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0.1 Introduction

The Ising model is a spin model designed to describe the phenomenon of
ferromagnetism (and the related antiferromagnetism). It was first solved in
the one-dimensional case by Ising in the 20th century, who mistakenly
believed that it could not be solved in two dimensions. Lars Onsager
proceeded to solve it in two-dimensions. So far, the Ising model is known to
be exactly solvable in only one and two dimensions.

The fundamental technique to the solution of the Ising model is the transfer
matrix technique, which we will attempt to describe in detail within these
notes.
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0.2 The one-dimensional case

Consider a line of n points. The set of states of our system, denoted by C,
is given by

C = {φ : Z/nZ→ {−1, 1}}.

This is the set of functions from Z/nZ to {−1, 1}. The set {−1, 1}
represents the “spin” of each point. One can think of −1 representing a
down spin and 1 representing an up spin. We select the set Z/nZ in order
to impose periodic boundary conditions on our model. That is, sn+1 = s1 or
the value of the spin at site n+ 1 must match that of the first spin.

The most important aspect of the model however, is the
energy/Hamiltonian, which is given by

E = −J
n∑
i=1

sisi+1 −H
n∑
i=1

si.

where si denotes the spin at site i and J,H ∈ R. The constant J is the
interaction term between each pair of spins, whereas the constant H is the
magnetic field term on each individual spin.

Let β = 1/T be the reciprocal temperature. Then, the partition function of
this Ising model is given by

Z =
∑
s∈C

e−βE(s) =
∑
s∈C

eK
∑n

i=1 sisi+1+B
∑n

i=1 si

Here, K = βJ and B = βH. Essentially, we are summing over all the
possible states of the system. Explicitly, we can write

Z =
∑

s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

eK
∑n

i=1 sisi+1+B
∑n

i=1 si .

In order for the transfer matrix technique to work, one must rewrite the
summand of the partition function in a more symmetric manner, so that
each pair of neighbouring spins is represented equally. Keeping this in
mind, we obtain

Z =
∑

s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

eKs1s2e
B
2
(s1+s2) . . . eKsns1e

B
2
(sn+s1).
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The key idea here is to recognise the above sum as looking somewhat like
the multiplication of matrices. In fact, the transfer matrix technique makes
this a reality. Define

T =

(
eK+B e−K

e−K eK−B

)
.

We can think of this matrix as a 2× 2 matrix indexed by each pair of
neighbouring spins si, si+1 such that if

t(si, si+1) = eKsisi+1e
B
2
(si+si+1)

then

T =

(
t(1, 1) t(1,−1)
t(−1, 1) t(−1,−1)

)
.

As a result, the partition function simplifies immensely to give a trace:

Z =
∑

s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

Ts1,s2Ts2,s3 . . . Tsn,s1 = Tr(T n).

Now, we are left to compute the trace. The first observation is that T has
two eigenvalues λ+ and λ−, given by

λ± = eK cosh(B)±
√
e2K sinh2(B) + e−2K .

By diagonalising T , we are able to compute the partition function as
Z = Tr(T n) = λn+ + λn−.

0.3 Important quantities of the 1D Ising

model

0.3.1 Free energy and phase transitions

With the partition function in hand, we can now compute various
important quantities of the 1D Ising model, in order to understand it better.

First up is the free energy per site, which is defined by

f =
logZ

n
.

Most importantly, the free energy is able to describe whether our model has
a phase transition — a discontinuity in the free energy represents a phase
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transition which occurs at a critical temperature Tc. We will see soon that
as the size of the system tends to infinity, there is no such discontinuity in
the free energy and hence, no phase transition in the 1D Ising model.

The key observation to the next computation is that λ+ > λ− and so, as
n→∞,

lim
n→∞

λn+ + λn− = lim
n→∞

λn+(1 +
λn−
λn+

) ≈ λn+.

