 > 0 and x2, . . . , xn ∈ R,

Dx1E
]u(−x1, . . . , xn) = −Dx1u(x1, . . . , xn).

This shows that the weak derivatives of E]u all exist and are in Lp(Rn).
Hence, the map E] : W 1,p(Ω)→ W 1,p(Rn) is well-defined. It can also be
verified that it is linear and satisfies
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‖E]u‖W 1,p(Rn) = (
∑
|α|≤1

‖DαE]u‖pLp(Rn))
1/p

= (
∑
|α|≤1

∫
Rn
|DαE]u(x)|p dx)1/p

= (
∑
|α|≤1

∫
Rn
|DαE]u(x)|p dx)1/p

≤ (
∑
|α|≤1

∫
Ω

|2DαE]u(x)|p dx)1/p

= 2(
∑
|α|≤1

∫
Ω

|Dαu(x)|p dx)1/p

= 2‖u‖W 1,p(Ω).

This establishes the result for the half-plane. To handle the general case,
we proceed with the following construction. For all x ∈ Ω, we choose an
open ball B(x, rx) such that

1. If x ∈ Ω, then B(x, rx) ⊆ Ω.

2. If x ∈ ∂Ω, then B(x, rx) ⊆ Ω̃.

3. There exists a C1 bijection, with a C1 inverse

ϕx : B(0, 1)→ B(x, rx)

which maps the “upper half ball”

B+(0, 1) = {y = (y1, . . . , yn) |
n∑
i=1

y2
i < 1, y1 > 0}

to the set B(x, rx) ∩ Ω. For a sufficiently small rx > 0, the existence
of ϕx follows from the assumption that Ω has a C1 boundary.

Now since Ω is bounded, its closure Ω is compact. Hence, there exists a
finite cover {B(xi, ri)}Ni=1 of Ω ⊆ Ω. Let ϕi : B(0, 1)→ B(xi, ri) be the
corresponding bijections. We also define {ηi}Ni=1 to be a partition of unity
subordinate to this cover. Then, for all x ∈ Ω,
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u(x) =
N∑
i=1

ηi(x)u(x)

Now, we partition the indices {1, 2, . . . , N} = I ∪ J , where for all i ∈ I,
xi ∈ Ω and for all i ∈ J , xi ∈ ∂Ω. Observe that for all i ∈ J , we have

ηiu ∈ W 1,p(B(xi, ri) ∩ Ω) and (ηiu) ◦ ϕi ∈ W 1,p(B+(0, 1)).

Applying the operator E], we find that

E][(ηiu) ◦ ϕi] ∈ W 1,p(B(0, 1)) and E][(ηiu) ◦ ϕi] ◦ ϕ−1
i ∈ W 1,p(B(xi, ri) ∩ Ω).

Now, we can sum together all the extensions in order to define the operator
E : W 1,p(Ω)→ W 1,p(Rn) by

Eu =
∑
i∈I

ηiu+
∑
i∈J

E][(ηiu) ◦ ϕi] ◦ ϕ−1
i

This operator is bounded and linear because E is a finite sum of bounded,
linear operators. Moreover, the support supp(Eu) ⊆

⋃N
i=1B(xi, ri) ⊆ Ω̃.

7.5 The embedding theorems of Sobolev

spaces

It is emphasised in Bressan [AB10] that in applications to partial
differential equations or the calculus of variations, it is important to
understand the degree of regularity exhibited by functions u ∈ W k,p(Rn).
The first embedding theorem we will prove is attributed to Morrey. First,
we need to understand the concept of Hölder continuity.

Definition 7.5.1. Let Ω ⊆ Rn be an open set and γ ∈ (0, 1]. A function
f : Ω→ R is Hölder continuous with exponent γ if there exists C ∈ R>0

such that for all x, y ∈ Ω,

|f(x)− f(y)| ≤ C|x− y|γ

The notation C0,γ(Ω) is the space of all bounded Hölder continuous
functions on Ω. It is a normed vector space, equipped with the norm

‖f‖C0,γ(Ω) = sup
x∈Ω
|f(x)|+ sup

x,y∈Ω,x 6=y

|f(x)− f(y)|
|x− y|γ

.
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Like Sobolev spaces, Hölder spaces can be extended to functions with
Hölder continuous partial derivatives up to order k. This is encapsulated in
the following more general definition below.

Definition 7.5.2. For all k ∈ Z≥0, define Ck,γ(Ω) to be the space of all
continuous functions with Hölder continuous partial derivatives up to order
k. This is a normed vector space when equipped with the following norm:

‖f‖Ck,γ(Ω) =
∑
|α|≤k

(sup
x∈Ω
|Dαf(x)|) +

∑
|α|=k

( sup
x,y∈Ω,x 6=y

|Dαf(x)−Dαf(y)|
|x− y|γ

).

Note that in the above definition Dα refers to a partial derivative, not a
weak derivative. Since Dα is a continuous operator for all multi-indices α,
Hölder spaces turn out to be Banach spaces, as exemplified by the following
theorem:

Theorem 7.5.1. Let Ω ⊆ Rn be an open set. Let k ∈ Z≥0 and γ ∈ (0, 1].
Then, Ck,γ(Ω) is a Banach space.

Proof. Assume that Ω is an open subset of Rn. Assume that γ ∈ (0, 1] and
k ∈ Z≥0. Suppose that the sequence {fm} in Ck,γ(Ω) is Cauchy. Then, for
all x ∈ Ω, the sequence {fm(x)} is a Cauchy sequence in R and thus,
uniformly converges to f(x). Since derivative operators are continuous, the
sequence {Dαfm} is also Cauchy and hence, by the same argument, the
sequence {Dαfm(x)} in R converges to Dαf(x) uniformly on Ω. This is
enough to show that the expression (which appears in the norm for Ck,γ(Ω))∑

|α|≤k

(sup
x∈Ω
|Dαfm(x)−Dαf(x)|)

tends to 0 as m→∞. Now, it suffices to show that the second summand in
the Hölder space norm also converges. This amounts to showing that

lim
m→∞

∑
|α|=k

( sup
x,y∈Ω,x 6=y

|Dα(fm − f)(x)−Dα(fm − f)(y)|
|x− y|γ

) = 0.

Since the sequence {fm} is Cauchy, we have

lim
m,n→∞

∑
|α|=k

( sup
x,y∈Ω,x 6=y

|Dα(fm − fn)(x)−Dα(fm − fn)(y)|
|x− y|γ

) = 0.

Thus, for all ε ∈ R>0, there exists an index N ∈ Z>0 such that for all
m,n > N ,
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sup
x,y∈Ω,x 6=y

|Dα(fm − fn)(x)−Dα(fm − fn)(y)|
|x− y|γ

≤ ε

Fix m and let n→∞. This shows that for all m ≥ N ,

sup
x,y∈Ω,x 6=y

|Dα(fm − f)(x)−Dα(fm − f)(y)|
|x− y|γ

≤ ε

Taking the limit as m→ 0 the gives us the desired result.

Before we dive into the proof of various embedding theorems pertaining to
Sobolev spaces, we will highlight the general approach towards such results.
The goal is to show that the Sobolev space W k,p(Ω) lies in some other
Banach space X.

1. We first specialise to the case where u ∈ C∞(Ω) ∩W k,p(Ω). In this
step, we prove that u ∈ X for some Banach space X and that there
exists a constant C ∈ R>0 which depends on k, p and Ω, but not on u
such that for all u ∈ C∞(Ω) ∩W k,p(Ω),

‖u‖X ≤ C‖u‖Wk,p(Ω).

2. Since C∞(Ω) is dense in W k,p(Ω), for all u ∈ W k,p(Ω), we can find a
sequence {un} of smooth functions such that ‖u− un‖Wk,p(Ω) → 0 as
n→∞. Using the bound in step 1, this reveals that

lim sup
m,n→∞

‖um − un‖X ≤ lim sup
m,n→∞

C‖um − un‖Wk,p(Ω) = 0.

Thus, {un} is also a Cauchy sequence in the space X. Since X was
assumed to be a Banach space, un → ũ for some ũ ∈ X. Expanding
the definition of the norm W k,p(Ω), we conclude that ũ(x) = u(x) for
almost all x ∈ Ω. The conclusion here is that, up to a modification on
a null set N ⊆ Ω, each function u ∈ W k,p(Ω) is also contained in X.

To see how this above proof template works, we will now delve into our first
embedding theorem. Once again, the result is attributed to Morrey. The
first step is to prove Morrey’s inequality.

Lemma 7.5.2. Let n < p <∞ and set γ = 1− n
p
> 0. Then, there exists a

constant C ∈ R>0, which depends only on p and n such that for all
u ∈ C1(Rn) ∩W 1,p(Rn),

225



‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn).

The proof that we will give for Morrey’s inequality originates from [LE98],
rather than [AB10].

Proof. Assume that n < p <∞ and γ = 1− n
p
> 0. Assume that

u ∈ C1(Rn) ∩W 1,p(Rn). Take a ball B(x, r) ⊆ Rn.

To show: (a) There exists a constant C ∈ R>0, which depends on n, such
that

1

m(B(x, r))

∫
B(x,r)

|u(y)− u(x)| dy ≤ C

∫
B(x,r)

|∇u(y)|
|y − x|n−1

dy.

(a) Take a point w ∈ ∂B(0, 1). Then observe that for all 0 < r < s,

|u(x+ sw)− u(x)| = |
∫ s

0

d

dt
u(x+ tw) dt|

= |
∫ s

0

∇u(x+ tw)w dt| (Chain Rule)

≤
∫ s

0

|∇u(x+ tw)||w| dt

=

∫ s

0

|∇u(x+ tw)| dt.

By integrating over the boundary ∂B(0, 1), we have

∫
∂B(0,1)

|u(x+ sw)− u(x)| dS ≤
∫ s

0

∫
∂B(0,1)

|∇u(x+ tw)| dSdt

=

∫ s

0

∫
∂B(0,1)

|∇u(x+ tw)|t
n−1

tn−1
dSdt.

The above integral has a radial component, which constitutes the integral
over t, and an angular component, which is the integral over ∂B(0, 1). This
suggests that we use general polar coordinates to simplify the RHS. If we
let y = x+ tw so that t = |x− y|, we obtain (keep in mind that the
corresponding Jacobian is proportional to tn−1)
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∫
∂B(0,1)

|u(x+ sw)− u(x)| dS ≤
∫
B(x,s)

|∇u(y)|
|x− y|n−1

dy

≤
∫
B(x,r)

|∇u(y)|
|x− y|n−1

dy.

Now if we multiply by sn−1 and integrate both sides from 0 to r with
respect to s. We finally obtain∫

B(x,r)

|u(y)− u(x)| dy ≤ rn

n

∫
B(x,r)

|∇u(y)|
|x− y|n−1

dy.

This gives the intermediate result we are after.

Now, we tackle the first summand of the Hölder norm. Using part (a), we
compute that for x ∈ Rn

|u(x)| ≤ 1

m(B(x, 1))

∫
B(x,1)

|u(x)− u(y)| dy +
1

m(B(x, 1))

∫
B(x,1)

|u(y)| dy

≤ C

∫
B(x,r)

|∇u(y)|
|x− y|n−1

dy + C‖u‖Lp(B(x,1)) (Part (a))

≤ C(

∫
Rn
|∇u(y)|p dy)1/p(

∫
Rn

1

|x− y|p(n−1)/(p−1)
dy)(p−1)/p + C‖u‖Lp(Rn) (Hölder)

≤ C‖u‖W 1,p(Rn)

since p(n−1)
p−1

< n and as a result,

(

∫
Rn

1

|x− y|p(n−1)/(p−1)
dy)(p−1)/p <∞.

Now, if we take the supremum over both sides, we deduce the inequality
supx∈Rn|u(x)| ≤ C‖u‖W 1,p(Rn) for some constant C ∈ R>0.

Finally, we will bound the second summand in the Hölder norm. Assume
that x, y ∈ Rn. Set r = |x− y| and W = B(x, r) ∩B(y, r). Note that

|u(x)− u(z)| ≤ 1

m(W )

∫
W

|u(x)− u(z)| dz +
1

m(W )

∫
W

|u(y)− u(z)| dz.

Again, we can use part (a) to deduce that
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1

m(W )

∫
W

|u(x)− u(z)| dz ≤ C

m(B(x, r))

∫
B(x,r)

|u(x)− u(z)| dz

≤ C(

∫
B(x,r)

|∇u(y)|p dy)1/p(

∫
B(x,r)

1

|x− z|p(n−1)/(p−1)
dz)(p−1)/p

≤ C(

∫
B(x,r)

|∇u(y)|p dy)1/p(

∫
B(x,r)

1

rp(n−1)/(p−1)
dz)(p−1)/p

= Cr1−n
p ‖∇u‖Lp(Rn).

The second inequality combines Hölder’s inequality and the bound in part
(a). The third inequality follows from the fact that the integral is done over
the ball B(x, r). Note that the same result can be found by simply
replacing x with y. Thus, an upper bound for the quantity |u(x)− u(y)| is

|u(x)− u(y)| ≤ Cr1−n
p ‖∇u‖Lp(Rn) = C|x− y|1−

n
p ‖∇u‖Lp(Rn)

Now, we have

‖u‖C0,γ(Rn) = sup
x 6=y

|u(x)− u(y)|
|x− y|1−

n
p

≤ C‖∇u‖Lp(Rn).

for some constant C ∈ R>0, which depends on p and n.

Executing the second step in the “proof template”, we arrive at the
required embedding theorem.

Theorem 7.5.3. Let Ω ⊆ Rn be a bounded open set with C1 boundary. Let
n < p <∞ and γ = 1− n

p
> 0. Then, every function f ∈ W 1,p(Ω) is almost

eveywhere equal to another function f̃ ∈ C0,γ(Ω). Moreover, there exists a
constant C ∈ R>0 such that for all f ∈ W 1,p(Ω),

‖f̃‖C0,γ ≤ C‖f‖W 1,p .

Proof. Assume that Ω is the open set defined as above. Assume that n, p, γ
are defined as above. Define

Ω̃ = {x ∈ Rn | d(x,Ω) < 1}.
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Using 7.4.3, we deduce the existence of a bounded extension operator
E : W 1,p(Ω)→ W 1,p(Rn) which sends f ∈ W 1,p(Ω) to Ef ∈ W 1,p(Rn)
whose support is contained in Ω̃.

Now, we use the fact that C1(Rn) is dense in W 1,p(Rn) in order to find a
sequence of functions {gn} in C1(Rn) such that gn → Ef as n→∞.
Morrey’s inequality (see 7.5.2) tells us that

lim sup
m,n→∞

‖gm − gn‖C0,γ ≤ C lim sup
m,n→∞

‖gm − gn‖W 1,p = 0

because every convergent sequence is Cauchy. Interestingly, this shows that
{gn} is a Cauchy sequence in the Hölder space C0,γ(Rn). Since C0,γ(Rn) is
a Banach space, the sequence {gn} must converge uniformly to a function
g ∈ C0,γ(Rn) for x ∈ Rn.

Since gn → Ef in W 1,p(Rn), g(x) = (Ef)(x) for almost all x ∈ Rn. From
the definition of E, we must have g(x) = f(x) for almost all x ∈ Ω. The
bound follows from the fact that E is a bounded linear operator and
Morrey’s inequality (7.5.2).

Before we proceed, we will highlight a particularly important consequence
of Morrey’s inequality. If Ω ⊆ Rn is a bounded open set with C1 boundary
and p > n, then for all w ∈ W 1,p(Ω) ⊆ C0,γ(Ω), we must have

|w(x)− w(y)| ≤ C|x− y|1−
n
p (

∫
B(x,|y−x|)

|∇w(z)|p dz)1/p.

for all x, y ∈ Ω. This was found during the proof of Morrey’s inequality. We
will use this bound to demonstrate a differentiability property of the
Sobolev space W 1,p(Ω).

Theorem 7.5.4. Let Ω ⊆ Rn be a bounded open set with C1 boundary and
u ∈ W 1,p

loc (Ω) for some p > n. Then, u is differentiable for almost all x ∈ Ω
and its classical gradient is equal to its weak gradient

∇u = (Dx1u, . . . , Dxnu).

Proof. Assume that Ω is defined as above. Assume that u ∈ W 1,p
loc (Ω) for

some p > n. Then, its weak derivatives Dxiu ∈ L
p
loc(Ω) for all

i ∈ {1, . . . , n}. Hence, the weak gradient ∇u is also in Lploc(Ω).

We begin by applying the Lebesgue differentiation theorem to deduce that
for almost all x ∈ Ω,
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lim
r→0

1

m(B(x, r))

∫
B(x,r)

|∇u(x)−∇u(z)|p dz = 0.

Take a point x ∈ Ω such that the above limit holds. Then, define

w(y) = u(y)− u(x)−∇u(x)(y − x) ∈ W 1,p
loc (Ω).

Then, we bound the quantity |w(y)− w(x)| by using the estimate found in
the proof of Morrey’s inequality:

|w(y)− w(x)| = |w(y)|
= |u(y)− u(x)−∇u(x)(y − x)|
= |∇u(x)x− u(x)− (∇u(x)y − u(y))|

≤ C|x− y|1−
n
p (

∫
B(x,|y−x|)

|∇u(x)−∇u(z)|p dz)1/p.

Dividing both sides by |y − x| and then taking the limit as |y − x| → 0, we
find that

lim
|y−x|→0

|w(y)− w(x)|
|y − x|

= 0

due to our choice of x ∈ Ω. Thus, from the definition of w, we conclude
that u is differentiable at x in the classical sense and its classical gradient
coincides with the weak gradient ∇u(x) for almost all x ∈ Ω.

The next result we will prove is the Gagliardo-Nirenberg inequality, which is
valid in the regime 1 ≤ p < n. First, we will make some useful remarks.

We define the Sobolev conjugate of p to be

p∗ =
np

n− p
so that

1

p∗
=

1

p
− 1

n
.

Secondly, we need to keep in mind the following application of the
generalised Hölder inequality. Once again let Ω ⊆ Rn be open. Let

g1, . . . , gn−1 ∈ L1(Ω). Then, for all i ∈ {1, . . . , n− 1}, g
1

n−1

i ∈ Ln−1(Ω). By
the generalised Hölder inequaltiy, we have∫

Ω

n−1∏
i=1

g
1

n−1

i ds ≤
n−1∏
i=1

‖g
1

n−1

i ‖Ln−1 =
n−1∏
i=1

‖gi‖
1

n−1

L1
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Now, we will proceed to prove our second embedding theorem:

Lemma 7.5.5. Let p, n ∈ R>0 such that 1 ≤ p < n. Then, there exists a
constant C ∈ R>0, which depends only on p and n such that for all
f ∈ W 1,p(Rn),

‖f‖Lp∗ (Rn) ≤ C‖∇f‖Lp(Rn).

Proof. Assume that p, n ∈ R>0 such that 1 ≤ p < n. Utilising the density of
smooth functions in W 1,p(Rn), it suffices to prove the above inequality for
the special case where f ∈ C∞c (Rn). Using the fact that f is a test function,
we have for all i ∈ {1, . . . , n} and x = (x1, . . . , xn) ∈ Rn

f(x) =

∫ xi

−∞
Dxif(x1, . . . , si, . . . , xn) dsi.

Thus, we have a preliminary bound on |f(x)|:

|f(x)| = |
∫ xi

−∞
Dxif(x1, . . . , si, . . . , xn) dsi| ≤

∫ ∞
−∞
|Dxif(x1, . . . , si, . . . , xn)| dsi.

The point here is that this holds for all i ∈ {1, . . . , n}. So, taking both sides
to the power of n, we obtain

|f(x)|n ≤
n∏
i=1

∫ ∞
−∞
|Dxif(x1, . . . , si, . . . , xn)| dsi

So,

|f(x)|
n
n−1 ≤

n∏
i=1

(

∫ ∞
−∞
|Dxif(x1, . . . , si, . . . , xn)| dsi)

1
n−1 .