Hence, as the size of our system grows very large, the free energy per site
becomes

lim
n→∞

logZ

n
= lim

n→∞

log(λn+ + λn−)

n

≈ lim
n→∞

log(λn+)

n
= lim

n→∞
log(λ+)

= log(Λ+).

Note that log(Λ+) is a continuous function of β, since the logarithm, square
root and hyperbolic functions are all continuous functions. In particular,
there are no discontinuities associated with the variable β ∈ R>0. Hence,
there cannot be any phase transitions in the one dimensional Ising model.

0.3.2 Average spin and spin correlation

Assume that i, j ∈ {1, . . . , n} with i 6= j. By definition, the average spin
〈si〉 is equal to

〈si〉 =
1

Z

∑
s∈C

sie
−βE(s)

=
1

Z

∑
s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

sie
Ks1s2e

B
2
(s1+s2) . . . eKsns1e

B
2
(sn+s1)

=
1

Z

∑
s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

Ts1,s2 . . . Tsi−1,sisiTsi,si+1
. . . Tsn,s1 .

We want to express the ith spin si with a 2× 2 matrix. To this end, we
define
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σz =

(
1
−1

)
.

This is a matrix indexed by spins si and si+1 so that the element
(σz)si,si+1

= siδsi,si+1
, where δ is the Kronecker delta. Notice that

(σz)si,si+1
6= 0 whenever si = si+1. Since we are only summing over

si ∈ {−1, 1}, we have

〈si〉 =
1

Z

∑
s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

Ts1,s2 . . . Tsi−1,si(σ
z)si,siTsi,si+1

. . . Tsn,s1 .

By using the transfer matrix method, we can do the matrix multiplications
and express the above sum as a trace, revealing that

〈si〉 =
1

Z
Tr(T iσzT n−i).

For the spin correlation factor 〈sisj〉, the process is very similar to
computing the average spin because

〈sisj〉 =
1

Z

∑
s∈C

sisje
−βE(s).

By going through the similar derivation, we obtain

〈sisj〉 =
1

Z
Tr(T iσzT j−iσzT n−j).

0.3.3 The magnetic field free regime

In this section, we set B = 0. Our eigenvalues λ+ and λ− become

λ+ = 2 coshK and λ− = 2 sinhK.

Hence, the partition function for the Ising model without the magnetic field
term B is

Z = (2 coshK)n + (2 sinhK)n.

We will recalculate the average spin and spin correlation factors. Let
i, j ∈ {1, . . . , L} with j ≥ i. Then, the average spin is given by
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〈si〉 =
1

Z
Tr(T iσzT n−i)

=
1

Z
Tr(σzT n−iT i)

=
1

Z
Tr(σzT n).

We want to show that Tr(σzT n) = 0. To see why this is the case, define the
set

A = {
(
a b
b a

)
| a, b ∈ R}.

Note that T ∈ A. A quick computation reveals that if a, b, c, d ∈ R,(
a b
b a

)(
c d
d c

)
=

(
ac+ bd ad+ bc
ad+ bc ac+ bd

)
.

Thus, the set A is a monoid when equipped with matrix multiplication. In
particular, this means that T n can be written in the form

T n =

(
X Y
Y X

)
∈ A so that σzT n =

(
X Y
−Y −X

)
.

Therefore, 〈si〉 = Tr(σzT n) = 0. We expect the average spin to be zero
because each lattice site has an equal probability to be an up spin or a down
spin. To compute the spin correlation factor 〈sisj〉, define the function

f : M2×2(R)→M2×2(R)

f(u) = (eKI2 − e−Ku)j−i(eKI2 + e−Ku)L−j+i.

where I2 is the 2× 2 identity matrix. Then,

f(I2) = (2 sinhKI2)
j−i(2 coshKI2)

L−j+i and f(−I2) = (2 coshKI2)
j−i(2 sinhKI2)

L−j+i.

Recall that

σz =

(
0 1
1 0

)
and σx =

(
1 0
0 −1

)
.