Now, we integrate over R with respect to the variable x1. In this case, the
first integral in the product does not depend on x1. So, our inequality
becomes

∫ ∞
−∞
|f(x)|

n
n−1 dx1 ≤ (

∫ ∞
−∞
|Dx1f | ds1)

1
n−1

∫ ∞
−∞

n∏
i=2

(

∫ ∞
−∞
|Dxif(x1, . . . , si, . . . , xn)| dsi)

1
n−1 dx1.

We can iterate the above method by integrating with respect to the
remaining n− 1 variables. We obtain
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∫
Rn
|f |

n
n−1 dx ≤

n∏
i=1

(

∫ ∞
−∞
· · ·
∫ ∞
−∞
|Dxif | dx1 . . . dxn)

1
n−1

≤ (

∫
Rn
|∇f | dx)

n
n−1 .

Therefore,

(

∫
Rn
|f |

n
n−1 dx)

n−1
n ≤

∫
Rn
|∇f | dx

which proves the result for the case where p = 1 and p∗ = n/(n− 1). Of
course, this holds for f ∈ W 1,p(Rn) since C∞c (Rn) is a dense subset.

Now assume that 1 < p < n and that f ∈ W 1,p(Rn) once again. Let us
apply the special case above to the function g = |f |β for some β ∈ R>0.
Then, we must have

(

∫
Rn
|f |

βn
n−1 dx)

n−1
n ≤

∫
Rn
|∇fβ| dx (Special Case)

=

∫
Rn
β|f |β−1|∇f | dx

≤ β(

∫
Rn
|f |

p(β−1)
p−1 dx)

p−1
p (

∫
Rn
|∇f |p dx)

1
p (Hölder)

If we select β = p(n− 1)/(n− p), then we have

βn

n− 1
=
p(β − 1)

p− 1
=

np

n− p
= p∗.

Making this substitution, our inequality reduces to

(

∫
Rn
|f |p∗ dx)

n−1
n ≤ β(

∫
Rn
|f |p∗ dx)

p−1
p (

∫
Rn
|∇f |p dx)

1
p

Now it suffices for us to note that

n− 1

n
− p− 1

p
=
n− p
np

=
1

p
− 1

n
=

1

p∗
.

Hence, by dividing both sides by (
∫
Rn|f |

p∗ dx)
p−1
p , we deduce that
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(

∫
Rn
|f |p∗ dx)

1
p∗ ≤ β(

∫
Rn
|∇f |p dx)

1
p

as required.

Recall that if Ω ⊆ Rn is bounded, then Lq(Ω) ⊆ Lp
∗
(Ω) for all q ∈ [1, p∗].

Now, we can establish our next embedding theorem.

Theorem 7.5.6. Let Ω ⊆ Rn denote a bounded open set with C1 boundary
and let 1 ≤ p < n. Then, for all q ∈ [1, p∗] (recall that p∗ = np/(n− p)),
there exists a constant C ∈ R>0 such that for all f ∈ W 1,p(Ω),

‖f‖Lq(Ω) ≤ C‖f‖W 1,p(Ω).

Proof. The proof is very similar to the first embedding theorem. Again, let

Ω̃ = {x ∈ Rn | d(x,Ω) < 1}.

Using 7.4.3, we deduce the existence of a bounded extension operator
E : W 1,p(Ω)→ W 1,p(Rn) which sends f ∈ W 1,p(Ω) to Ef ∈ W 1,p(Rn)
whose support is contained in Ω̃.

Now apply the Gagliardo-Nirenberg inequality to Ef in order to deduce the
existence of constants C1, C2, C3 ∈ R>0 such that

‖f‖Lq(Ω) ≤ C1‖f‖Lp∗ (Ω) (Lq(Ω) ⊆ Lp
∗
(Ω))

≤ C2‖Ef‖Lp∗ (Rn)

≤ C3‖f‖W 1,p(Ω) (Gagliardo-Nirenberg).

So far, we have established embeddings for the space W 1,p(Ω), where
p <∞. We would like to push this agenda forwards and describe
embeddings for the Sobolev space W k,p(Ω) for all k ∈ Z>0. We will be
making extensive use of 7.5.2 and 7.5.5. First, we will make the necessary
definitions.

Definition 7.5.3. Let Ω ⊆ Rn be a bounded open set with C1 boundary.
Let u ∈ W k,p(Ω). Then, the net smoothness of u is defined by k − n

p
.
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Define m ∈ Z>0 and γ ∈ [0, 1) to be the integer part and fractional part
of k − n

p
respectively. That is, in the usual notation,

m = bk − n

p
c and γ = {k − n

p
}.

Definition 7.5.4. Let X and Y be Banach spaces, with norms ‖−‖X and
‖−‖Y respectively. We say that X is continuously embedded in Y if
X ⊆ Y and there exists a constant C such that for all u ∈ X,
‖u‖Y ≤ C‖u‖X .

The next theorem reveals a whole class of general Sobolev embeddings.

Theorem 7.5.7 (General Sobolev Embeddings). Let Ω ⊆ Rn be a bounded
open set with C1 boundary. Consider the space W k,p(Ω) and set

m = bk − n

p
c and γ = {k − n

p
}.

Then,

1. If k − n
p
< 0, then W k,p(Ω) ⊆ Lq(Ω) where

1

q
=

1

p
− k

n
=

1

n
(
n

p
− k).

2. If k − n
p

= 0, then W k,p(Ω) ⊆ Lq(Ω) for all 1 ≤ q <∞.

3. If m ≥ 0 and γ > 0, then W k,p(Ω) ⊆ Cm,γ(Ω).

4. If m ≥ 1 and γ = 0, then for all γ′ ∈ [0, 1), we have the inclusion
W k,p(Ω) ⊆ Cm−1,γ′(Ω).

Before we state the proof below, it should be emphasised that the
statement W k,p(Ω) ⊆ Cm,γ(Ω) means that for all u ∈ W k,p(Ω), there exists
a function ũ ∈ Cm,γ(Ω) such that for almost all x ∈ Ω, u(x) = ũ(x).
Furthermore, there exists a constant C ∈ R>0, which depends on k, p,m, γ,
but not on u, such that

‖u‖Cm,γ(Ω) ≤ C‖ũ‖Wk,p(Ω).

In other words, the above equation implies a continuous embedding.
Similar statement apply for the other inclusions.
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Proof. We will first prove statement 1. So, assume that the net smoothness
k − n

p
< 0. Assume that u ∈ W k,p(Ω). From the definition of a Sobolev

space, Dαu ∈ Lp(Ω) for all multi-indices α such that |α| ≤ k. Now, we can
apply the Gagliardo-Nirenberg inequality to find that for all multi-indices β
with |β| ≤ k − 1,

‖Dβu‖Lp∗ (Ω) ≤ C‖∇Dβu‖Lp(Ω) ≤ C‖u‖Wk,p(Ω).

Therefore, Dβu ∈ Lp∗(Ω) for all β satisfying |β| ≤ k − 1. So,
u ∈ W k−1,p∗(Ω). Recall that

1

p∗
=

1

p
− 1

n
.

The main point in the proof is that we can iterate the above argument. Set
p1 = p∗ and pj = p∗j−1 for all j ∈ Z>0 so that

1

p1

=
1

p
− 1

n
and

1

pj
=

1

pj−1

− 1

n
=

1

p
− j

n
.

In order to iterate the above argument, we will apply the
Gagliardo-Nirenberg inequality k times in order to obtain the following
chain of inclusions:

W k,p(Ω) ⊆ W k−1,p1(Ω) ⊆ · · · ⊆ W k−j,pj(Ω) ⊆ · · · ⊆ W 0,pk(Ω).

Therefore, u ∈ W 0,pk(Ω) = Lpk(Ω). This completes the proof of statement 1.

In order to prove statement 2, assume that kp = n. Using the same
argument as above, we find that if u ∈ W k,p(Ω), then

u ∈ W 1,pk−1(Ω) = W 1,n(Ω) ⊆ W 1,n−ε(Ω)

for all ε ∈ (0, n]. Note that pk−1 = n because

1

pk−1

=
1

p
− k − 1

n
=

1

p
− k − 1

kp
=

1

kp
= n.

Utilising the Gagliardo-Nirenberg inequality one more time, we find that
u ∈ W 1,n−ε(Ω) ⊆ Lq(Ω), where

q =
n(n− ε)
n− (n− ε)

=
n2 − εn

ε
.

Since ε ∈ (0, n] was arbitrary, we find that statement 2 is true for all
q ∈ [1,∞).
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To prove statement 3, assume that m ≥ 0 and γ > 0. Assume that
u ∈ W k,p(Ω). Choose j ∈ Z>0 to be the smallest integer such that pj > n.
Then, u ∈ W k,p(Ω) ⊆ W k−j,pj(Ω), which means that for all multi-indices α
with |α| ≤ k − j − 1, we can apply 7.5.2 to deduce that

Dαu ∈ W 1,pj(Ω) ⊆ C0,γ(Ω)

where

γ = 1− n

pj
= 1− n

p
+ j.

The important point here which motivates our choice of j ∈ Z>0 is that
γ ∈ (0, 1] and

k − n

p
= (k − j − 1) + (1− n

p
+ j) = (k − j − 1) + γ.

So, γ is the fractional part of k − n
p

and k − j − 1 is the integer part of

k − n
p
. Now since Dαu ∈ C0,γ(Ω) where |α| ≤ k − j − 1, we deduce that

u ∈ Ck−j−1,γ(Ω), which completes the proof of the third statement (with
m = k − j − 1).

To see that the fourth and final statement holds, assume that
j = n/p ∈ Z>0. Assume that u ∈ W k,p(Ω). Then, the Gagliardo-Nirenberg
inequality, as depicted in statement 2, can be used to show that for all
multi-indices α with |α| ≤ j − 1,

Dαu ∈ W k−j,p(Ω) ⊆ W 1,q(Ω)

for all q ∈ [1,∞). This is a result of statement 2. Now, Morrey’s inequality
gives

Dαu ⊆ W 1,q(Ω) ⊆ C0,1−n
q (Ω)

and u ∈ Cj−1,1−n
q (Ω). Since q ∈ [1,∞) was arbitrary, we deduce statement

4.

7.6 Rellich-Kondrachov Theorem

As the title suggests, the main result of this section is the
Rellich-Kondrachov theorem, which is yet another embedding theorem of
Sobolev spaces. However, the statement of this theorem is actually a
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compact embedding - we will clear this up later.

First, we will make a preliminary observation with the purpose of
motivating the theorem. Suppose that Ω ⊆ Rn is a bounded open set with
C1 boundary. Observe that if p > n, then

m = b1− n

p
c = 0 and γ = {1− n

p
} = 1− n

p
> 0.

By 7.5.7 (in particular, the third statement), we have the inclusion
W 1,p(Ω) ⊆ C0,γ(Ω), revealing that for all u ∈ W 1,p(Ω), u is Hölder
continuous. More specifically, if {um}m∈Z>0 is a bounded sequence in
W 1,p(Ω), then each function um must be equicontinuous and uniformly
bounded, due to the norm on C0,γ(Ω). From the corollary of 4.3.6, we can
extract a subsequence {umj} which converges uniformly to a continuous
function u on Ω. Now, since Ω is bounded, we must have
‖umj − u‖Lq(Ω) → 0 for all q ∈ [1,∞]. Thus, the embedding
W 1,p(Ω) ⊆ Lq(Ω) is compact for all p > n and q ∈ [1,∞].

Definition 7.6.1. Let X and Y be Banach spaces. We say that X is
compactly embedded in Y if X ⊆ Y and the canonical inclusion map
ι : X → Y is a compact linear operator. We use the notation X ⊂⊂ Y to
denote the statement “X is compactly embedded in Y ”.

The Rellich-Kondrachov theorem focuses on the case where p < n. We will
now state this important theorem below:

Theorem 7.6.1 (Rellich-Kondrachov). Let Ω ⊆ Rn be a bounded open set
with C1 boundary. Suppose that 1 ≤ p < n. The for all q ∈ [1, p∗), where
p∗ = np

n−p , we have the compact embedding W 1,p(Ω) ⊂⊂ Lq(Ω).

Proof. Assume that Ω ⊆ Rn is a bounded open set with C1 boundary.
Assume that 1 ≤ p < n and p∗ is defined as above. Assume that q ∈ [1, p∗).
The theorem 7.4.3 tells us that we can assume that every function
u ∈ W 1,p(Ω) is defined over all Rn and vanishes outside a fixed bounded
open set Ω̃ ⊆ Rn.

Let {um}m∈Z>0 be a bounded sequence in W 1,p(Ω̃). Then, since q < p∗ and
Ω is bounded, we have the following upper bound:
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‖um‖Lq(Rn) = ‖um‖Lq(Ω̃) (support contained in Ω̃)

≤ C‖um‖Lp∗ (Ω̃) (since Lq(Ω̃) ⊆ Lp
∗
(Ω̃))

≤ C ′‖um‖W 1,p(Ω̃) (Gagliardo-Nirenberg)

Here, C,C ′ ∈ R>0 are constants. The main message from the above
reasoning is that the sequence {um} is uniformly bounded in Lq(Ω̃) and
that W 1,p(Ω) ⊆ Lq(Ω), due to the above bound.

Now assume that ε ∈ R>0. Consider the mollified sequence {uεm}, where
uεm = Jε ∗ um. These functions are all supported inside Ω̃.

To show: (a) ‖uεm − um‖Lq(Ω̃) → 0 as ε→ 0. This convergence is uniform
with respect to m.

(a) Using the fact that smooth functions are dense in W 1,p(Ω̃) (see 7.4.1), it
suffices to demonstrate the bound in the case where um ∈ C∞(Ω̃). Using
the definition of a mollification, we argue as follows:

uεm(x)− um(x) =

∫
B(y′,ε)

Jε(y
′)[um(x− y′)− um(x)] dy′

=

∫
B(y,ε)

J(y)[um(x− εy)− um(x)] dy (y′ = εy)

=

∫
B(y,ε)

J(y)(

∫ 1

0

d

dt
(um(x− εty)) dt) dy

= −ε
∫
B(y,ε)

J(y)(

∫ 1

0

∇(um(x− εty)) · y dt) dy (Chain Rule)

If we integrate both sides with respect to x ∈ Ω̃, we obtain

∫
Ω̃

|uεm(x)− um(x)| dx ≤ ε

∫
Ω̃

∫
B(y,ε)

J(y)(

∫ 1

0

|∇(um(x− εty))| dt) dy dx

Setting z = x− εty, the inequality simplifies even further to obtain∫
Ω̃

|uεm(x)− um(x)| dx ≤ ε

∫
Ω̃

|∇um(z)| dz.
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Using 7.4.1, we conclude that the above estimate also holds for
um ∈ W 1,p(Ω̃). Hence,

‖uεm − um‖L1(Ω̃) ≤ ε‖∇um‖L1(Ω̃) ≤ εC‖um‖W 1,p(Ω̃)

for some constant C ∈ R>0. This proves the statement in part (a).

For the next argument, we will utilise an interpolation inequality (see
[LE98, p. 623]). Select θ ∈ (0, 1) such that

1

q
= (θ · 1) + (1− θ) · 1

p∗
.

Then, we must have

‖uεm − um‖Lq(Ω̃) = (

∫
Ω̃

|uεm(x)− um(x)|q dx)1/q

≤ ‖uεm − um‖θL1(Ω̃)
‖uεm − um‖

(1−θ)
Lp∗ (Ω̃)

≤ C0ε
θ.

The constant C0 ∈ R>0 is independent of m. The Lp
∗

norm is bounded
above by a constant, due to the Gagliardo-Nirenberg inequality once again
(7.5.5). Now fix δ ∈ R>0 and choose ε ∈ R>0 small enough so that

‖uεm − um‖Lq(Ω̃) ≤ C0ε
θ ≤ δ

2
.

To see that the sequence {uεm}m∈Z>0 is equicontinuous, we observe that

|uεm| ≤ ‖Jε‖L∞‖um‖L1 ≤ C1

and

|∇uεm| ≤ ‖∇Jε‖L∞‖um‖L1 ≤ C2.

Here, the constants C1 and C2 depend on ε, but are independent of m. The
above bounds originate once again from Hölder’s inequality, with p = 1 and
q =∞.

Now, we can exploit this finding and use the Arzela-Ascoli theorem (4.3.6)
to obtain a subsequence {uεmj} which converges uniformly in Ω̃ to a
continuous function u. Hence, by the triangle inequality
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lim sup
j,k→∞

‖umj − umk‖Lq(Ω̃) ≤ lim sup
j,k→∞

(‖umj − uεmj‖Lq(Ω̃) + ‖uεmj − u‖Lq(Ω̃)

+‖u− uεmk‖Lq(Ω̃) + ‖uεmk − umk‖Lq(Ω̃))

≤ δ.

Now, we finish off the proof with a diagonalisation argument. Using the
above bound, we can find an infinite set of indices I1 such that the
subsequence {um}m∈I1 satisfies for all `,m ∈ I1,

lim sup
`,m→∞

‖u` − um‖Lq(Ω) ≤ 2−1.

By induction, we can repeat this argument and construct an infinite set of
indices Ij ⊆ Ij−1 for all j ∈ Z>0 such that for all `,m ∈ Ij

lim sup
`,m→∞

‖u` − um‖Lq(Ω) ≤ 2−j.

Then, we choose a strictly increasing sequence of integers {mj} such that
mj ∈ Ij for all j ∈ Z>0. The subsequence {umj} must satisfy

lim sup
j,k→∞

‖umj − umk‖Lq(Ω) = 0

due to the fact that Ij ⊆ Ij−1 for all j ∈ Z>0. So, {umj} is a Cauchy
sequence, which then converges to some limit u ∈ Lq(Ω). This is enough to
show that W 1,p(Ω) ⊂⊂ Lq(Ω).

To top off the entire chapter, we will look at an application of 7.6.1, which
is also referred to as Poincaré’s inequality.

Lemma 7.6.2. Let Ω ⊆ Rn be a bounded, connected and open set with C1

boundary. Let p ∈ [1,∞]. Then, there exists a constant C ∈ R>0 such that
for all u ∈ Lp(Ω),

‖u− 1

m(Ω)

∫
Ω

u dx‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

Proof. Assume that Ω ⊆ Rn is a bounded, connected and open set with C1

boundary. Assume that p ∈ [1,∞]. Suppose for the sake of contradiction
that such a constant C ∈ R>0 does not exist. Then, there exists a sequence
of functions uk ∈ W 1,p(Ω) such that
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‖uk −
1

m(Ω)

∫
Ω

uk dx‖Lp(Ω) > k‖∇uk‖Lp(Ω)

for all k ∈ Z>0. Define the sequence

vk =
uk − 1

m(Ω)

∫
Ω
uk dx

‖uk − 1
m(Ω)

∫
Ω
uk dx‖Lp(Ω)

.

Note that the sequence {vk} in the Sobolev space W 1,p(Ω) must satisfy

1

m(Ω)

∫
Ω

vk dx = 0, ‖vk‖Lp(Ω) = 1

and for all k ∈ Z>0 and i ∈ {1, . . . , n},

‖Dxivk‖Lp(Ω) = (

∫
Ω

|Dxivk(x)|p dx)1/p

≤ (

∫
Ω

|∇vk(x)|p dx)1/p

= ‖∇vk‖Lp(Ω)

≤
‖∇uk‖Lp(Ω)

‖uk − 1
m(Ω)

∫
Ω
uk dx‖Lp(Ω)

<
1

k
.