The identity that we require is
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f(σx) =

(
2 sinhK

2 coshK

)j−i(
2 coshK

2 sinhK

)L−j+i
=

(
1 0
0 0

)(
2 sinhK

2 sinhK

)j−i(
2 coshK

2 coshK

)L−j+i
+

(
0 0
0 1

)(
2 coshK

2 coshK

)j−i(
2 sinhK

2 sinhK

)L−j+i
=

1

2
(I2 + σx)f(I2) +

1

2
(I2 − σx)f(−I2).

Using our expression for the spin correlation factor, we compute that

〈sisj〉 =
1

Z
Tr(T iσzT j−iσzT n−j)

=
1

Z
Tr(σzT j−iσzT n−j+i)

=
1

Z
Tr((σzTσz)j−iT n−j+i)

=
1

Z
Tr((eKI2 − e−Kσx)j−i(eKI2 + e−Kσx)n−j+i)

=
1

Z
Tr(f(σx))

=
1

Z
Tr(

1

2
(I2 + σx)f(I2) +

1

2
(I2 − σx)f(−I2))

=
1

Z
[(2 sinhK)j−i(2 coshK)n−j+i + (2 coshK)j−i(2 sinhK)n−j+i]

=
1

Z
[(tanhK)j−i(2 coshK)n + (2 coshK)n(tanhK)n−j+i]

=
(2 coshK)n

(2 sinhK)n + (2 coshK)n
((tanhK)j−i + (tanhK)n−j+i)

=
(tanhK)j−i + (tanhK)n−j+i

1 + (tanhK)n
.

The quantities that we will compute next are quantities which are more
familiar from the perspective of statistical mechanics. The free energy F is
given by

F = −T logZ = − 1

β
log((2 cosh βJ)n + (2 sinh βJ)n).

The average energy 〈E〉 of the system is
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〈E〉 = −∂ logZ

∂β

= − ∂

∂β
(log((2 cosh βJ)n + (2 sinh βJ)n))

= −n2nJ [coshn−1 βJ sinh βJ + sinhn−1 βJ cosh βJ ]

2n(coshn βJ + sinhn βJ)

= −nJ [coshn−1 βJ sinh βJ + sinhn−1 βJ cosh βJ ]

coshn βJ + sinhn βJ
.

The entropy and the heat capacity are given by

S = β2∂F

∂β
and C = β2∂

2 logZ

∂β2
.

These result in complicated expressions. The final expression we will
compute is the correlation length ξ associated with the spin correlation
factor 〈sisj〉. Roughly speaking, the correlation length tells you how quickly
the spin correlation function vanishes as the separation between two spins
grows very large (or as |j − i| → ∞). It takes the form of an exponential
away from the potential critical temperature Tc (〈sisj〉 ∼ exp(−|j − i|/ξ)),
whereas at the critical temperature Tc, the correlation length
η ∼ |T − Tc|−ν , where ν is the critical exponent associated with the spin
correlation.

We will make the approximation 1 << |j − i| << n.

Since tanhK ∈ (−1, 1), (tanhK)n → 0 as n→∞. Since n >> j − i,
(tanhK)n−j+i → 0 as n→∞. As a result, we have

〈sisj〉 =
(tanhK)j−i + (tanhK)n−j+i

1 + (tanhK)n

≈ (tanhK)j−i

= elog((tanhK)j−i)

= e−(j−i) log(cothK).

Therefore, the correlation length is ξ = 1
log(cothK)

, where K > 0. Of course,
since there are no phase transitions in the 1D Ising model, there are no
critical exponents to compute in this case.
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0.4 The Ising model on a square lattice

0.4.1 Duality

Before we delve into the Ising model on a two-dimensional square lattice,
we must discuss the important concept of duality, which roughly states
that low temperature Ising models can be converted to high temperature
Ising models and vice versa. Before Onsager’s full solution to the
two-dimensional Ising model, Kramers and Wannier used a duality
transformation to determine the critical temperature of the Ising model.