The Rellich-Kondrachov theorem (7.6.1) tells us that W 1,p(Ω) ⊂⊂ Lp(Ω).
Since {vk} is a bounded sequence in W 1,p(Ω), there exists a subsequence
{vkj} which converges uniformly in Lp(Ω) to some continuous function
v ∈ Lp(Ω). We also have ∇vk → 0 in Lp(Ω). By 7.1.4, the zero function is
the weak gradient of the limit function v and as a result,

1

m(Ω)

∫
Ω

v dx = lim
k→∞

1

m(Ω)

∫
Ω

vk dx = 0.

Because ∇v = 0 ∈ Lp(Ω), it must be constant on the connected set Ω and
subsequently, v(x) = 0 for almost all x ∈ Ω, since its average value is 0.
But, this contradicts the fact that

‖v‖Lp(Ω) = lim
k→∞
‖vk‖Lp(Ω) = 1.
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Chapter 8

Applications to PDEs

8.1 Second order elliptic equations

As a fitting end to all of the theory developed in the previous chapters, we
will apply the theory in order to understand partial differential equations.
In particular, we will be looking at second order linear partial differential
equations. As we will see later, we will be looking at three different types of
PDEs.

Below is a summary of the main results we will be using to analyse PDEs.

1. Rellich-Kondrachov Theorem (7.6.1)

2. Lax-Milgram Theorem (3.6.3)

3. Characterisation of semigroups (6.7.1)

4. Hilbert-Schmidt Theorem (5.3.3)

5. The Fredholm alternative

Let Ω ⊆ Rn be a bounded open set and aij, bi, c : Ω→ R be measurable
functions (with respect to Lebesgue measure on Rn). Then, we define the
operator L by

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +
n∑
i=1

bi(x)uxi + c(x)u.

The boundary value problem that we are most concerned with is

Lu = f for all x ∈ Ω and u = 0 for all x ∈ ∂Ω. (8.1)
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Here, f ∈ L2(Ω). In order to study the existence and uniqueness of
solutions to this boundary value problem, we need to make some tighter
assumptions. First, we will assume that the coefficients of the differential
operator L satisfy

aij = aji, bi, c ∈ L∞(Ω).

The next definition is essentially the namesake of this section’s title.

Definition 8.1.1. Let L be the partial differential operator defined as
above. The operator L is called uniformly elliptic in Ω if there exists a
constant θ ∈ R>0 such that for all x ∈ Ω and ξ ∈ Rn,

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2.

Here is another way of reinterpreting the above definition. Define the
matrix A(x) = (aij(x)) ∈Mn×n(R). Since aij = aji for all i, j ∈ {1, . . . , n},
A(x) must be a symmetric matrix, with real eigenvalues. The above
equation shows that A(x) is a strictly positive definite matrix, whose
smallest eigenvalue is greater than or equal to θ.

Example 8.1.1. Assume that Ω ⊆ Rn is a bounded open set. Consider the
following boundary value problem:{

−∆u+ u = f x ∈ Ω,

u = 0 x ∈ ∂Ω.

Here, ∆u =
∑n

i=1 uxixi is the Laplacian. The operator −∆u is uniformly
elliptic because firstly, the matrix A(x) = In (the n× n identity matrix)
and secondly, if we select θ ∈ (0, 1], then for all ξ = (ξ1, . . . , ξn) ∈ Rn,

n∑
i,j=1

aij(x)ξiξj =
n∑

i,j=1

δijξiξj = |ξ|2 ≥ θ|ξ|2.

At the moment, it is not clear why we require this definition. This will be
elucidated in the later results. Moreover, we do not expect 8.1 to have a
classical solution a priori - a function u ∈ C2(Ω) which satisfies 8.1 and the
boundary conditions at every point in Ω. So, how can we study solutions to
8.1? Following the theme of the previous chapter, we will study weak
solutions instead.
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Definition 8.1.2. Consider the boundary value problem 8.1. A weak
solution of 8.1 is a function u ∈ H1

0 (Ω) = W 1,2
0 (Ω) such that for all

v ∈ H1
0 (Ω), ∫

Ω

(
n∑

i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuv) dx =

∫
Ω

fv dx.

Before we proceed, let us analyse the above definition in more detail. First
of all, why do we want u ∈ H1

0 (Ω)? Recall that H1
0 (Ω) is defined as the

closure of C∞c (Ω) in H1(Ω) - a closed subspace of H1(Ω) such that for all
multi-indices α such that |α| ≤ 0, Dαu = 0 on the boundary ∂Ω. This is
equivalent to saying that u = 0 on ∂Ω. Hence, setting u ∈ H1

0 (Ω)
incorporates the boundary condition of 8.1.

The second mystery here is the first summand on the LHS. To see where
this originates from, consider the equation∫

Ω

(Lu)v dx =

∫
Ω

fv dx.

Now expand the RHS to get

∫
Ω

(Lu)v dx =

∫
Ω

−
n∑

i,j=1

(aij(x)uxi)xjv +
n∑
i=1

bi(x)uxiv + c(x)uv dx

=

∫
Ω

−
n∑

i,j=1

(aijuxi)xjv dx+

∫
Ω

n∑
i=1

biuxiv + cuv dx

= −
n∑

i,j=1

([aijuxiv]∂Ω −
∫

Ω

aijuxivxj dx) +

∫
Ω

n∑
i=1

biuxiv + cuv dx

=

∫
Ω

(
n∑

i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuv) dx (since v ∈ H1
0 (Ω)).

The point here is that since v ∈ H1
0 (Ω), the boundary term [aijuxiv]∂Ω,

which appears as the result of an integration by parts, must vanish.

It is reasonable to ask whether we can deal with non-homogeneous
boundary value problems, such as

Lu = f for all x ∈ Ω and u = g for all x ∈ ∂Ω.
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where g ∈ H1(Ω). Fortunately, we can make the substitution ũ = u− g in
order to reduce the above problem to the case 8.1.

Another alternative method of expressing the concept of a weak solution is
to define the following bilinear form on the Hilbert space H1

0 (Ω):

B[u, v] =

∫
Ω

(
n∑

i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuv) dx

A function u ∈ H1
0 (Ω) is a weak solution of 8.1 if for all v ∈ H1

0 (Ω),
B[u, v] = 〈f, v〉L2 . This is a useful reformulation of the concept of a weak
solution, due to the Lax-Milgram theorem (3.6.3).

The first step towards the existence and uniqueness of uniformly elliptic
PDEs is to show that the equation 8.1.1 has a unique solution.

Lemma 8.1.1. Let Ω ⊆ Rn be a bounded open set. Then, for all f ∈ L2(Ω),
the BVP 8.1.1 has a unique weak solution u ∈ H1

0 (Ω). Moreover, the map
f 7→ u from L2(Ω) to H1

0 (Ω) is a compact linear operator.

Proof. Assume that Ω ⊆ Rn is a bounded open set. We first apply the
Rellich-Kondrachov theorem (7.6.1) to deduce that H1

0 (Ω) ⊂⊂ L2(Ω). This
means that the canonical embedding ι : H1

0 (Ω)→ L2(Ω) is a compact linear
operator.

As a result, the adjoint operator ι∗ : L2(Ω)→ H1
0 (Ω) must also be a

compact linear operator. Here, we have implicitly used the Riesz
representation theorem (3.3.1) to deduce that [L2(Ω)]∗ = L2(Ω) and
[H1

0 (Ω)]∗ = H1
0 (Ω).

Assume that f ∈ L2(Ω). Then, from the definition of the adjoint operator,
we have for all v ∈ H1

0 (Ω),

〈ι∗f, v〉H1 = 〈f, ιv〉L2 = 〈f, v〉L2 .

From the definition of a weak solution, we deduce that ι∗f ∈ H1
0 (Ω) is the

unique weak solution to 8.1.1.

Now, we will press on towards a greater generalisation. Consider the
following elliptic boundary value problem:{

L0u = f x ∈ Ω,

u = 0 x ∈ ∂Ω.
(8.2)
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Here, the differential operator L0 contains only second order terms:

L0u = −
n∑

i,j=1

(aij(x)uxi)xj .

In the case of 8.2, a weak solution is a function u ∈ H1
0 (Ω) such that for all

v ∈ H1
0 (Ω),

B0[u, v] =

∫
Ω

n∑
i,j=1

aijuxivxj dx = 〈f, v〉L2 = 〈ι∗f, v〉H1 .

Theorem 8.1.2. Let Ω ⊆ Rn be a bounded open set. Assume that L0 is the
operator defined in 8.2. Assume further that L0 is uniformly elliptic. Then,
for all f ∈ L2(Ω), the BVP 8.2 has a unique weak solution u ∈ H1

0 (Ω).
Furthermore, its corresponding operator L−1

0 : L2(Ω)→ H1
0 (Ω), which sends

f to u is a compact linear operator.

Proof. Assume that Ω ⊆ Rn is a bounded open set. Assume that L0 is a
uniformly elliptic differential operator, defined as in 8.2. In order to show
that 8.2 has a unique solution, we will demonstrate that the bilinear form
B0 : H1

0 (Ω)×H1
0 (Ω)→ R satisfies the conditions of the Lax-Milgram

theorem (3.6.3).

To show: (a) B0 is a continuous functional.

(b) B0 is a positive definite functional.

(a) To see that B0 is continuous, we argue as follows:

|B0[u, v]| = |
∫

Ω

n∑
i,j=1

aijuxivxj dx|

≤
n∑

i,j=1

∫
Ω

|aijuxivxj | dx

≤
n∑

i,j=1

‖aij‖L∞‖uxi‖L2‖vxj‖L2 (Hölder)

≤ C‖u‖H1‖v‖H1
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for some constant C ∈ R>0. This inequality is enough to show that B0 is a
continuous functional.

(b) Here, we will use the fact that Ω is bounded, alongside the Poincaré
inequality, in order to deduce the existence of a constant κ ∈ R>0 such that
for all u ∈ H1

0 (Ω),

‖u‖2
L2(Ω) ≤ κ

∫
Ω

|∇u|2 dx.

Here is where the uniform elliptic assumption on L0 comes into play. For all
u ∈ H1

0 (Ω),

B0[u, u] =

∫
Ω

n∑
i,j=1

aijuxiuxj dx ≥
∫

Ω

θ

n∑
i=1

u2
xi
dx = θ

∫
Ω

|∇u|2 dx.

Now, we can combine the two inequalities to obtain

‖u‖2
H1(Ω) =

∑
|α|≤1

∫
Ω

|Dαu|2 dx

=

∫
Ω

|u|2 dx+
n∑
i=1

∫
Ω

|uxi |2 dx

= ‖u‖2
L2(Ω) +

∫
Ω

n∑
i=1

|uxi |2 dx

= ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω)

≤ (κ+ 1)‖∇u‖2
L2(Ω) (First inequality)

≤ κ+ 1

θ
B0[u, u] (Second inequality)

So, B0[u, u] ≥ θ
κ+1
‖u‖2

H1(Ω) for all u ∈ H1
0 (Ω). This is enough to show that

B0 is positive definite.

Combining parts (a) and (b), we can apply the Lax-Milgram theorem
(3.6.3) in order to deduce that for all f̃ ∈ H1

0 (Ω), there exists a unique
element u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω), B0[u, v] = 〈f̃ , v〉H1(Ω).

Moreover, we also have the bound ‖u‖H1(Ω) ≤ β−1‖f̃‖H1(Ω) for some
β ∈ R>0. This is enough to demonstrate that the following operator is
continuous:
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Λ : H1
0 (Ω)→ H1

0 (Ω)

f̃ 7→ u

Now set f̃ = ι∗f ∈ H1
0 (Ω), where f ∈ L2(Ω) and ι : H1

0 (Ω)→ L2(Ω) is the
compact canonical embedding. Then, for all v ∈ H1

0 (Ω),

B0[u, v] = 〈ι∗f, v〉H1(Ω) = 〈f, v〉L2(Ω).

Thus, u qualifies as a weak solution to 8.2.

Finally, to see that L−1
0 : f 7→ u is a compact operator, note that it can be

written as the following composite:

L2(Ω) H1
0 (Ω) H1

0 (Ω).ι∗ Λ

The first operator ι∗ is compact, whereas Λ is continuous. Hence,
L−1

0 = Λ ◦ ι∗ must also be a compact operator.

The next result provides us with more properties about the solution
operator L−1

0 .

Lemma 8.1.3. Let Ω ⊆ Rn be a bounded, open set. Then, the linear
operator L−1

0 : L2(Ω)→ L2(Ω) is compact, injective and self-adjoint. Thus,
L2(Ω) has an orthonormal basis {φk}k∈Z>0, consisting of eigenfunctions of
L−1

0 . Suppose that λk is the corresponding eigenvalue of φk. Then, λk > 0
for all k ∈ Z>0 and limk→∞ λk = 0.

Proof. Assume that L−1
0 : L2(Ω)→ H1

0 (Ω) is the solution operator defined
in 8.1.2. To see that L−1

0 : L2(Ω)→ L2(Ω) is compact, note that it is the
composite L−1

0 : L2(Ω)→ H1
0 (Ω) followed by the inclusion

ι : H1
0 (Ω)→ L2(Ω), which is also compact.

To show: (a) L−1
0 is injective.

(b) L−1
0 is self-adjoint.

(a) Assume that f ∈ kerL−1
0 ⊆ L2(Ω). Then, L−1

0 f = 0. Since L−1
0 f is a

weak solution to 8.2, we must have for all v ∈ H1
0 (Ω)

B0[L−1
0 f, v] = 〈f, v〉L2(Ω) =

∫
Ω

fv dx = 0.
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Notably, the above equation holds for all v ∈ C∞c (Ω). Therefore, f(x) = 0
for almost all x ∈ Ω. This demonstrates that kerL−1

0 = {0} and that L−1
0 is

injective.

(b) To see that L−1
0 is self-adjoint, assume that f, g ∈ L2(Ω) and that

u = L−1
0 f and v = L−1

0 g. Then, u, v ∈ H1
0 (Ω) and

〈L−1
0 f, g〉L2(Ω) =

∫
Ω

(L−1
0 f)g dx

=

∫
Ω

ug dx

= B0[u, v]

=

∫
Ω

n∑
i,j=1

aijuxivxj dx

=

∫
Ω

fv dx

= 〈f, L−1
0 g〉.

Hence, L−1
0 must be self-adjoint.

Combining parts (a) and (b), we find that L−1
0 is compact and self-adjoint.

By the Hilbert-Schmidt theorem (5.3.3), L2(Ω) has a countable
orthonormal basis of eigenvectors of L−1

0 , which we will denote by
{φk}k∈Z>0 . Let λk ∈ C denote the eigenvalue corresponding to φk. Since
L−1

0 is compact, we must have limk→∞ λk = 0.

Finally, observe that for all k ∈ Z>0

1 = 〈φk, φk〉L2(Ω) = B0[L−1
0 φk, φk] = B0[λkφk, φk].

Since B0 is bilinear, we therefore have

λk =
1

B0[φk, φk]
> 0

due to the fact that B0 is positive definite.

Now that we have studied the special case 8.2, we want to move onto the
more general BVP in 8.1. As the following example demonstrates, we will
need to tread carefully because the loosening of assumptions required to go
from 8.2 to 8.1 means that 8.1.2 is no longer valid.
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Example 8.1.2. Assume that Ω = (0, π) ⊆ R. Consider the operator
Lu = −uxx − 4u. This operator is uniformly elliptic in a similar vein to
8.1.1. However, the corresponding bilinear form B : H1

0 (Ω)×H1
0 (Ω)→ R,

defined by

B[u, v] =

∫ π

0

uxvx − 4uv dx

is not positive definite. For example, if we take u = v = sinx, we find that

B[u, u] =

∫ π

0

cos2 x− 4 sin2 x dx = −3π

2
.

Now observe that if we take f(x) = sin(2x) ∈ L2(Ω), we find that the
boundary value problem{

−uxx − 4u = sin 2x x ∈ (0, π),

u(x) = 0 x ∈ {0, π}.

has no weak solutions. If we take v(x) = sin 2x, then for all u ∈ H1
0 (Ω),

B[u, v] =

∫ π

0

uxvx−4uv dx =

∫ π

0

(2ux cos 2x−4u sin 2x) dx = 0 6= 〈f, v〉L2((0,π)).

Now, we will proceed to analyse 8.1. We will restate the BVP below for
convenience. {

Lu = L0u+ L1u = f x ∈ Ω,

u = 0 x ∈ ∂Ω.

Here, L0 is the second order differential operator

L0u = −
n∑

i,j=1

(aij(x)uxi)xj .

and L1 is the differential operator which contains the rest of the terms:

L1u =
n∑
i=1

bi(x)uxi + c(x)u.

A function u ∈ H1
0 (Ω) is a solution to the BVP if and only if for all

v ∈ H1
0 (Ω),

B0[u, v] = 〈f, v〉L2(Ω) − 〈L1u, v〉L2(Ω).
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The above equality is from the definition of a weak solution. Hence, the
above equality is true if and only if u = L−1

0 (f − L1u). This can be
rewritten in the form (I +K)u = g, where g = L−1

0 f and Ku = L−1
0 L1u.

Now, observe that L1 is a bounded linear operator and L−1
0 is compact from

8.1.2. So, K must be a compact operator and consequently, the Fredholm
alternative applies. We now have the following two scenarios:

1. In the first case, ker(I +K) = {0} and the equation (I +K)u = g has
exactly one unique solution in H1

0 (Ω) for all g ∈ H1
0 (Ω).

2. In the second case, ker(I +K) 6= {0} and the equation (I +K)u = 0
has a non-trivial solution in H1

0 (Ω).

The second situation is equivalent to saying that u ∈ H1
0 (Ω) is a weak

solution to the homogeneous boundary value problem{
Lu = L0u+ L1u = 0 x ∈ Ω,

u = 0 x ∈ ∂Ω.
(8.3)

Following through with the first case, we can now confidently state when
8.1 has a unique solution. The proof is a consequence of the above
application of the Fredholm alternative.

Theorem 8.1.4. Let Ω ⊆ Rn be a bounded open set and let L denote the
differential operator in the BVP 8.1. Suppose that aij, bi, c ∈ L∞(Ω) and L
is uniformly elliptic. Then, the BVP 8.1 has a unique solution for all
f ∈ L2(Ω) if and only if the homogeneous BVP 8.3 has u(x) = 0 as the only
solution.

8.2 Parabolic PDEs

Once again, let Ω ⊆ Rn denote a bounded open set and let L be the
operator in 8.1. We will also assume that L is uniformly elliptic,
aij = aji ∈ W 1,∞(Ω) and bi, c ∈ L∞(Ω).

Below is the parabolic BVP that we will analyse in this section:
∂u
∂t

+ Lu = 0 t > 0, x ∈ Ω,

u(t, x) = 0 t > 0, x ∈ ∂Ω,

u(0, x) = g(x) x ∈ Ω.

(8.4)
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By defining A = −L, we can rewrite the above BVP as a Cauchy problem
in L2(Ω):

d

dt
u = Au, u(0) = g

Here, Dom(A) = {u ∈ H1
0 (Ω) | Lu ∈ L2(Ω)}. Alternatively, u ∈ Dom(A) if

u is a solution to 8.1 for some f ∈ L2(Ω).

The main goal of this section is to construct solutions to 8.4 using
semigroup theory. As in the previous section, we will start with some extra
assumptions first.

Theorem 8.2.1. Let Ω ⊆ Rn be a bounded open set and the operator L be
defined as in 8.4. Suppose that the bilinear form B : H1

0 (Ω)×H1
0 (Ω)→ R

corresponding to L

B[u, v] =

∫
Ω

(
n∑

i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuv) dx

is positive definite. Then, the operator A = −L generates a contractive
semigroup {St}t∈Z≥0

of linear operators on L2(Ω).