We will follow the expositions in the references [Bax89] and [Mus10]. We
begin by deriving the low temperature series expansion of the partition
function of the Ising model on a M ×M square lattice.

0.4.2 Low temperature partition function

Consider a M ×M square lattice, where each spin can either take the
values of −1 or 1 (up and down spins). Assume that we do not have any
magnetic field term B. For a given configuration of spins, let r denote the
number of vertical edges in which the two adjacent spins are antiparallel
(different). Similarly, let s denote the number of horizontal edges in which
the two adjacent spins are antiparallel. This means that there are M − r
and M − s vertical and horizontal edges with parallel adjacent spins.

The partition function for the two-dimensional square lattice Ising model is

Z =
∑
s∈C

∑
(i,j)

exp(Ksi,jsi+1,j + Lsi,jsi,j+1). (1)

Here, K is an interaction term between the horizontal edges and L is an
interaction term between the vertical edges. A configuration with r
antiparallel vertical edges and s antiparallel horizontal edges will therefore
contribute to the partition function

exp(K((M −s)−s)+L((M −r)−r)) = exp(K(M −2s)+L(M −2r)). (2)

Here is the duality transformation. For a particular configuration on our
square lattice, we can associated to it a dual lattice, where the spins are
located on the faces of the square lattice. The dual lattice is shifted from
the original lattice by a “half-lattice spacing” in both directions. This
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means that for all edges in the original lattice, there exists exactly one edge
from the dual lattice which intersects the edge from the original lattice.
The rules for such an association are as follows:

1. If an edge on the original lattice is antiparallel, we say that the
intersecting edge on the dual lattice is occupied and we draw a line on
this edge.

2. On the other hand, if an edge on the original lattice is antiparallel,
then the intersecting edge on the dual lattice is unoccupied and we do
nothing.

In this manner, we obtain r occupied horizontal lines and s occupied
vertical lines on the dual lattice. An important observation here is that for
each site on the original lattice, there is an even number of successive spin
changes between the four surrounding faces on the dual lattice. So, there is
an even number of lines into each site. Hence, the lines on the dual lattice
form closed polygons, which separate the up and down spins into two
different domains.

For each closed polygon P , there are two spin configurations, with one
being obtained from the other via a spin flip. Therefore, the partition
function in (1) can be expressed as

Z = 2 exp(M(K + L))
∑
P

exp(−2Lr − 2Ks) (3)

where the sum is over all closed polygons in the dual lattice (i.e. over all
occupied edges with an even number of lines into each site). In this case, r
and s refer to the number of occupied horizontal and vertical lines
respectively.

An important observation associated with (3) is that the partition function
can be expressed with the geometrical quantity

Φ(K,L) =
∑
P

exp(−2Lr − 2Ks).

Let us compute the first few terms of the series expansion for Φ. The first
term occurs when all of the spins on the dual lattice are of the same value.
In this case, the values of r and s are both zero and thus, the first term in
the series expansion is 1.
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The second term occurs when one of the spins is (say) down, whereas the
rest of them are up. In this case, r = s = 2 so that the occupied edges form
a square around the flipped spin. Since there are N lattice sites, there are
N possible choice of where the spin flip occurs. Hence, the second term in
the expansion is

N exp(−4L− 4K).

The third term originates from closed polygon rectangles, which are either
2× 1 or 1× 2. So, we have either r = 4, s = 2 or r = 2, s = 4 respectively.
The degeneracy factor is still N (the number of lattice sites). Hence, the
third term contributing to Φ is

N(e−8L−4K + e−4L−8K).

Therefore,

Φ(K,L) = 1 +Ne−4L−4K +N(e−8L−4K + e−4L−8K) + . . . .

0.4.3 High temperature partition function

We begin with the identity

exp(Ksisj) = coshK + sinhKsisj (4)

where si, sj ∈ {−1, 1}. A similar expression also holds for L. This holds
because for all lattice sites i and j, sisj ∈ {−1, 1}. If we substitute (4) into
(1), we find that

Z = coshM K coshM L
∑
s∈C

∏
(i,j)

(1 + vsisj)
∏
(i,k)

(1 + wsisk)

where v = tanhK and w = tanhL. The first product is over all M
horizontal edges of the square lattice, whereas the second one is over all the
M vertical edges.