Proof. From 6.7.1, we have to demonstrate that the operator
A : L2(Ω)→ L2(Ω) satisfies the following properties:

To show: (a) The set Dom(A) is dense in L2(Ω).

(b) The graph of A is closed.

(c) For all λ > 0, λ ∈ ρ(A) and

‖(λI − A)−1‖ ≤ 1

λ
.

(a) Assume that ϕ ∈ C∞c (Ω). Then, by definition Lϕ ∈ L2(Ω) since Ω is
bounded. So, ϕ ∈ Dom(A), suggesting that C∞c (Ω) ⊆ Dom(A). Since
C∞c (Ω) is dense in L2(Ω), Dom(A) must also be dense in L2(Ω).

(b) Assume that B is positive definite. Since it is also continuous, as
|B[u, v]| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) for some constant C ∈ R>0, we can apply the
Lax-Milgram theorem (3.6.3) to deduce that for all f ∈ L2(Ω), there exists
a unique solution u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω),
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B[u, v] = 〈f, v〉L2(Ω).

Moreover, the map L−1 which sends f to u is a bounded linear operator
from L2(Ω) to L2(Ω).

Suppose that Γ(A) denotes the graph of A. We now observe that since
A = −L, the pair (u, f) ∈ L2(Ω)× L2(Ω) is in Γ(A) if and only if
(−f, u) ∈ Γ(L−1). Note that since L−1 is continuous (as it is bounded),
Γ(L−1) must be closed. Therefore, Γ(A) must also be closed.

(c) Assume that λ ∈ R>0. It suffices to show that the operator λI −A has a
bounded inverse with operator norm ‖(λI − A)−1‖ ≤ 1/λ. This is
equivalent to the statement that for all f ∈ L2(Ω), the BVP{

λu+ Lu = f x ∈ Ω,

u = 0 x ∈ ∂Ω,

has a weak solution u ∈ H1
0 (Ω) which satisfies ‖u‖L2(Ω) ≤ ‖f‖L2(Ω)/λ (note

that u = (λI − A)−1f).

Since B is positive definite and continuous, the Lax-Milgram theorem tells
us that there exists a unique u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω),

〈λu, v〉L2(Ω) +B[u, v] = 〈f, v〉L2(Ω)

If we set u = v, we deduce that for all v ∈ H1
0 (Ω),

λ‖v‖L2(Ω) +B[v, v] = 〈f, v〉L2(Ω) ≤ ‖f‖L2(Ω)‖v‖L2(Ω)

by the Cauchy-Schwarz inequality. Since B is positive definite, B[v, v] ≥ 0
for all v ∈ H1

0 (Ω). Therefore, λ‖u‖L2(Ω) ≤ ‖f‖L2(Ω) and consequently,

‖u‖L2(Ω) = ‖(λI − A)−1f‖L2(Ω) ≤
1

λ
‖f‖L2(Ω).

So, by the definition of the operator norm, we must have

‖(λI − A)−1‖ ≤ sup
‖f‖L2(Ω)=1

‖(λI − A)−1f‖L2(Ω) ≤
1

λ
.

This also reveals that λ ∈ ρ(A). By combining all parts of the proof and
using 6.7.1, we find that A = −L must generate a contractive
semigroup.
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As with the elliptic BVPs, the next logical question we will explore is
whether the solutions to 8.4 form an orthonormal basis of L2(Ω) (whether
the Hilbert-Schmidt theorem applies). We will return to the scenario in
8.1.3, where we have an orthonormal basis {φk}k∈Z>0 consisting of
eigenfunctions of the compact, self-adjoint operator L−1

0 . Since
L−1

0 φk = λkφk for all k ∈ Z>0, we must have φk ∈ Dom(L0) because

L0φk =
1

λk
φk.

Define µk = 1
λk
> 0. Note that µk →∞ as k →∞. Now define

u(t) = e−µktφk.

The point of this definition is that u(t) satisfies the following Cauchy
problem:

du

dt
= −L0u(t) u(0) = φk.

Notice that if we apply the previous theorem to L0, then in tandem with
8.1.2, the operator −L0 must generate a contractive semigroup {St}t∈Z>0 .
Recall from 6.7.1 that the semigroup generated by −L0 must be unique.
Therefore, Stφk = e−µktφk. Extending by linearity, we also have

St(
N∑
k=1

ckφk) =
N∑
k=1

cke
−µktφk.

Using the fact that {φk} is an orthonormal basis for L2(Ω), we must have
for all g ∈ L2(Ω) and for all t ∈ R≥0 that

Stg =
∞∑
k=1

〈g, φk〉L2(Ω)e
−µktφk. (8.5)

The above equation is the subject of our next result.

Lemma 8.2.2. Assume that L0 is the operator in 8.2. The for all
g ∈ L2(Ω), the formula 8.5 defines a map

ϕg : (0,∞)→ L2(Ω)

t 7→ Stg.
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The map ϕg is continuous for all t ∈ (0,∞) and continuously differentiable
for all t ∈ R>0. Moreover, u(t) = e−µktφk ∈ Dom(L0) ⊆ H1

0 (Ω) for all
t ∈ R>0 and

d

dt
u(t) = L0u(t).

Proof. Assume that g ∈ L2(Ω). To see that

Stg =
∞∑
k=1

〈g, φk〉L2(Ω)e
−µktφk.

is uniformly convergent for t ∈ R≥0, observe that for all t ∈ R≥0,

∞∑
k=1

|e−µkt〈g, φk〉L2(Ω)|2 ≤
∞∑
k=1

〈g, φk〉2L2(Ω) (µk > 0)

= ‖g‖2
L2(Ω) (Bessel’s Inequality)

<∞.

Since the coefficients converge, we deduce that the series representation of
Stg must converge uniformly for t ∈ R≥0. Furthermore, all of the partial
sums are continuous functions with respect to t. This confirms that the
map t 7→ Stg is also continuous.

Our next claim is that for all t > 0, Stg ∈ Dom(L0) ⊆ H1
0 (Ω), even if

g 6∈ H1
0 (Ω). Similarly to the previous argument, a function u =

∑
k ckφk is

in Dom(L0) if and only if
∑

k c
2
kµ

2
k <∞. If we set ck(t) = e−µkt〈g, φk〉L2(Ω),

we have the bound

∞∑
k=1

(ckµk)
2 ≤ sup

k∈Z>0

(µke
−µkt)2

∞∑
k=1

〈g, φk〉2L2(Ω) = sup
k∈Z>0

(µke
−µkt)2

∞∑
k=1

‖g‖2
L2(Ω).

Define the function f(ζ) = ζe−ζt, where ζ ≥ 0. It attains its global
maximum when ζ = 1/t and f(1/t) = 1/et. Therefore,

∞∑
k=1

(ckµk)
2 ≤ 1

e2t2
‖g‖2

L2(Ω) <∞.

This demonstrates that the series defining L0u(t) is convergent and thus,
u(t) ∈ Dom(L0) for each t > 0.
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Finally, we can differentiate the series in 8.5 term by term. One should find
that the series of derivatives is also convergent. This completes the proof.

Now, we will extend 8.2.1 in order to remove the assumption that B is
positive definite. In order to illustrate the motivation behind what
proceeds, we will return to the finite dimensional case. Let L ∈Mn×n(R)
and consider the following linear ODE

d

dt
x(t) = −Lx(t).

If L is positive definite (that is, for all x ∈ Rn, 〈Lx, x〉 ≥ 0), then −L must
generate a contractive semigroup. Observe also that the Euclidean norm of
a solution does not increase with time t because

d

dt
|x(t)|2 = 2〈 d

dt
x(t), x(t)〉 = 2〈−Lx, x〉 ≤ 0.

Now, let L ∈Mn×n(R) be an arbitrary matrix. Then, there exists γ ∈ R≥0

so that L+ γI is positive definite and thus, generates a contractive
semigroup. In this case, if x(t) = e−tLx(0) is a solution to the linear ODE
above, we can write −L = γI − (L+ γI) and obtain

|x(t)| = |e−Ltx(0)| = |e[γI−(L+γI)]tx(0)| = eγt|e−(L+γI)tx(0)| ≤ eγt|x(0)|.

Hence, the operator −L must generate a semigroup of type γ.

Now, we will transfer the above reasoning to the case where L is a
uniformly elliptic operator in 8.1 and the corresponding bilinear form
B[u, v] is not necessarily positive definite. The following lemma is required
to carry out the first step.

Lemma 8.2.3. Let the operator L be uniformly elliptic with
aij, b,c ∈ L∞(Ω). Then, there exists constants α, β, γ > 0 such that for all
u, v ∈ H1

0 (Ω),

|B[u, v]| ≤ α‖u‖H1‖v‖H1 and β‖u‖2
H1 ≤ B[u, u] + γ‖u‖2

L2 .

Proof. Assume that u, v ∈ H1
0 (Ω). The first inequality can be shown

directly from the definition of B and Hölder’s inequality as follows:
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|B[u, v]| = |
∫

Ω

(
n∑

i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuv)|

≤
n∑

i,j=1

‖aij‖L∞‖uxi‖L2‖vxj‖L2 +
n∑
i=1

‖bi‖L∞‖uxi‖L2‖v‖L2

+‖c‖L∞‖u‖L2‖v‖L2 (Hölder)

≤ α‖u‖H1‖v‖H1 .

For the second inequality, we will use the fact that L is uniformly elliptic
and the inequality

ab ≤ θ

2
a2 +

1

2θ
b2.

We then obtain

θ
n∑
i=1

‖uxi‖2
L2 = θ

∫
Ω

n∑
i=1

u2
xi
dx

≤
∫

Ω

n∑
i,j=1

aijuxiuxj dx (Uniformly Elliptic)

= B[u, u]−
∫

Ω

(
n∑
i=1

biuxiu+ cu2) dx

≤ B[u, u] +
n∑
i=1

‖bi‖L∞‖uxi‖L2‖u‖L2 + ‖c‖L∞‖u‖2
L2

≤ B[u, u] + (
n∑
i=1

θ

2
‖uxi‖2

L2 +
n∑
i=1

1

2θ
‖bi‖2

L∞‖u‖2
L2) + ‖c‖L∞‖u‖2

L2 .