The next step is to expand the products appearing in the partition
function. In total, the expansion has 22M terms. It is better to view these
terms from the perspective of a graphical calculus as follows:

1. We associate to the factor vsisj a line drawn on the horizontal edge
(i, j).
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2. Similarly, we associate to the factor wsisk, a line drawn on the
vertical edge (i, k).

3. If there is a factor of 1 instead, no line is drawn.

In this way, we can establish a correspondence between each of the 22M

terms and the graphical configuration on the square lattice created acording
to the rules above. Each term takes the form

vrwssn1
1 s

n2
2 . . .

where r and s are the total numbers of horizontal and vertical lines
respectively and ni is the number of lines with lattice point i as its final
site. Once, we sum over all the possible spins, we find that we obtain zero
unless the numbers n1, n2, . . . nN are all even. In this case, the result of the
summation is 2Nvrws. Therefore, (1) takes the form

Z = 2N(coshK coshL)M
∑
P

vrws

where the sum is over all line configuration on the square lattice with an
even number of lines at each site. But, this is just the same as summing
over all closed polygons P on the lattice. Also, N is the number of lattice
sites on the square lattice. If we define the geometrical quantity

Ψ(v, w) =
∑
P

vrws,

then a very similar argument to the low temperature regime allows us to
write out the first few terms of Ψ as

Ψ(v, w) = 1 +Nv2w2 +N(v4w2 + v2w4) + . . . .

0.4.4 Finding the critical temperature

We notice that the low temperature and high temperature expansions of
the partition function have one common feature: they contain a sum over
all closed polygonal configurations P on the dual lattice and the original
lattice respectively. For finite lattices, the dual lattice and the original
lattice only differ at the boundary. In the thermodynamic limit, this
difference disappears and consequently, Φ(K,L) and Ψ(v, w) become
related by a change of variables. This suggests we look at the free energy
per site, which is once again given by

12



f = lim
n→∞

logZ

N
.

As N →∞, M/N ∼ 1 and thus, we have two different expressions for f ,
given by

f = lim
N→∞

log(2N(coshK coshL)M
∑

P v
rws)

N

= lim
N→∞

1

N
(N log 2 +M log(coshK coshL)) +

log
∑

P v
rws

N

= log(2 coshK coshL) + lim
N→∞

log
∑

P v
rws

N

and

f = lim
N→∞

log(2 exp(M(K + L))
∑

P exp(−2Lr − 2Ks))

N

= lim
N→∞

log 2

N
+
M(K + L)

N
+

log
∑

P exp(−2Lr − 2Ks)

N

= K + L+ lim
N→∞

log
∑

P exp(−2Lr − 2Ks)

N
.

If we let

ρ(v, w) = lim
N→∞

log
∑

P v
rws

N
,

then

f(K,L) = K + L+ ρ(e−2L, e−2K) = log(2 coshK coshL) + ρ(v, w).

In the latter equation, we replace K and L with new coupling constants K̃
and L̃, which satisfy

tanh K̃ = −e2L and tanh L̃ = e−2K , (5)

then

ρ(v, w) = ρ(tanh K̃, tanh L̃) = ρ(e−2L, e−2K)

By eliminating the ρ term, we find that

−f(K̃, L̃) = K + L− f(K,L)− log(2 cosh K̃ cosh L̃).
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We have related the free energy at low temperature to the free energy at
high temperature, via the duality relation purported in (5). We can express
(5) in a more symmetric form via the computation below

sinh(2K) sinh(2L̃) = 4 sinh(K) cosh(K) sinh(L̃) cosh(L̃)

= sinh(K) cosh(K)(2 sinh(L̃))(2 cosh(L̃))

= sinh(K) cosh(K)(e−K)(eK)

= (e−L̃)(eL̃)(eK)(e−K)

= 1

which reveals that

sinh(2K) sinh(2L̃) = sinh(2L) sinh(2K̃) = 1 (6)

In order to locate the critical point of the square lattice Ising model,
suppose that the low temperature Ising model has a line of critical points.
The mapping of the coupling constants (K,L) 7→ (K̃, L̃) maps the low
temperature Ising model to a high temperature one and vice versa, while
leaving the curve sinh 2K sinh 2L = 1 unchanged. To see why this is the
case, note that from (6),

sinh 2K sinh 2L =
1

sinh 2K̃ sinh 2L̃
.

Thus, the only way the map (K,L) 7→ (K̃, L̃) does not change is when
sinh 2K sinh 2L = 1. Under this map, we map our critical line to another
critical line in terms of K̃ and L̃.

If we make the important assumption that there is only one critical line for
the square lattice Ising model, then the critical line must be defined by the
equation

sinh 2K sinh 2L = 1.

Now if we assume an isotropic model where K = L. Then, if we assume
that our model contains only one critical point Kc, then it must satisfy

e−2Kc = tanh 2K̃c = tanhKc.

Solving this equation yields a critical point of Kc = 1
2

log(1 +
√

2), which
turns out to be the correct critical point of the square lattice Ising model.
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0.5 The star-triangle relation

0.5.1 Honeycomb-Triangle Duality

We can apply the duality method depicted for the square lattice Ising
model in order to describe the duality between a honeycomb lattice Ising
model and a triangular lattice Ising model. The method is very similar to
the square lattice.

The honeycomb lattice we are interested in consists of lattice points
arranged in hexagons. This time, there are three types of vertices to look
out for:

1. The first type of hexagon vertices range from SW to NE. They have
coupling constant L1.

2. The second type of hexagon vertices range from NW to SE. They
have coupling constant L2

3. The third type of hexagon vertices are vertical. They have coupling
constant L3.

Our notation is adopted from [Bax89, Figure 6.5]. The triangle lattice is
created out of sites situated at the centre of each hexagon. In this manner,
the triangle lattice is dual to the honeycomb lattice. Interestingly, the dual
of a honeycomb lattice of 2N lattice sites is a triangular lattice of N sites.
Similarly, there are three types of vertices to watch out for:

1. The first type of triangle vertices range from NW to SE. They have
coupling constant K1.

2. The second type of triangle vertices range from SW to NE. They have
coupling constant K2

3. The third type of triangle vertices are horizontal. They have coupling
constant K3.

The low temperature expansion of the partition function for the honeycomb
lattice with 2N sites is given by

ZH
2N(L) = exp(N(L1 + L2 + L3))

∑
P

exp(−2L1r1 − 2L2r2 − 2L3r3) (7)
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Once again, the sum is over all closed polygons P on the honeycomb lattice.
Notice that we replaced the expected 2N with N in the exponential and
removed the leading factor of 2 in (7). This is because the number of edges
of each class is now taken to be N , rather than the number of lattice sites.
This ignores boundary effects and thus, the replacements we made will not
affect the free energy in the thermodynamic limit as N →∞. Moreover,
the number ri is the number of edges of type i for all i ∈ {1, 2, 3}.

Next, we apply the high temperature procedure to expand the partition
function for the triangular lattice with N sites. The result is

ZT
N(K) = (2 coshK1 coshK2 coshK3)

N
∑
P

vr11 v
r2
2 v

r3
3 (8)

where vi = tanhKi for all i ∈ {1, 2, 3}. We will now directly compare (7)
and (8). Let us make the substitution

tanhK∗j = e−2Lj for all j ∈ {1, 2, 3}

in (8) to obtain

ZH
2N(L) = eN(L1+L2+L3)

∑
P

e−2L1r1e−2L2r2e−2L3r3

= eN(L1+L2+L3)
∑
P

(tanhK1)
r1(tanhK2)

r2(tanhK3)
r3

= eNL1eNL2eNL3

∑
P

vr11 v
r2
2 v

r3
3 .