So, for all u ∈ H1
0 (Ω),

B[u, u] ≥ θ

2

n∑
i=1

‖uxi‖2
L2 − C‖u‖2

L2

for some constant C ∈ R>0. So, we can take β = θ/2 and γ = C + θ/2 in
order to deduce the second inequality.
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Taking the constant γ from the above lemma, we define

Lγu = Lu+ γu and Bγ[u, v] = B[u, v] + γ〈u, v〉L2(Ω).

So, our parabolic PDE 8.4 can be written as

∂u

∂t
= −Lγu+ γu.

The lemma reveals that Bγ is positive definite and therefore, the operator
Aγ = −Lγ generates a contractive semigroup, which we will call
{Sγt | t ∈ R≥0}. Therefore A = −L = γI − Lγ must generate a semigroup of
type γ by using the same analysis as the finite dimensional case.

The above arguments culminate in the following theorem:

Theorem 8.2.4. Let Ω ⊆ Rn be a bounded open set and the operator L be
defined as in 8.4. Then, the operator A = −L generates a semigroup
{St}t∈Z≥0

of linear operators on L2(Ω).

After constructing a semigroup {St}t∈R≥0
, one lingering thought is when the

function t 7→ Stf provides a solution to the BVP 8.4. In the case where
L = L0 (in 8.2), we can use 8.2.2 to deduce that for all g ∈ L2(Ω), the map
t 7→ Stg is a C1 map (continuously differentiable). Furthermore,
u(t) = e−µktφk ∈ Dom(L0) and satisfies the required differential equation

d

dt
u(t) = L0u(t)

for all t ∈ R≥0. Recall that this works because of 8.5.

A similar result can be established for the more general elliptic operator L,
but this requires more work.

8.3 Hyperbolic PDEs

The final type of BVP that we will study is a linear hyperbolic BVP of the
following form: 

∂2u
∂t2

+ L0u = 0 t ∈ R, x ∈ Ω,

u(t, x) = 0 t ∈ R, x ∈ ∂Ω,

u(0, x) = f(x), ∂u
∂t

(0, x) = g(x) x ∈ Ω.

(8.6)
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Here, we have the usual assumptions. As a recap, Ω ⊆ Rn is a bounded
open set, f, g ∈ L2(Ω), L0 is the second order uniformly elliptic operator

L0u = −
n∑

i,j=1

(aij(x)uxi)xj

with aij = aji ∈ W 1,∞(Ω) for all i, j ∈ {1, . . . , n}. By 8.1.3 and 8.2.2, we
find that L2(Ω) admits an orthonormal basis {φk}k∈Z>0 such that for all
k ∈ Z>0, φk ∈ Dom(L0) and L0φk = µkφk where limk→∞ µk →∞.

Our strategy for dealing with 8.6 is to rewrite it as a first order system.
Define v = ∂u/∂t. Then, our hyperbolic BVP can be rewritten in the
product space X = H1

0 (Ω)× L2(Ω) as

d

dt

(
u
v

)
=

(
0 I
−L0 0

)(
u
v

)
, where

(
u
v

)
(0) =

(
f
g

)
.

Using the eigenfunctions φk, we will construct a semigroup of solutions.
First consider the special case where f = akφk and g = bkφk for some
k ∈ Z>0 with ak, bk ∈ R. An explicit solution is

u(t) = a(t)φk and v(t) = a′(t)φk

where the coefficient a(t) must satisfy

a′′(t) + µka(t) = 0, a(0) = ak and a′(0) = bk.

Fortunately, the above ODE admits a nice solution:

a(t) = ak cos(
√
µkt) +

bk√
µk

sin(
√
µkt).

Substitution then yields the identities of u(t) and v(t), in terms of the
following matrix equation:(

u(t)
v(t)

)
=

(
cos(
√
µkt)

1√
µk

sin(
√
µkt)

−√µk sin(
√
µkt) cos(

√
µkt)

)(
akφk
bkφk

)
.

The map t 7→ (u(t), v(t)) is a continuously differentiable map from R to X,
which satisfies 8.6. Of course, we can extend this further to arbitrary
f, g ∈ L2(Ω) via linearity and the fact that {φk} is an orthonormal basis of
L2(Ω).

With the above analysis, we are finally able to describe the solutions of 8.6.
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Theorem 8.3.1. Let f, g ∈ L2(Ω) as in 8.6 and X = H1
0 (Ω)× L2(Ω). For

all t ∈ R, define the map St : X → X by

St

(
f
g

)
=
∞∑
k=1

(
cos(
√
µkt)

1√
µk

sin(
√
µkt)

−√µk sin(
√
µkt) cos(

√
µkt)

)(
〈f, φk〉L2(Ω)φk
〈g, φk〉L2(Ω)φk

)
.

Then, {St}t∈R is a strongly continuous semigroup of bounded linear
operators on X. Moreover, each St is an isometry with respect to the norm

‖(u, v)‖X = (B0[u, u] + ‖v‖2
L2(Ω))

1
2 .

Proof. Suppose that u ∈ H1
0 (Ω), v ∈ L2(Ω) and ‖(u, v)‖X is defined as

above. Recall from 8.1.2 that B0 is a strictly positive definite bilinear form,
which means that there exists a constant β ∈ R>0 such that for all
u ∈ H1

0 (Ω), B0[u, u] ≥ β‖u‖2
H1(Ω).

Now consider the standard product norm on X, defined by

‖(u, v)‖H1×L2 = (‖u‖2
H1(Ω) + ‖v‖2

L2)
1
2 .

Due to the fact that B0 is positive definite, both norms must be (Lipschitz)
equivalent norms on X.

Now let f =
∑∞

k=1 akφk and g =
∑∞

k=1 bkφk be elements of L2(Ω). Then, a
direct computation yields

B0[f, f ] = 〈L0f, f〉L2(Ω) =
∞∑
k=1

〈µkakφk, akφk〉 =
∞∑
k=1

µka
2
k

and

‖g‖2
L2(Ω) = 〈g, g〉L2(Ω) =

∞∑
k=1

b2
k.

This suggests that (f, g) ∈ X if and only if the quantities
∑∞

k=1 µka
2
k and∑∞

k=1 b
2
k are both finite.

Now a tedious calculation reveals that for all t ∈ R,

‖St
(
f
g

)
‖2
X =

∞∑
k=1

µkak(t)
2 +

∞∑
k=1

bk(t)
2.
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Recalling the preliminary computation done before the statement of this
theorem, we have

ak(t) = cos(
√
µkt)ak +

1
√
µk

sin(
√
µkt)

and

bk(t) = a′k(t) = −√µk sin(
√
µkt)ak + cos(

√
µkt).

Conveniently, if (f, g) ∈ X, then for all t ∈ R, the series define St must be
convergent because

‖St
(
f
g

)
‖2
X =

∞∑
k=1

µkak(t)
2 +

∞∑
k=1

bk(t)
2.

is convergent. Substituting the expressions for ak(t) and bk(t), we discover
that

‖St
(
f
g

)
‖2
X = ‖

(
f
g

)
‖2
X .

So, for all t ∈ R, each St : X → X is an isometry.

It remains to demonstrate that {St}t∈R satisfies the properties of a strongly
continuous semigroup. When t = 0, ak(t) = ak, bk(t) = bk and

S0

(
f
g

)
=

(
f
g

)
.

The defining semigroup property

StSs

(
f
g

)
= St+s

(
f
g

)
for all s, t ∈ R follows from a long calculation. It remains to show that the
map t 7→ St(f, g) is continuous from R to X, for all f, g ∈ L2(Ω). However,
we observe that for all m ∈ Z>0, the map

t 7→ St

(∑m
k=1〈f, φk〉L2(Ω)φk∑m
k=1〈g, φk〉L2(Ω)φk

)
is continuous because each component function is a linear combination of
trigonometric functions in the variable t, which is continuous. Taking the
limit of the above maps as m→∞ then gives us the desired conclusion
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that t 7→ St(f, g) is continuous from R to X because the convergence is
uniform (holds for all t ∈ R).

A consequence of the fact that the map t 7→ St(f, g) is continuous is that
‖u(t)− f‖H1(Ω) → 0 and ‖v(t)− g‖L2(Ω) → 0 as t→ 0 where(

u(t)
v(t)

)
= St

(
f
g

)
.

The reason for this is because for all t ∈ R, St is an isometry as determined
by the theorem above. Thus, the initial conditions in 8.6 are all satisfied.
Moreover, u(t) ∈ H1

0 (Ω) for all t ∈ R, by definition of X, unveiling that the
boundary conditions of 8.6 are also satisfied.
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Chapter 9

Epilogue

This chapter concludes the notes on functional analysis and the close
reading of [AB10] with a few comments. These notes were constructed over
a span of 2 years, due to university coursework and research taking priority.
Although I have learnt a lot about functional analysis, these notes
ultimately reflect one person’s view on the subject (Bressan). There are
still many aspects of functional analysis I want to learn as a result. In order
to obtain a more holistic grasp of the material, it was necessary to consult
multiple references on the subject (see the bibliography). I highly
recommend using multiple references to supplement a close reading of a
particular text.

I wrote these notes with the intent of conveying the theory in a clear and
comprehensible manner. Simply copying the notes in [AB10] is not
conducive to learning the theory because it is not an active way of thinking
about what was written or read. It is important to fill in crucial details in
the proofs (see 5.3.1 for a concrete example). In this way, it forced me to
think more conscientiously about what the result is trying to tell me.

One weakness of these notes is that it does not contain any completed
exercises from [AB10] or any of the other references. Once I take this
subject at university, as well as the closely related subjects on partial
differential equations, I will tackle a wide variety of exercises in order to
further internalise the material. I emphasise that it is important to do
exercises when learning any mathematics subject.

I intend to do more close readings of texts that I am interested in. However,
there are plenty of higher priority tasks to deal with first! I will update
these notes once I find mistakes or better methods of explaining the theory.
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