To proceed any further, we require the following expressions for all
i ∈ {1, 2, 3}. These result from straightforward manipulations of hyperbolic
identities:

1

sinhK∗i
= e2Li

√
1− e−4Li and coshK∗i =

1√
1− e−4Li

.

Continuing the calculation, we have
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ZH
2N(L) = eNL1eNL2eNL3

∑
P

vr11 v
r2
2 v

r3
3

= (e2L1e2L2e2L3)N/2
∑
P

vr11 v
r2
2 v

r3
3

= (
coshK∗1
sinhK∗1

coshK∗2
sinhK∗2

coshK∗3
sinhK∗3

)N/2
∑
P

vr11 v
r2
2 v

r3
3

=
(coshK∗1 coshK∗2 coshK∗3)N

(sinhK∗1 coshK∗1 sinhK∗2 coshK∗2 sinhK∗3 coshK∗3)N/2

∑
P

vr11 v
r2
2 v

r3
3

=
23N/2(coshK∗1 coshK∗2 coshK∗3)N

(sinh 2K∗1 sinh 2K∗2 sinh 2K∗3)N/2

∑
P

vr11 v
r2
2 v

r3
3

=
2N/2(2 coshK∗1 coshK∗2 coshK∗3)N

(sinh 2K∗1 sinh 2K∗2 sinh 2K∗3)N/2

∑
P

vr11 v
r2
2 v

r3
3

= (2a1a2a3)
N/2ZT

N(K∗).

Here ai = 1/ sinh 2K∗i = sinh 2Li for all i ∈ {1, 2, 3}. This reveals the
following duality relation between the coupling constants Li and K∗i :

sinh 2Li sinh 2K∗i = 1.

However, this relation is markedly less useful than (6) for square lattices.
This is because the related coupling constants are for two Ising models with
different lattice structure. What we really want is a self-duality relation —
a duality relation between Ising models with the same lattice structure. We
will still be able to determine the critical temperature of both the
honeycomb lattice and the triangle lattice. The key ingredient is the
star-triangle relation.

0.5.2 Star-Triangle Identity

The important observation which belays the star-triangle relation is the
fact that the honeycomb lattice is bipartite. As a result, we can divide each
lattice site into two classes — A sites and B sites. Additionally, we can do
this in such a way that the neighbours of all A sites are B sites and vice
versa. See [Mus10, Figure 4.9].

So, the partition function for the honeycomb lattice can be computed by
summing over all the B sites first and then the A sites, which yields
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ZH
N (L) =

∑
σA

∏
〈i,j,k〉

w(σi, σj, σk)

where

w(σi, σj, σk) =
∑

σB∈{−1,1}

W (σB;σi, σj, σk) = 2 cosh(L1σi + L2σj + L3σk)

and

W (σB;σi, σj, σk) = exp(σB(L1σi + L2σj + L3σk)).

We are just summing over all B sites first. The key is that due to the fact
that cosh(−x) = cosh(x) and sinh(−x) = − sinh(x), we can write
w(σi, σj, σk) in such a way that it is proportional to the Boltzmann factor
of the triangular lattice. So, there exists parameters K1, K2, K3 and a
constant D such that

w(σi, σj, σk) = D exp(K1σjσk +K2σiσk +K3σiσj). (9)

Our partition function now simplifies to

ZH
N (L) = DN/2

∑
σA

∏
〈i,j,k〉

exp(K1σjσk +K2σiσk +K3σiσj).

By comparing this expression to the partition function for the triangular
lattice, we find that ZH

2N(L) = DNZT
N(K). It remains to determine how

D, K1, K2 and K3 are related to the original coupling constants on the
honeycomb lattice L1, L2 and L3.

By substituting all possible values of σi, σj, σk ∈ {−1, 1} into (9), we obtain
four distinct equations

2 cosh(L1 + L2 + L3) = R exp(K1 +K2 +K3)

2 cosh(−L1 + L2 + L3) = R exp(K1 −K2 −K3)

2 cosh(L1 − L2 + L3) = R exp(−K1 +K2 −K3)

and

2 cosh(L1 + L2 − L3) = R exp(−K1 −K2 +K3).
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We will suppress the details of solving the four equations simultaneously.
See [Bax89, Pages 82-83] for the details. In summary, we find that for all
i ∈ {1, 2, 3},

sinh 2Li sinh 2Ki = h−1 (10)

and

D2 = 2h sinh 2L1 sinh 2L2 sinh 2L3 (11)

where

h =
(1− v21)(1− v22)(1− v23)

4[(1 + v1v2v3)(v1 + v2v3)(v2 + v3v1)(v3 + v1v2)]1/2
(12)

where vi = tanhKi. Equation (10) tells us that all products of the form
sinhKi sinhLi have the same value.

0.5.3 Critical temperatures of honeycomb and
triangular lattices

As an application of the star-triangle identity developed in the previous
section, we will compute the critical temperatures of the honeycomb and
triangle lattice Ising models. Let us begin with the relationship between the
partition functions of these models derived in the previous section:

ZH
2N(L) = DNZT

N(K).

But this reveals that

(2a1a2a3)
N/2ZT

N(K∗) = DNZT
N(K).

Recall that ai = 1/ sinhK∗i for all i ∈ {1, 2, 3}. Using (11), we can express
the ratio (2a1a2a3)

N/2/DN as follows:

(2a1a2a3)
N/2

DN
=

(2 sinh−1 2K∗1 sinh−1 2K∗2 sinh−1 2K∗3)N/2

(2h sinh 2L1 sinh 2L2 sinh 2L3)N/2

=
(2 sinh−1 2K∗1 sinh−1 2K∗2 sinh−1 2K∗3)N/2

(2h−2 sinh−1 2K1 sinh−1 2K2 sinh−1 2K3)N/2

= (h−1)N/2 = h−N/2.

So,
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h−N/2ZT
N(K∗) = ZT

N(K) (13)

where for all i ∈ {1, 2, 3}, sinh 2K∗i = h sinh 2Ki. This time, we have a
self-duality relation between two triangle lattice Ising models. We can now
employ a similar strategy to the square lattice Ising model in order to
obtain the critical temperature of the triangular Ising model. Let us assume
that K1 = K2 = K3 = K for simplicity so that v1 = v2 = v3 = v. Similarly
to the square lattice Ising model, the critical temperature occurs when
h = 1. This is equivalent to

(1− v2)3

4[v3(1 + v3)(1 + v)3]1/2
= 1.

Squaring both sides of the above equation and simplifying, we obtain

(1 + v)4(1 + v2)3(v2 − 4v + 1) = 0.

The only solution which is reasonable and has a physical meaning is
vc = 2−

√
3. This gives us the critical temperature as

Kc = arctanh(2−
√

3).

In order to determine the critical temperature of the (isotropic) honeycomb
lattice Lc, we can use the relation tanhKc = e−2Lc . After some
computation, we deduce that

Lc =
1

2
log(2 +

√
3).

Let us compare our critical values for the isotropic honeycomb, square and
triangle lattices. Here, we will use the term temperature in the literal sense,
recalling that coupling constants scale as β = T−1.

It turns out that the triangular lattice has the highest critical temperature,
followed by the square lattice and then the honeycomb lattice. As [Mus10,
Page 160] explains, this is due to coordination numbers (the number of
neighbours associated to each spin). The triangular lattice has coordinate
number z = 6, the square lattice has z = 4 and the honeycomb lattice has
z = 3. So, the larger number of interactions amongst the spins of the
triangular lattice results in a system which magnetises at a higher
temperature. Physically, more energy is required to overcome the numerous
spin interactions in the triangular lattice in order to flip the magnetisation
on or off.
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